
1

High Level Synthesis
How to use it!

ARCHI'23

HLS : from algorithm to Silicon

High Level Synthesis aims at raising the level of abstraction of
hardware design

C/C++
program

HLS
Compilerdirectives

RTL implem. C/C++
testbench

Technology
library

algorithm!
!"#

$%&

𝐴! . 𝑋!

for(i=0;i<N;i++)
acc+=data[i]*coef[i];

x

x
x
x

+

+
+ x +

HLS : does it really work ?

High Level Synthesis is not a new idea
Seminal academic research work starting in the early 1990’s
First commercial tools on the market around 1995

First generation of HLS was a commercial failure
Worked only on small toy examples
QoR (area/power) way below expectations

It took 15 years to make these tools actually work
Now used by worldclass chip vendors (Apple, Samsung, Nxt, …)
Many designers reject HLS (bad past experience or prejudice)

ARCHI'23

HLS Customers Stories

Major industry players use HLS solutions. Qualcomm,
Google, Nvidia praised Catapult-C for:
C/C++ language

Single, familiar language
Bit exact results between model and RTL

High level design
Team working on high-value problems
DSE : try high number of algo/archi

Verification
Simpler testbench, much faster verification
99% of functional bugs found in C++ before RTL simulation
Google video encoder verification: 7-8 orders of magnitude faster

ARCHI'23

F. Sijstermans and J. Li, “Working Smarter, Not Harder: NVIDIA Closes Design Complexity Gap
With High-Level Synthesis”, 2015.

HLS Customers Stories

Fast arch. exploration, specification change, design reuse
Nvidia changed its decoder from 8 to 10 bits in less than 2 months,
Used design on mobile (510 MHz, 20nm) and desktop (800MHz, 28 HP)
Performance matching RTL custom design

ARCHI'23

F. Sijstermans and J. Li, “Working Smarter, Not Harder: NVIDIA Closes Design Complexity Gap
With High-Level Synthesis”, 2015.

Design Display module 1 Display module 2 Camera module 1 Camera module 2

RTL HLS RTL HLS RTL HLS RTL HLS

Area 3434 2876 8796 10960 2762 2838 49390 50247

Timing 0 0 -0,36 -0,33 0 0 0 0

Perf 3 pixels/3cycles 3 pixels/3cycles 2 pixels/cycles 2 pixels/cycles

Latency 3 cycles 3 cycles unconstrained unconstrained

Describing digital designs in C/C++

Is C/C++ suited for hardware design ?

No, it follows a sequential execution model
Deriving efficient hardware involve parallel execution

No, it has flat/linear vision of memory
All addresses point to a same space (virtual memory)
In an FPGA/ASIC memory is partitioned (memory blocks)

No, it supports to few datatypes (char, int, float)
Hardware IP use customized wordlength (e.g 12 bits)

6ARCHI'23

Use classes to model circuits component and structure
Instantiate components and explicitly wire them together
Easy to generate a low level representation of the circuit
Use of template can ease the design of complex circuits

⇒ Hardware Construction Languages
SystemVerilog, SystemC, Chisel

C based HLS tools aims at being used as C compilers
User writes an algorithm in C, the tool produces a circuit.

How to describe circuit with C, then ?

7

Still operates at the Register to Logic Level
Does marginally raise the level of design abstraction

ARCHI'23

Structurel (RTL) Algorithmique (HLS)

ARCHI'23 8

Vitis-HLS
Catapult-C

Vivado-HLS

OpenCL

Level of abstraction of
the description language

Level of abstraction of the
design description

Verilog

VHDL

SystemC

HDL vs HCL vs HLS

Chisel

Clash

pyRTL

The right use of HLS tools

To use HLS, one still need to « think in hardware »
The designer defines the system macro-architecture
The HLS tools then derives the micro-architectures
Not full C (no printf, no malloc, no recursion, etc.)

Need to be aware of optimizing compilers limitations
How smart a compiler dependency analysis can be ?
How to bypass compiler limitations (e.g using #pragmas)

Designers must fully understand how C/C++
language constructs map to hardware

9ARCHI'23

Key things to understand

1. How the HLS tool infers the component interface (I/Os)
Key issue for integrating the component into other designs

2. How the HLS tool handles data types and memory
Key issue when dealing with image/signal processing algorithms

3. How the HLS tool handles time (clock cycles)
Key issue for choosing between fast/large or slow/small IPs

10ARCHI'23

foobar

Specifying a hardware IP in C ?
A C program = main + secondary functions

Mapping main to hardware does not make sense …

A C-HLS description = Testbench + hardware IP
User specified function synthesized as a hardware IP
Main + others function serve as testbench for testing

11

int foobar(int a){

…
}

foobar
a

32

int main(int a){
…
res = foobar(12);
if (res!=2) error(-1)

}

DUT

TestBench

ARCHI'23

IP interface is inferred from the function prototype
Specific ports for controlling the component (start, end, etc.)
Simple data bus (scalar arguments of function results)

HLS tools generates two descriptions
A synthesizable HDL description of the hardware IP
A behavioral HDL/SystemC description of the testbench
Testing = making sure C and HDL simulation is equivalent

Inferring a component from C code

int foobar(int a){

…

}

foobar

12

a
32

done

start

ARCHI'23

Interfacing with buses, memories, etc.
Most IPs need to handle complex interface protocols

To read/write from an external (e.g off chip) memory
To read/write to/from streams and/or FIFO buffers
To access a shared CPU bus (AXI, Avalon, Amba, etc).

