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How Far Will AI Energy Consumption Grow?
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Or can we make AI dramatically more energy efficient?



AI Energy Inefficiency Limits Its Best Applications

• Edge AI implemented in a medical implant could allow epilepsy

prediction, advanced BMI…

• But currently limited to elementary AI
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Yoo and Shoaran, 

Current Opinion Biotechnol., 2021



The AI Energy Problem Is a Memory Problem

• Neural networks: not a lot of arithmetics, 
but Huge volume of parameters

• In computers, GPUs, and AI accelerators developed by industry (Google 
TPU, Apple NPU…), memory access is extremely costly
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Operation Energy

Addition of data (fixed point) 1x

Access data (onchip cache) 60x

Access data (offchip main memory) 3500x
Absent in the brain!

Pedram et al , IEEE D&T 2016



The Brain Achieves High Energy Efficiency by Computing
« In Memory » in Analog

Controlled current

source

Ion channel

~5nm

~500nm

10,000 times more synapses than neurons!

Connection, memory,

nonlinear dynamics, 

Synapses
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Brain = a gigantic memory with some computation in the middle

No shared arithmetic unit



Integrating Logic & Memory Is a Considerable Challenge

• Only possible technology: Static RAM

• Even in “5-nanometer CMOS”, SRAM bit is 150x150 nanometers

• Leaky

• Volatile

• New Memories are coming to the rescue!
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Analog Machine Learning Accelerators

➢ The Promise of Analog In-Memory Computing

➢ Analog In-Memory Computing in a System

➢ Non-Memristor Analog In-Memory Computing

➢ Creative In-Memory Computing
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Memristor/RRAM: an Artificial Synapse!

• TiN/HfOx/Ti/TiN stack

8

High voltage: move atoms to switch memristor between low/high resistance

Low voltage: allows reading the resistance

Low resistance High resistance



These New Memories Already Have a Market: 

Microcontroler Applications (NOR Flash replacement)
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We repurpose them as magic memory for AI!



Memristors Are Very Different From SRAM/DRAM

• Read is just as good as SRAM/DRAM

• Write is slower and write endurance is limited
• You need to move atoms!

• BER before ECC is typically ~ 10-6
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Analog In-Memory Computing Performs
Neural Network Inference Very Naturally
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A matrix of analog memristors naturally implements a layer of neural 

network with Ohm’s and Kirchhoff’s laws!

V=s1

V=s2

V=s3

…

Neuron value

𝑡𝑗 = 𝑓 σ𝑤𝑖𝑗𝑠𝑖

𝐼1 = 𝑡1 = σ𝑤𝑖𝑗𝑠𝑖

Memristor conductance G = synaptic weight w



In-Principle Energy Efficiency Is Astonishing

• Multiplication              E = U × i × t = U² × t / R

• Accumulation              E=0
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0.1 V 1 ns 100 kΩ

0.1 fJ

0.05 fJ / operation



How Do We Measure Efficiency?

TOPS/W

= Tera Operations / Second / Watt

= Tera Operations / Joule
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Currently, everybody is using

In principle, analog IMC could be 20,000 TOPS/W



How Do We Measure Efficiency?

14(2023 Data)



Analog In-Memory Computing with Memristors

15Esmanhotto et al, 2200145, Advanced Intelligent Systems, 2022

Accuracy on arrhythmia identification

HfOx memristor integrated in BEOL of 130 nm-CMOS
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The Challenge of Analog In-Memory Computing: 

Memristors Act as Random Variables
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Fighting the Random Character of Memristors:

Program and Verify
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Most Analog IMC Uses Differential Schemes

• Weight is difference between two memristor 
conductance

• ~3b / Memristor  ->4b weight

• Sufficient for almost all neural networks
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Memristors Are For 
Weight Stationary Hardware

• Analog programming operations are long

• Write endurance is limited (e.g., one million)
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Scaling Up the Concept

20
Xue et al, Nature Electronics, 4, 81 (2021)

2Mb compute-in memory array

(TSMC technology)

2M Resistive Rams, 1T1R

Used as binary memory

Very complex periphery

These periphery circuits require precise calibration

(Taiwan)

146 TOPS/W (22nm CMOS)



A Realization « Truer » 
to the Original Concept
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10-45 TOPS/W

in 130nm CMOS

Nature (2022)



The Samsung Approach

• Implements Binarized Neural Networks

• MRAM

• Uses Resistance (and not Conductance) as a synaptic weight

Nature 2022
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The Samsung Approach Requires
Complex Periphery Circuitry

• Need for calibration, compensation, and a 
quite complex analog to digital scheme using
time (TDC)
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405 TOPS/W in 28 nm CMOS
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How to Go From an Array to a Full Neural Network
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In digital ML accelerators, weight stationary is not the most researched option.

