
© 2023 Arm

Arnaud de Grandmaison
March 30th, 2023

Morello

Architectural feature deployment in the real world

2 © 2023 Arm

Who has rounded-corner windows at home ?

This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC BY-NC

Why planes don’t have squared-corner windows ?

http://kathleenkirkpoetry.blogspot.com/2011/02/new-window.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.flickr.com/photos/oldpatterns/5993944898
https://creativecommons.org/licenses/by-nc/3.0/

3 © 2023 Arm

Buffer overflows
• Buffer overflows and memory safety issues have had a way too long history !

• First documented buffer overflow dating from 1972 [Wikipedia]

This Photo by Unknown Author is licensed under CC BY

• 51 years later … where are we standing ?
• Not much has changed
• Both Google and Microsoft recognize that 70% of the

security issues in their products involve / start with a
memory safety issue

• What was a minor annoyance in the 70s is now a financial
drain and a huge security / privacy issue

• The boiling frog metaphor illustrates pretty well the issue.
We need to jump out of the pan !

(Note: no frog has actually been hurt or boiled)

https://en.wikipedia.org/wiki/Buffer_overflow
https://www.flickr.com/photos/purpleslog/2881603057/
https://creativecommons.org/licenses/by/3.0/

4 © 2023 Arm

Memory safety overview
• Temporal aspect :

• Use-after-free example:
int *tab = (int *) malloc(10 * sizeof(int));
… // do things
free(tab);
… // do other things
tab[0] = 1234; // What happens here ?

• Spatial aspect:
• Buffer overflow example:

int a;
int tab[10];
int b;
tab[-1] = 1234; // What happens here ?
tab[10] = 4567; // What happens here ?

Question: any difference with the above code if data are located in stack or memory ?

5 © 2023 Arm

MPU / MMU overview
• Both are specialized hardware unit designed to help with memory management

• MPU: Memory Protection Unit
• Assign rights (read, write, execute, …) to range of memory locations
• Check loads & store at execution time, raise an exception in case of error
• Can be used to protect one task / process from another, most useful to catch programming errors.
• Limited number of descriptors, coarse granularity

• MMU: Memory Management Unit
• Memory Protection
• Virtual memory management: performs address translation from virtual addresses to physical

addresses
• Used by operating systems (Linux, Windows, MacOS, …)
• Protection at the page granularity, e.g. 4k

6 © 2023 Arm

• Capabilities are essentially fat pointers, i.e. pointers with extra information
• They allow enforcing memory safety at runtime
• They exist since the very beginning of the computer industry, and have been in use for

quite some time actually
• CAP computer at the Cambridge University Computer Lab (1970)
• System/38 from IBM (1978)

• … until they were set aside by segmentation / pagination-based memory management
which was way easier and cheaper to implement back then.

Capabilities to the rescue ! (maybe)

7 © 2023 Arm

Why capabilities ?
• The capability concept has stood the test of time
• They are relatively easy to formalize
• CHERI sketches a plausible path to deployment
• A number of parties, including UK’s NCSC and industry players are showing interest
• Alternatives are looking more speculative, or solve less of the problem or require more

software and/or hardware resources

8 © 2023 Arm

Lecture outline
• A CHERI overview
• The (very) big Morello picture
• A sketch of Morello architecture
• A higher-level view on Cheri / Morello
• Open questions on Morello
• Morello resources
• Misc
• Conclusion

© 2023 Arm

CHERI overview

10 © 2023 Arm

About CHERI
• CHERI: Capability Hardware Enhanced RISC Instructions

• Started ~ 12 years ago as part of project CTSRD (pronounced "custard") :
• Clean Slate Trustworthy Secure Research and Development
• Goal : Rethinking the hardware-software interface for security
• A DARPA-funded project, part of DARPA CRASH programme, with Google’s support
• A joint research project of the Cambridge University Computer Laboratory and SRI International

http://www.cl.cam.ac.uk/research/security/ctsrd/
http://www.csl.sri.com/

11 © 2023 Arm

• Capabilities are used wherever a pointer / reference is used
• Capabilities include:

• Base, pointer, and size (or limit)
• Rights to the data pointed to : read / write / execute / …
• Rights to the capability itself

• Instructions manipulating capabilities can only reduce their range and permissions
(a.k.a monotonicity)

• Capabilities cannot be forged (a.k.a unforgeability)
• Capabilities are protected by a fragile tag which is cleared when the location is written by a non-

capability instruction
• Only valid capabilities (i.e. tag is set) can be used by the capability instructions and load/store

• Capabilities do not replace MMU and paged memory
• They go on top of it
• Provide fine grained access policy for code and data

Memory capability basics

12 © 2023 Arm

Visual intuition : Pointer vs. Capability
int tab[4] = {1, 2, 3, 4};

int *ptr = &tab[2];

0xFFFFFFFF

3

2

1

tab: 0

ptr: tab+2

0x00000000

0xFFFFFFFF

3

2

1

tab: 0

cap: tab[2]

0x00000000

int tab[4] = {1, 2, 3, 4};

int *cap = &tab[2];

13 © 2023 Arm

A hardware perspective on CHERI architecture
• CHERI restricts access to memory and system resources within a virtual address space

• Originally (1960s, 1970s), capabilities did control access to physical memory

• CHERI replaces virtual addresses with memory capabilities that comprise
• A virtual-address pointer component
• A meta-data component that encodes

(Compressed) bounds (base and limit) on the pointer
Permissions to use the capability in certain ways (e.g. mutable/immutable)
Permissions to use the object identified by the capability in certain ways (e.g. R, W, X)

• CHERI can be embedded in any modern 64-bit host ISA
• MIPS, Arm’s A64, RISC-V, x86-64…
• See CHERI architecture