Special interface are inferred using argument type
Can be customized through annotations (pragmas)

13

int foobar(
int a,
int* ptr,
int tab[],
in_stream<int>* in){

…
}

foobar

ptr

a

ad
dr

do
ut

di
n

intab

ad
dr

do
ut

di
n

di
n

em
pt

y
re

ad

ARCHI'23

Key things to understand

1. How the HLS tool infers the component interface (I/Os)
Key issue for integrating the component into other designs

2. How the HLS tool handles data types and memory
Key issue when dealing with image/signal processing algorithms

3. How the HLS tool handles time (clock cycles)
Key issue for choosing between fast/large or slow/small IPs

14ARCHI'23

Hardware "bit accurate" datatypes

C/C++ standard types limit hardware design choices
Hardware implementations use a wide range of wordlength
Use the smallest wordlength keeping algorithm correctness.

HLS provides bit accurate types in C and C++
SystemC and vendor specific types supported to simulate
custom wordlength hardware datapaths in C/C++

[source Xilinx]

15ARCHI'23

How to manage memory ?
In C/C++ memory is a large & flat address space

Enabling pointer arithmetic, dynamic allocation, etc.
Targeting a CPU based memory system

In FPGAs or ASICs memory hierarchy is a mess ..
Registers, on-chip memory blocks, external memory banks,

16

BRAM BRAM BRAM

External
memory bank

External
memory bank

External
memory bank

Flip-flops

Main
memory REGs

ALU
CTRL

CPU based system FPGA based system

ARCHI'23

HLS memory restrictions
No dynamic memory allocation (no malloc/free)

Cannot “create” memory space dynamically

Use of global variables is forbidden
This is OK since HLS operates at the function level anyway

Limited support for pointers because of aliasing

1717

BRAM BRAM BRAM

External memory
bank

External memory
bank

External memory
bank

Flip-flops

*ptr=0

pointer ptr may refer to any
register/bank/bloc in/out of the

FPGA, leading to impractical
routing requirements

ARCHI'23

Mapping of variable to memoy

Mapping of program variables infered from source code
Scalar variables are mapped to flip-flops or wires
Local arrays are stored in on-chip memory blocks
External arrays (arguments) are stored in external memory

18

BRAM BRAM

External
memory

bank

Question : what happens to tmp ?

int foo(int tab[0x10000]){
int9 buffer[256]
int22 tmp, res;

while(1) {
tmp =tab[res]+1;
res= res + tmp

}
}

ARCHI'23

Key things to understand

1. How the HLS tool infers the component interface (I/Os)
Key issue for integrating the component into other designs

2. How the HLS tool handles data types and memory
Key issue when dealing with image/signal processing algorithms

3. How the HLS tool handles time (clock cycles)
Key issue for choosing between fast/large or slow/small IPs

19ARCHI'23

Where is time ?

In C/C++, there is no formal notion of time
This is a problem : we need synchronous (clocked) hardware

HLS tools infer timing using two approaches
Implicit semantics (meaning) of language constructs
User defined compiler directives (annotations)

Extending C/C++ with an implicit semantics ???

They add a temporal meaning to some C/C++ constructs
Ex : a loop iteration takes at least one cycle to execute

Best way to understand is through examples …

20ARCHI'23

Program representation
The tools ”sees” the C code as a state flow chart

Transitions between blocks can be handled by an FSM
Transition evaluated on when a block execution is “finished”
Need to select how/when to execute operations within the
block

21

while(1) {
X[k] = in.read();
res = 0; i=0;
for (;i<64;i++) {

tmp = X[k]*C[i];
res = res + tmp;
k = (k + 1) % 64;

}
k = (k + 1)%64;
out.write(res);

}

tmp = X[k]*C[i];
res = res + tmp;
k = (k + 1) % 64;
i = i+1;
Jump= i<64

X[k] = in.read();
res = 0; i=0 ;

k = (k + 1)%64;
out.write(res);

ARCHI'23

Scheduling/mapping in a block
For each block the tool creates a datapath + FSM design

Several implementations are possible !
Trade-off between # clock ticks and resource usage

22

Tick 1: tmp = M[k+64] // X[k]
k = (k + 1) % 64;

Tick 2: tmp = tmp * M[i] //C[i]
i = i+1;

Tick 3: res = res + tmp
Jump= i<64

Tick 1: tmp = X[k]*C[i],
k = (k + 1) % 64,
i = i+1;

Tick 2: res = res + tmp,
Jump= i<64

1

2

3

FSM A

M
[128]

k ires

X + <

tmp

1 add, 1 mem, 1 mul, 4 regs

1

2

FSM B

X[64]

C
[64]

X ++

<

k ires

tmp

2 add, 2 mem, 1 mul, 4 regs

ARCHI'23

HLS tools have two different ways of handling them
By considering branches as two different blocks

By executing both branches and select the correct results if
then/else do not contain loops function calls.