Sze et al, Proc. IEEE (2017)



Where to Set the Boundary Between Analog and 
Digital?

• My word of caution: many computer arch. overestimate the cost of 
ADC. Use ADCs specifically designed for IMC (e.g., CCO)

26

Boris Murmann, BIOCAS, 2019



A Full System with Mostly
Analog Routing
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Nature 2023

• 35M phase change memories

12 TOPS/W 

(14 nm CMOS)

Full system

Mostly analog routing
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Nature Electronics 2023

Full system

Mostly digital routing

(massive ADC/DAC)

10 TOPS/W

A Full System with Mostly
Digital Routing



« But the TOPS/W Are Not That High! »

• These are early prototypes,
optimized for functionality
not for perf
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TOPS/W Can Be a Very 
Misleading Unit

• « Operation » is ill-defined

• These are for peak conditions, which are rarely
reached in practice

• The difference between real-life and peak
conditions varies extensively depending on the 
different types of hardware
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Real Energy Consumption Can Be Dramatically
Higher than Peak
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How I View Architecture Research
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How I View Architecture Research
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From Unconventional to More Conventional?

• For cultural reason, many analog IMC ideas are developed for 
emerging technology

• There’s a movement to adapt these ideas to more established
technology
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IMC with Flash Memory

• NAND flash constrains are challenging for IMC

• NOR Flash memory can be used for IMC, 
but does not scale to advanced CMOS
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IEDM 2024



Toward 3D IMC?
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IEDM 2024



SRAM-Based IMC

• SRAM can be used for both digital and analog IMC

• Most exciting analog designs rely on switched cap principles

• Positioning: edge or HPC?
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VLSI 2021



DRAM-Based IMC

• DRAM based-IMC is possible but destructive read, and small
signals -> most adapted for digital
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IEDM 2024
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Memristor Imperfections Can Naturally Produce 
a Bayesian Neural Network!

In Bayesian models, everything is a 

random variable that follows 

specific probability distributions

Our concept: Bayesian models can be a “better” way to exploit memristors

Memristors actually act as a random variable that 

follow specific probability distributions! 

Bonnet et al, Nature Communications 14, 7530 (2023)
Collaboration



Bayesian Neural Networks
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a

Inputs

Output

h1
h2 h3

x1 x2 x3

g1
g2 g3

vij

ukl

g4

Conventional Neural Network

0.7

Each synapse 

has one weight

Bayesian Neural Network

a

Inputs

Output

h1
h2 h3

x1 x2 x3

g1
g2 g3

vij

ukl

g4

Synapses follow 

probability distribution

“99.7% proba.

that this a cat,

0.3% that it is a 

dog”

“I am not really sure what this is, 

because I have never seen it”

Assuming NN was trained to recognize « cats » and « dogs »

“99.9% proba.

that this a cat,

0.1% that it is a 

dog”
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arrhythmia

identification

Memristor-Based Bayesian Neural Networks

…

We program 50 memristor-neural networks (each with two layers). We apply same input to them

We get 50 outputs:

their dispersion tells about the 

certainty of the neural network

Neural network trained 

with Variational Inference 

incorporating a specific 

“technological loss”
Output 50

Output 2

Output 1
conductance

Bonnet et al, Nature Communications 14, 7530 (2023)
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…

LOW UNCERTAINTY

Arrythmia type 1

Arrythmia type 1

Arrythmia type 1

arrhythmia

identification

We program 50 memristor-neural networks. We apply same input to them

Memristor-Based Bayesian Neural Networks

Bonnet et al, Nature Communications 14, 7530 (2023)
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We program 50 memristor arrays, and we apply the same input to them

Unknown data:

EPISTEMIC 

UNCERTAINTY

…

Memristor-Based Bayesian Neural Networks

arrhythmia

identification

Hesitates

arrythmia type 1 or 2

Hesitates

arrythmia type 3 or 4

Bonnet et al, Nature Communications 14, 7530 (2023)

Hesitates

arrythmia type 1 or 3
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80% classification accuracy

Traditional Neural Network Bayesian Neural Network

79% classification accuracy

Easily recognizes

unknown types of arrythmia

Fully Experimental Arrythmia Recogniton

Bonnet et al, Nature Communications 14, 7530 (2023)



The Grand Challenge of On-Chip Learning

• Current in-memory computing AI accelerators are focused on inference, which 
makes sense