if(state==4){
for (int i=0;i<32;i++) {
res += X[i]/Y[i];

}
} else {
for (int i=0;i<32;i++) {
res += 1/X[i];

}
}

Scheduling conditionals

+

+
X

i

X[i]
Y[i]

res
res

i

1

FSM
Datapath

+

+
X

i

X[i]
Y[i]

res
res

i

1

FSM Datapath

M
erging is possible

if(state==4){
res = a+b;

} else {
res = a*b;

}

+

X

a

b

state==4
23ARCHI'23

Scheduling for/while loops

Loops are one of the most important program constructs
Most signal/image kernel consists of (nested) loops
They are often the reason for resorting to hardware IPs

Their support in HLS tools vary a lot between vendors
Best in class : Vitis HLS, Synphony, Catapult-C,

HLS users spent most on their time optimizing loops
Directly at the source level by tweaking the source code
By using compiler/script based optimization directives

24ARCHI'23

HLS default behavior is to execute one iteration/cycle
Executing the loop with N iteration takes N+1 cycles

Extra cycle for evaluating the exit condition

Each operation is mapped to its own operator
No resource sharing/hardware reuse

Loop single-cycle execution

+

+

Xfloat X[512],Y[512];
res=0.0;
for (int i=0;i<512;i++){

tmp = X[i]*Y[i];
res = res + tmp;

} i

X[i]

Y[i]

res

res

i

1

25ARCHI'23

Critical path (fmax) depends on loop body complexity
Let us assume that Tmul=3ns and Tadd=1ns

Loop single-cycle execution

+

+

X

i

X[i]

Y[i]

res

res

i

1

X
+

+

No control on the clock speed !

26

Tclk= 4 ns

Tmul
Tadd

Tadd

#cycles fclk Exec time

512+1 250Mhz 2,05 us

int X[512],Y[512];
int tmp,res=0;
for (int i=0;i<512;i++){

tmp = X[i]*Y[i];
res = res + tmp;

}

ARCHI'23

Most HLS tools handle constraints over Tclk
Body execution is split into several shorter steps (clock-ticks)
Needs accurate information about target technology

Multi-cycle execution

+

+
X

i

X[i]
Y[i]

res
res

i

1

X
++

Step 1 Step 2
27

Target Tclk= 3ns

Tclk=3ns
#cycles fclk Exec time

512*2+1 330Mhz 3,07us

int X[512],Y[512];
int tmp,res=0;
for (int i=0;i<512;i++){

tmp = X[i]*Y[i];
res = res + tmp;

}

ARCHI'23

For multi-cycle execution, HLS enable operators reuse
HLS tools balance hardware operator usage of over time
Trade-off between operator cost and muxes overhead

Hardware reuse in multi-cycle execution

+

+
X

i

X[i]
Y[i]

res

res

i

1

+

X

i

X[i]
Y[i]

res res

i

1

1 multiplier, 2 adder 1 multiplier, 1 adder, 2 muxes

X

++
Step 1 Step 2

28

Tclk=3ns

ARCHI'23

Hardware reuse rate is controlled by the user
Trade-off between parallelism (performance) and reuse (cost)
Users provides constraints on the # and type of resources
Mostly used for multipliers, memory banks/ports, etc.

The HLS tools decides what and when to reuse
Optimizes for area or speed, following user constraints
Combinatorial optimization problem (exponential complexity)

Hardware reuse in multi-cycle execution

+

X

i

X[i]
Y[i]

res res

i

1

1 multiplier, 1 adder, 2 muxes
29

int X[512],Y[512];
int tmp,res=0;
#pragma HLS mult=1,adder=1
for (int i=0;i<512;i++){

tmp = X[i]*Y[i];
res = res + tmp;

}

ARCHI'23

How to further improve performance ?
Improve fmax with arithmetic optimizations

Avoid complex/costly operations as much as possible
Aggressively reduce data wordlength to shorten critical path

30

int12 X[512],Y[512];
int16 res=0; int24 tmp;
for (int9 i=0;i<512;i++){

tmp = X[i]*Y[i];
res = res + tmp>>8;

}

X
+

+

Tclk= 4 ns

Tmul
Tadd

Tadd
*

+
+

Tclk= 2,5 ns
Tmul

Tadd
Tadd

int X[512],Y[512];
int tmp,res=0;
for (int i=0;i<512;i++){

tmp = X[i]*Y[i];
res = res + tmp;

}

Very effective as it improves performance and reduce cost

ARCHI'23

31

High Level Synthesis
DSE for FPGA accelerators using HLS

ARCHI'23

Key things to understand

1. How to take advantage of parallelism in the C kernel
• Loop unrolling

• Loop pipelining
• Loop fusion

2. How to optimize memory accesses

3. How to maximize hardware utilization rate
4. Understanding & circumventing HLS tool limitations

32AMLE Summer School

Example : CNN inference

CNN organized in layers, with mainly convolution layers

for(to = 0; to < M ; to++) {
for(ti = 0; ti < N ; ti++) {
for(row = 0; row < R ; row++) {
for(col = 0; col < C ; col++) {
for(i = 0; i < K ; i++) {
for(j = 0; j < K ; j++) {

y[to][row][col] +=
w[to][ti][i][j] *
x[ti][S*row+i][S*col+j];

} } } } } }

33AMLE Summer School

What do we obtain from HLS with vanilla C code ?
one iteration/cycle for the innermost loop
Inefficient combinational datapath (for FPGAs)

This design does not exploit enough parallelism

Accelerating a convolution layer

34ARCHI'23

ac_int<6> X[…][…];
ac_int<3> W[…][…];
ac_int<11> y;

for(r = 0; r < ROW ; row++) {
for(c = 0; c < COL ; col++) {
for(i = 0; i < 3 ; i++) {

for(j = 0; j < 3 ; j++) {
y[r][c] +=

w[i][j] *
x[r+i][c+j];

}

} } }

time

instr

+j

y[r][c]

j
3

X
x[r][c]

w[i][0]
+

y[r][c]

(r,c,i,0)

(r,c,i,1)

Tclk=Tadd+Tmul

Unrolling can controlled through #pragma directives
Full unrolling only for non constant loop bound is impossible
Partially unrolling for non constant loop bound is possible

Example : full unrolling of the inner most loop

Exposing parallelism through unrolling

35ARCHI'23

for(r = 0; r < ROW ; r++) {

for(c = 0; c < COL ; c++) {
for(i = 0; i < 3 ; i++) {

#pragma unroll
for(j = 0; j < 3 ; j++) {

y[r][c] +=

w[i][j] *
x[r+i][c+j];

}

} } }

time

instr
+j

y[r][c]

j

3

X
x[r][c+2]

w[i][2] +

X
x[r][c+1]

w[i][1]

Xx[r][c]
w[i][0]

+
+

y[r][c]

(r,c,0,0)

(r,c,0,1)

(r,c,0,2)

(r,c,1,0)

(r,c,1,1)

(r,c,1,2)

Tclk=2*Tadd+Tmul

Unrolling can be combined with loop interchange*
Loop interchange = swapping loops in a loop nest

Example : interchanging loops j and c.

* when interchange is possible

Unrolling vs Interchange

36ARCHI'23

for(r = 0; r < ROW ; r++) {
for(c = 0; c < COL ; c++) {
for(i = 0; i < 3 ; i++) {

#pragma unroll
for(j = 0; j < 3 ; j++) {

y[r][c] +=
w[i][j] *
x[r+i][c+j];

}

} } }

for(r = 0; r < ROW ; r++) {
for(i = 0; i < 3 ; i++) {
for(j = 0; j < 3 ; j++) {

#pragma unroll 4
for(c = 0; c < COL ; c++) {

y[r][c] +=
w[i][j] *
x[r+i][c+j];

}

} } }

Larger unrolling factors are now possible along index c
We can explore +/- parallelism using partial unrolling

Example : partial unrolling by 4 after interchange

Exposing parallelism with unrolling

37ARCHI'23

(r,i,j,0)

(r,i,j,1)

(r,i,j,2)

(r,i,j,3)

(r,i,j,4)

(r,i,j,5)

(r,i,j,6)

(r,i,j,7)

time

instr

+
X

x[r][c+2]

w[i][j] y[r][c+2]

y[r][c+2]

+
X

x[r][c+1]

w[i][j] y[r][c+1]

y[r][c+1]

+
X

x[r][c]

w[i][j] y[r][c]

y[r][c]

+
X

x[r][c+3]

w[i][j] y[r][c+3]

y[r][c+3]

for(r = 0; r < ROW ; r++) {

for(i = 0; i < 3 ; i++) {

for(j = 0; j < 3 ; j++) {
#pragma unroll 4

for(c = 0; c < COL ; c++) {
y[r][c] +=

w[i][j] *

x[r+i][c+j];
}

} } }

Tclk=Tadd+Tmul

Full unrolling can be applied to a loop nest
All innermost loops are fully unrolled

Example : full unrolling of the two innermost loops

Exposing parallelism through unrolling

38ARCHI'23

for(r = 0; r < ROW ; r++) {

for(c = 0; c < COL ; c++) {
#pragma unroll

for(i = 0; i < 3 ; i++) {
for(j = 0; j < 3 ; j++) {

y[r][c] +=

w[i][j] *
x[r+i][c+j];

}

} } }

(r,c,0,0)

(r,c,0,1)

(r,c,0,2)

…

(r,c,2,0)

(r,c,2,1)

(r,c,2,2)

time

instr

X
x[r][c]

w[0][0] +

y[r][c]

X
x[r][c+1]

w[0][1]

+
X

x[r][c+2]

w[0][2]

+

X
x[r+2][c+1]

w[2][1] +

X
x[r+2][c+1]

w[2][2] +

y[r][c]

+

1

Tclk=4*Tadd+Tmul 9 iteration/cycle

Summary

for(r = 0; r < ROW ; r++) {
for(c = 0; c < COL ; c++) {

for(i = 0; i < 3 ; i++) {
for(j = 0; j < 3 ; j++) {

y[r][c] +=
w[i][j] *
x[r+i][c+j];

}

} } }

+j

y[r][c]

j

3

X
x[r][c+2]

w[i][2] +

X
x[r][c+1]

w[i][1]

Xx[r][c]
w[i][0]

+

+

y[r][c]