• On-chip learning/adaptation would also have tremendous prospects

Medical applications

47

Yoo and Shoaran, 

Current Opinion Biotechnol., 2021



Backpropagation, the Canonical Method for Training 
Networks, Is Not Adapted for In-Memory Computing

a

Inputs

Output a
Supposed to be 1

Pixels of an image

𝐶 = − ln𝑎

𝜕𝐶

𝜕𝑤𝑖
= 𝑎 − 1 ℎ𝑖

𝜕𝐶

𝜕𝑣𝑖𝑗
= 𝑎 − 1 𝑤𝑖ℎ𝑖 1 − ℎ𝑖 𝑥𝑗

𝜕𝐶

𝜕𝑢𝑘𝑙
= 𝑎 − 1 ෍

𝑖

𝑤𝑖ℎ𝑖 1 − ℎ𝑖 𝑣𝑘𝑙𝑔𝑘 1 − 𝑔𝑘 𝑥𝑙

h1
h2 h3

x1 x2 x3

g1
g2 g3 g4

To update weight ukl, you need calculation that

involves information about the whole network!

wi

vij

ukl
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Learning in the Brain Is Mysterious

• Synapses are physical objects that have only access to local information

• An old idea (Hebb): « cells that fire together wire together »

• Multiple theoretical works show that Hebbian learning rules (e.g., STDP) 
are not as powerful as backprogation

Activity si

Activity sj

The synaptic weight changes by sisj

49



EqProp: a Type of Neural Networks Grounded in 
Physics and with « Brain-like » Learning

𝑑𝑠𝑖

𝑑𝑡
= −

𝜕𝐸

𝜕𝑠𝑖

Scellier & Bengio, fnins 2017

𝑠𝑖 : neuron states, 𝜌 : sigmoid function

Energy 𝐸 =
1

2
σ𝑖 𝑠𝑖

2 −
1

2
σ𝑖,𝑗𝑤𝑖𝑗𝜌 𝑠𝑖 𝜌 𝑠𝑗

Learns with Hebbian-like learning but is equivalent to backpropagation

The neural network is a dynamical system that goes naturally toward its

energy minimum

𝑑𝑠𝑖

𝑑𝑡
+ 𝑠𝑖= σ𝑗𝑤𝑖𝑗𝜌 𝑠𝑗 𝜌′ 𝑠𝑖

Local: depends only on si nearest-neighbors
Similar to leaky integrate-and-fire neuron

When the network has converged, we get the output a 

a

Inputs

Output a=s1

Pixels of an image

s2
s3 s4

s9 s10 s11

s5
s6 s7 s8
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If the Output a Is Not the Right Value, 
EqProp then “Nudges” the Network Toward It 

The perturbation of the output a

propagates throughout the network 

that reaches a new equilibrium

snudged

Scellier & Bengio, fnins 2017

a

Inputs

Output a=s1

Pixels of an image

s2
s3 s4

s9 s10 s11

s5
s6 s7 s8

Error 𝐶 =
1

2
𝑎 − 1 2

Nudged Energy 𝐹 = 𝐸 + 𝛽𝐶

𝑑𝑎

𝑑𝑡
+ 𝑎 = ෍

𝑗

𝑤𝑖𝑗𝜌 𝑠𝑗 𝜌′ 𝑎 + 𝛽 𝑎 − 1

« Nudging »

Right answer 1
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Equilibrium Propagation

• Change the weight wij by

• 𝜌 𝑠𝑛𝑢𝑑𝑔𝑒𝑑,𝑗 𝜌 𝑠𝑛𝑢𝑑𝑔𝑒𝑑,𝑖 − 𝜌 𝑠𝑓𝑟𝑒𝑒,𝑗 𝜌 𝑠𝑓𝑟𝑒𝑒,𝑖

➢If neurons i and j had MORE Hebbian correlation during the nudged
phase, then INCREASE their connection wij

➢Otherwise, DECREASE wij
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The Local Learning Rule of Equilibrium 
Propagation Leads to High Recognition Rates
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M. Ernoult, J. Grollier, D. Querlioz, 

Y. Bengio, B. Scellier, NeurIPS (2019) 

A. Laborieux, M. Ernoult, B. 

Scellier, Y. Bengio, J. 

Grollier, D. Querlioz, fnins

15, 129 (2021)

EP scales to 

CIFAR-10Mathematical

equivalence of EP 

gradients with

Backpropagation

Through Time

EP trains Binary Neural Networks

• Binary synapses (CIFAR 10)

• Binary synapses and neurons (MNIST)

• Ternary gradients

J. Laydevant, M. Ernoult, D. Querlioz, J. 

Grollier, CVPR (2021)

Collaboration
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EqProp Can Train a Quantum Ising Machine 

54

Laydevant, Markovic and Grollier, Nature Communications 15, 3671 (2024)

• EqProp adapts very naturally to physical systems that compute



Conclusion

• Analog in-memory computing: huge potential to reinvent electronics for cognitive-
type tasks and AI

• Memristors and related devices are rich devices that can be used in a variety of ways 

• They are particulary adapted for Bayesian approaches, paving the way toward 
trustworthy AI

• Next ARCHI grand challenges: scaling and solving learning

• Very important & creative time for micro/nano-electronics research. 
Considerable benefits from algorithm/electronics/technology research
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