Full unroll for j

X
x[r][c]
w[0][0] +

y[r][c]

X
x[r][c+1]
w[0][1] +

X
x[r][c+2]

w[0][2] +

X
x[r+1][c]
w[1][0] +

X
x[r+2][c+1]

w[2][1]
+

X
x[r+2][c+1]

w[2][2] +
y[r][c]

1

2

3

4

8

9

Full unroll for i,j

+
X

x[r][c+2]

w[i][j] y[r][c+2]

y[r][c+2]

+
X

x[r][c+1]

w[i][j] y[r][c+1]

y[r][c+1]

+
X

x[r][c]

w[i][j] y[r][c]

y[r][c]

+
X

x[r][c+3]

w[i][j] y[r][c+3]

y[r][c+3]

Interchange c,j
Partial unroll x4

Loop unrolling is used to explore various hardware
parallelization approach

39ARCHI'23

Unrolling and loop carried dependencies

for(int i=0;i<256;i+=2){

y = a * y + x[i];

y = a * y + x[i];
}

Unrolling loops with carried dependencies

*
+

+

*
+

+

+

*

i

y

a
X[i]

i

2

*

y

yX[i+1]

a

+

#cycles Tclk Exec time
128 200 Mhz 0.64 us

#cycles Tclk Exec time
256 400 Mhz 0,64 us

Unrolling does not “create” parallelism, it only uncovers it !

Unrolled by x2

Original version

40ARCHI'23

Key things to understand

1. How to take advantage of parallelism in the C kernel
• Loop unrolling

• Loop pipelining
• Loop fusion

2. How to optimize memory accesses

3. How to maximize hardware utilization rate
4. Understanding & circumventing HLS tool limitations

41ARCHI'23

Loop Pipelining = pipelined execution of loop iterations
Start iteration j+1 before all operation of iteration j are finished

Loop pipelining

i

resiresi

w[i][j]

x[..][..]

+

+

X

Stage 1 Stage 2

w[i][j]

x[r+i][c+j]

+

+

X

i1 1

#cycles/
iteration Tclk

1 500
Mhz

for(r = 0; r < ROW ; row++) {
for(c = 0; c < COL ; col++) {
for(i = 0; i < 3 ; i++) {

for(j = 0; j < 3 ; j++) {
y[r][c] +=

w[i][j] *
x[r+i][c+j];

}

} } }

Tclk=max(Tadd,Tmul)

42ARCHI'23

A given pipelined loop schedule is characterized by
Initiation interval (II) : delay between successive iterations.
Pipeline Latency (L) : #cycles to execute a given iteration

Full pipelining when II=1(not always possible)
Pipelining can be combined with unrolling

Loop pipelining

i=0

L= 6

II=2 #ticks𝑇!""# = 𝑁 − 1 . 𝐼𝐼 + 𝐿

i=N-1

43ARCHI'23

Fine grain pipelining in FPGAs

FPGA have a lot of registers enabling deep pipelines

On FPGAs 10s of stages are common (esp. for DSP)
Loop pipelining is therefore a key HLS optimization

Slice
Slice

CLB$SLICE

LUT

Logic block+
(CLB)

44ARCHI'23

Consider the two example below

Pipelining and dependance distance

for(i=1;i<256;i+=1){
y[i] = a* y[i-2] + x[i];

}

Loop carried dependency over y
y[i] is reused two iterations later

for(i=1;i<256;i+=1){
y[i] = a* y[i-1] + x[i];

}

Loop carried dependency over y
y[i] is reused at the next iteration

+

+

X

i

y[i-1]

a

x[i]

i

1

y[i]

X

Stage 1

+

X
y[i-2]

a

x[i]

y[i]
X

y[i-1]

a

+i i

1

+ i

1

X

Stage 1 Stage 2

#ticksi

L= 1

II=1

#ticksi

L= 2

II=1

Lead to a more parallel or deeper pipelined datapath
Depending on dependency patterns

Here, dependency over y[r][c] prevents full pipelining
We have a deep (but under utilized) pipeline

Loop pipelining + unrolling (1/2)

46ARCHI'23

#ticksi

Tclk=max(Tmul, Tadd)

+j

y[r][c]

j
3

X
x[r+i][c+2]

w[i][2]
+

X
x[r+i][c+1]

w[i][1]

Xx[r+i][c]
w[i][0]

+

+

y[r][c]

II=1, L= 2

L= 4

II=3

#pragma unroll 3
for(j = 0; j < 3 ; j++) {

y[r][c] +=
w[i][j] *
x[r+i][c+j];

}
}

A less aggressive pipelined schedule might do as well
We can reduce clock speed fclk in exchange of a lower II

Loop pipelining + unrolling

47ARCHI'23

+j
j

3

X
x[r][c+2]

w[i][2]
+

X
x[r][c+1]

w[i][1]

Xx[r][c]
w[i][0]

+
+

y[r][c]

Tclk=max(Tmul,3Tadd)

II=1, L= 2

#ticks

i

II=1

L= 2

#pragma unroll 3
for(j = 0; j < 3 ; j++) {

y[r][c] +=
w[i][j] *
x[r+i][c+j];

}
}

Pipelining does not “create” parallelism, it only uncovers it !

What is the best design then ?

48

1

3

2

time Pareto optimal
design points

cost

4

1

3 2

5

Tclk=max(Tmul, Tadd)

+j

y[r][c]

j3

X
x[r][c+2]

w[i][2]
+

X
x[r][c+1]

w[i][1]

Xx[r][c]
w[i][0]

+

+

y[r][c]

X
x[r][c]
w[0][0] +

y[r][c]

X
x[r][c+1]
w[0][1]

+
X

x[r][c+2]

w[0][2]

+

X
x[r+2][c+1]

w[2][1] +

X
x[r+2][c+1]

w[2][2] +

y[r][c]

+

1

+
X

x[r][c+2]

w[i][j] y[r][c+2]

y[r][c+2]

+
X

x[r][c+1]

w[i][j] y[r][c+1]

y[r][c+1]

+
X

x[r][c]

w[i][j] y[r][c]

y[r][c]

+
X

x[r][c+3]

w[i][j] y[r][c+3]

y[r][c+3]

Stage 1 Stage 2

w[i][j]

x[r+i][c+j]

+

+

X

i1 1

+j

y[r][c]

j

3

X
x[r][c+2]

w[i][2] +

X
x[r][c+1]

w[i][1]

Xx[r][c]
w[i][0]

+
+

y[r][c]

5

48AMLE Summer School

5 2is both faster and cheaper than

Key things to understand

1. How to take advantage of parallelism in the C kernel
• Loop unrolling

• Loop pipelining

2. How to optimize memory accesses
3. Understanding & circumventing HLS tool limitations

4. How to maximize hardware utilization rate

49ARCHI'23

Key things to understand

1. How to take advantage of parallelism in the C kernel

2. How to optimize memory accesses
• Taking advantage of memory hierarchy
• Managing memory bank conflicts

3. Understanding & circumventing HLS tool limitations

4. Current and future research direction in HLS

50ARCHI'23

Memory hierarchy in an FPGA

51

BRAM BRAM

External
memory bank

On chip RAM blocks
1 cycle/access, up to 10k blocks

~40 cycle / random access
2 to 8 memory banks

Registers : instant access
up to 2M registers

PCIe
or

Network IF

ARCHI'23

Reminder from yesterday

Mapping of program variables inferred from source code
Scalar variables are mapped to flip-flops or wires
Local arrays are stored in on-chip memory blocks
External arrays (arguments) are stored in external memory

52

BRAM BRAM

External
memory

bank

int foo(int tab[0x10000]){
int9 buffer[256]
int22 tmp, res;

while(1) {
tmp =tab[res]+1;
res= res + tmp

}
}

ARCHI'23

Consider the kernel below, with x, w, y, in ext. memory

Each iteration would take at best 2x40=80 cycles/iteration
We need to use on-chip memory to store w[] and x[] arrays

Impact of memory accesses

53ARCHI'23

ac_int<6> X[…][…];
ac_int<3> W[…][…];
ac_int<11> y[…][…];

ac_int<11> tmp;

for(r = 0; r < ROW ; row++) {
for(c = 0; c < COL ; col++) {
tmp = 0;
for(i = 0; i < 3 ; i++) {

for(j = 0; j < 3 ; j++) {
tmp += w[i][j] *

x[r+i][c+j];
} }
y[r][c] = t;

} }

BRAM BRAM

External
memory bank

40 cycle/access
0 cycle/access

Copy data to/from off-chip from/to on-chip memory

Using on-chip memory

54

void cnn_layer(int e_X[…][…], e_W[…][…], e_y[…][…]) {

int l_X[…][…],l_W[…][…],l_y[…][…];

for(r = 0; r < ROW ; r++)
memcpy(l_y[r] , e_y[r][c],);

for(i = 0; i < K ; r++)
memcpy(l_w[r] , e_w[r], K);

for(r = 0; r < ROW ; row++) {
for(c = 0; c < COL ; col++) {
tmp = 0;
for(i = 0; i < 3 ; i++)

for(j = 0; j < 3 ; j++)
tmp += l_w[i][j]*l_x[r+i][c+j];

l_y[r][c] = tmp;
} }

for(r = 0; r < ROW ; r++)
memcpy(e_y[r],l_y[r], COL);

K2+ROW*COL
access

ROW*COL
access

Read
(DRAM to BRAM)

Write
(BRAM to DRAM)

Execute
(data in BRAM)

We may not want to copy whole arrays in local memory
We can tile computations so as to use a subset of data

Tiling/blocking computations

55ARCHI'23

for(rr = 0; rr < ROW ; rr+=4)
for(cc = 0; cc < COL ; cc+=4)
for(r = rr; r < rr+4 ; r++) {
for(c = cc; c < cc+ 4; c++) {
tmp = 0 ;
for(i = 0; i < 3 ; i++) {
for(j = 0; j < 3 ; j++) {

tmp += w[i][j]*x[r+i][c+j];
} }
y[r][c] = tmp;

} } Tile of size 4x4

i

j

c

r

x[ROW][COL]

w[3][3]

Tile input

y[ROW][COL]

c

r

cc

rr

Tile output

Tile computation/comm overlap
After Tiling + data motion code

We can overlap the execution of tiles (macro-pipeline)

for(rr = 0; rr < ROW ; rr+=4)
for(cc = 0; cc < COL ; cc+=4) {

}}

Compute

Write y[]

Read x[] & w[] Sequential tiled schedule

Pipelined tiled schedule

56ARCHI'23

Non-tiled execution

Read Execute Write macro pipeline
Requires task level parallelism

Example of Vitis HLS

Read
Tilei+2

Execute
Tilei+1

Write
Tilei

Off-chip memory

Dual
port

BRAM

Dual
port

BRAM

Pipelined tiles schedule

for(rr = 0; rr < ROW ; rr+=4)
for(cc = 0; cc < COL ; cc+=4)
#pragma HLS DATAFLOW
{

read_x_w(rr,cc,l_x,l_w,e_x,e_w)

execute(rr,cc,l_x,l_w)

write_y(rr,cc,l_y,e_y)
}

}}

57ARCHI'23

Key things to understand

1. How to take advantage of parallelism in the C kernel

2. How to optimize memory accesses
• Taking advantage of memory hierarchy
• Managing memory bank conflicts

3. Understanding & circumventing HLS tool limitations

4. Current and future research direction in HLS

58ARCHI'23

main limiting factor for reaching II=1 is often memory
When II=1, there are generally many concurrent accesses to
a same array (and thus to a same memory block).

Memory port resource conflicts

+
X

X
+

X

X

+

+

+
X

X
+

X

X

+

+

+i

x[i]
w[i]

i
4

x[i+1]
w[i+1]

x[i+2]
w[i+2]

x[i+3]
w[i+3]

+
X

res

res
X

+

X

X

+

+

For II=1, we must handle 8 read per cycle to the memory
blocks containing array x[] and w[]

59ARCHI'23

Scalarization : copy array cell value in a scalar variable
Use the scalar variable instead of the array whenever possible

Eliminating conflicts through scalarization

float X[128];
float res=0.0;

for (i=1;i<128;i+=1){
res=res*(X[i]-X[i-1]);

}

float X[128];
float res=0.0,tmp1,tmp0;

tmp1 = X[0];
tmp0 = X[1];
for (i=2;i<128;i+=1){

res=res*(tmp0-tmp1);
tmp1 =tmp0;
tmp0 = X[i];

}

Two memory ports needed
to reach II=1

Only one memory port is
needed to obtain II=1

Automatically performed by Vivado HLS since version 2016

Using multiple banks increases #access per cycle

Mapping arrays to banks

int12 X[512],Y[512];

for (int9 i=0;i<512;i++){
tmp = X[i]*Y[i];
res = res + tmp>>8;

}

Y[i] Y[i+1]Y[i+2] Y[i+3]

X[0]
X[1]
X[2]
X[…]

Y[0]
Y[1]
Y[2]

X[i] X[i+1]X[i+2]X[i+3]

One memory block
(no redundancy)

Up to 2 reads to x[] or
y[] per clock cycle

Y[i] Y[i+1]
Y[i+2] Y[i+3]

X[0]
X[1]
X[2]
X[…]

X[i] X[i+1]
X[i+2]X[i+3]

Two memory blocks
(no redundancy)

Y[0]
Y[1]
Y[2]
Y[…]

2 reads to x[] + 2 reads to
y[] per clock cycle

Y[i] Y[i+1]
Y[i+2] Y[i+3]

X[0]
X[1]
X[2]
X[…]

X[i] X[i+1]
X[i+2]X[i+3]

Four memory blocks
(2x redundancy)

Y[0]
Y[1]
Y[2]
Y[…]

2 reads to x[] + 2 reads to
x[] per clock cycle

Y[0]
Y[1]
Y[2]
Y[…]

X[0]
X[1]
X[2]
X[…]

61ARCHI'23

Sometimes possible to reorganize data inside a block
Allow partitioning without redundancy

Partitioning arrays in banks

62

Four memory blocks
(2x redundancy)

2 reads to X + 2 reads to Y
per clock cycle

Block cyclic (cycle=2) - partitioning
(no redundancy)

2 reads to X + 2 reads to Y
per clock cycle

X[0]
X[1]
X[2]
X[3]

X[0]
X[1]
X[2]
X[3]

X[…]X[…]

X[…]X[…]

X[4]X[4]

X[1]
X[3]
X[5]
X[7]

X[0]
X[2]
X[4]
X[6]

X[…]X[…]
X[9]X[8]

N N/2

62ARCHI'23

Partitioning can be done in two different ways
1. By hand at the source level (tedious but reliable)
2. Using directives (may not always work as expected)

Partitioning arrays in memory banks

float X[32],Y[32];

for (int i=0;i<8;i+=2){
res += X[i]*Y[i];
res += X[i+1]*Y[i+1];

}

float X0[16],X1[16], Y0[16],Y1[16];

for (int i=0;i<8;i+=4){
res += X0[i]*Y0[i]+ X1[i]*Y1[i];

}

63ARCHI'23

#pragma HLS ARRAY_PARTITION var=X \
type=cycle factor=2 dim=1

#pragma HLS ARRAY_PARTITION var=Y \
type=cycle factor=2 dim=1

float X[32],Y[32];

for (int i=0;i<8;i+=4){
res += X[i]*Y[i]+X[i+1]*Y[i+1];

}

1

2

Key things to understand

1. How to take advantage of parallelism in the C kernel

2. How to optimize memory accesses
3. Understanding & circumventing HLS tool limitations

• Static Dependency & Alias Analysis

• Overriding compiler dependency analysis

4. Current and future research direction in HLS

64ARCHI'23

Dealing with dependency analysis
HLS often « miss » parallelization opportunities

Compilers rely on pessimistic dependency analysis

65

for(i=0;i<N;i++){
for(j=i;j<M;j++){
x[j] = foo(x[i-1]);

}
}

for(i=0;i<N;i++){
for(j=i;j<M;j++){
x[j] = foo(x[dunno]);

}
}

i<=j ⟹ i-1 < j

Therefore all iterations
in the innermost loop

can run in parallel

We have dunno ∈ ℤ, therefore
we cannot prove that ∄ j ⁄
j=dunno. The loop is

considered as not parallel

What you understand What the compiler understands

65ARCHI'23

User provided dependency information
Tools support user provided hints for parallelisation

Overrides HLS/compiler dependency analysis results
To be used with care (nasty bugs are possible)

for(i=0;i<N;i++)
for(j=i;j<M;j++){
#pragma no_dep x
x[j] = foo(x[i-1]);

}

for(i=4;i<N;i++)
for(j=i;j<M;j++){
#pragma dep_distance x 4
x[j] = foo(x[j-i]);

}

Tells the HLS tools that all
iterations in the innermost

loop can run in parallel

Tells the HLS tools that up
to 4 consecutive iterations

can be run in parallel

66ARCHI'23

C1 C2 C3
C1 C2

F1

S2
S2

S2

No pipelining CPI =3.4

Limits of static loop pipelining
Dependance distance is determined at compile-time

Poor support for runtime/data-dependent control-flow
Pipelined schedule is based on the worst-case scenario

67

CFSStage 1

Stage 2

Stage 3

H
do {
tmp=x;
if(C(tmp)) {
// slow
x = S(tmp);

} else {
// fast
x = F(tmp,y);

}
y = H(tmp,y)

} while (!x)

80%
C1 C2 C3

C1 C2 C3

F1 F2 F3

S1 S2 S3
S1 S2 S3

S1 S2 S3

Loop pipelining
(speculative code motion)

CPI=3

67ARCHI'23

What is not possible (and why)
Goto statements : they are supported by most tools

That’s not an excuse for using them

Pointer arithmetic : they are supported by most tools
Supported as long as it does not raise aliasing issues

Dynamic Memory Allocation (malloc/free)
The root of the problem lies in pointer aliasing
Possible if all allocated objects lie within the same bank

68ARCHI'23

Key things to understand

1. How to take advantage of parallelism in the C kernel

2. How to optimize memory accesses
3. Understanding & circumventing HLS tool limitations

4. Current and future research direction in HLS

69ARCHI'23

Toward new application domains

Simple control flow
High arithmetic intensity

Complex control flow
Low arithmetic intensity

DRAM controller
Bus arbiter, CPU

design

Lin. Algebra
Convolutions

FFT, DCT, etc.

Graph analytics,
sparse CNN, packet

processing , etc.

C/C++ HDLC/C++ HDL

HLS build on classical compiler optimization techniques
Based on compile-time knowledge of the program
Mainly targeting compute intensive kernels

70ARCHI'23

C1 C2 C3
C1 C2

F1

S2
S2

S2

No pipelining CPI =3.4

Dynamic & speculative HLS
Lift the restriction to statically defined schedules

Enable dynamic and speculative pipeline schedules

Many open research challenges!
Overhead, correctness, exploration, etc.

71

CFSStage 1

Stage 2

Stage 3

H
do {
tmp=x;
if(C(tmp)) {
// slow
x = S(tmp);

} else {
// fast
x = F(tmp,y);

}
y = H(tmp,y)

} while (!x)

80%
C1 C2 C3

C1 C2 C3

F1 F2 F3

S1 S2 S3
S1 S2 S3

S1 S2 S3

Loop pipelining
(speculative code motion)

CPI=3

C1 C2 C3 C4
C1 C2 C3 C4

F1 F2 F3 F4

S1 S2 S3 S4
S1 S2 S3 S4

S3

Dynamic HLS (2018)
II=2.2

C1 C2 C3 C4 - C4 C5 C6 C7
C1 C2 C3 - - C4 C5 C6

F1 F2 F3 F4 - F4 F5 F6 F7

S1 S2 S3 S4 - S4 S5 S6 S7
S1 S2 S3 - - S4 S5 S6

S1 S2 S3 - - S4 S5
This work

II=1.6

71AMLE Summer School

Synthesizing more complex arch
Example : synthesizing RISC-V CPU cores from C

72ARCHI'23

HLS in 2023

More an more automated program transformations
More complex (semi) automatic transformations to come

DSL framework building on top of HLS tools
For ML, graph processing, etc.

Torward support for dynamic/speculative data-structures
Speculative execution techniques from processor design may
help widen the scope of applicability of HLS to new domains

Certified HLS (with coq) for HLS soon enough

73ARCHI'23