• CHERI mostly affects the load & store part of its host ISA
• Some additional instructions operate on capabilities themselves

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

14 © 2023 Arm

A software perspective on CHERI architecture
• CHERI gives spatial safety to programs written in memory-unsafe languages (e.g. C/C++)

• And good hooks for adding temporal safety at a cost similar to garbage collection…
• And weak control-flow integrity (CFI) …

Similar to A64 with PAC + AUT (reverse CFI) + BTI (forward) or x86 with shadow stack and landing pads

• CHERI supports fine-grain, recursive delegation of access privileges
• Accesses checked by hardware at hardware speed

• CHERI supports secure compartments within a virtual address space
• A lighter weight alternative to compartmentalizing with OS processes
• Compartments are a vital tool to resist security exploits

(c.f. Thomas Dullien’s Weird machines, exploitability, and provable unexploitability –
his assessment implies a need for many, fine-grained compartments…)

• CHERI has formal ISA semantics
• Formalization of architectural security properties is a work in progress

http://www.dullien.net/thomas/weird-machines-exploitability.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-formal.html

© 2023 Arm

The (very) big Morello
picture

16 © 2023 Arm

In brief, Morello is…
• A specific variety of cherry
• An instruction-set architecture (ISA) derived from Arm’s A64 and Cambridge Computer

Laboratory’s Capability Hardware Enhanced RISC Instructions (CHERI)
[CHERI architecture]

• A Mobile/Server-class ASIC containing multiple Morello-enhanced Arm CPUs
• Derived from Arm’s Neoverse™ N1 derived from Cortex® A-76

• A development board containing the Morello ASIC
• Derived from an existing, non-public, Arm development board
• The board has the resources to boot Android and act as a low-end server

• A UK government funded project under the Digital Security by Design [DSbD] umbrella
• Approximately £70m committed by government
• More then £100m in kind committed by Morello project industrial partners

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.ukri.org/innovation/industrial-strategy-challenge-fund/digital-security-by-design/

17 © 2023 Arm

The Morello project will…
• Fund creating a Mobile/Server-class ASIC and 500-1,000 development boards

• The number of boards depends on test-chip yield, funding, and component cost (all variable)

• Support evaluation of deployment options and priorities by Arm’s industrial partners
• Public support at the DSbD launch from both Microsoft and Google

• Support evaluation of different software and hardware implementation options
• For example: the Morello board supports two ways to tag memory, one appropriate for Mobile

(no ECC on DRAM) and one appropriate for Server (with ECC on DRAM)

• Support a broad academic research program
• From Computer Science to Social Science…
• From theory/proof/formal to empirical studies of large-scale software…
• Hardware and software…

https://www.ukri.org/innovation/industrial-strategy-challenge-fund/digital-security-by-design/

18 © 2023 Arm

Morello is not …

• Morello is not the final architecture implementation:
• It will be the ONLY implementation of this prototype architecture

• Morello has *NO COMMITMENT* to forward / backward compatibility
• But successful concepts are expected to become part of an ARM architecture extension and/or CHERI

19 © 2023 Arm

Why are we doing this ?
• Our aim is to:

• Break the cyclic dependency between software and hardware…
• Understand the cost of implementation, deployment and use of these new concepts
• Get useful feedback before committing any variant of it to CHERI or the Arm Architecture

• Because we need:
• Answers to performance questions for a wide range of different usage models
• Compelling examples of Capabilities offering a security / performance improvements

Backed up by “Red-teams” having attacked the system and demonstrated security of the system
Compelling in comparison with existing deployed state of the art exploit mitigations

• Understanding of how different languages and run-times can use capabilities
Not just C and C++, but also Javascript, Java, Rust, …

• Far better understanding of how fine-grained compartmentalisation can be used and supported
• A showcase to encourage other architectures to adopt the same concepts
• Experience of the SoC hardware to implement systems based on the CHERI concepts

© 2023 Arm

A sketch of Morello
architecture

21 © 2023 Arm

• The Morello capability format is similar but not identical to the CHERI-concentrate
format.

• Morello capabilities have compressed bounds:
• Vanilla CHERI capabilities are 256(+1) bits fat

A reasonable choice research-wise from CUCL as it allows easy exploration
From an industrial point of view, we believe this is way too large to be deployed

• Morello capabilities are 128(+1) bits fat
Achieved using a pointer bound compression technique similar to floating point encoding

Morello capability format

22 © 2023 Arm

128 127 64 63 32 31 0

W Reg

X Reg

Tag C Reg

Capabilities in storage and on buses

Capabilities in memory
§ 16-byte aligned
§ A 1-bit tag is stored separately (in separate tag memory, or using the ECC code on the 128 bits)

Tag is fragile
§ Preserved by specific instructions, cleared or ignored by any other access to the location
§ De-referencing a capability with no tag causes a machine exception (capability fault)

Capabilities in registers and on buses

23 © 2023 Arm

A Morello capability in detail

Tag Permissions Object type
Value [63:0]

128 127:110 109:95

Bounds [86:56]

94:64

Flags

63:56

Bounds [55:E+16]

55:0

Permission
Load
Store
Execute
LoadCap
StoreCap
StoreLocalCap
Seal
Unseal
System
BranchSealedPair
CompartmentID
MutableLoad
User[4]

Simultaneous
views of 63:0

Object type
0: Capability is mutable
Non-0: Capability is sealed

Not all combinations of
bounds and value can be
represented

24 © 2023 Arm

A Morello capability in detail

Tag Permissions Object type
Value [63:0]

128 127:110 109:95

Bounds [86:56]

94:64

Flags

63:56

Bounds [55:E+16]

55:0

Permission
Load
Store
Execute
LoadCap
StoreCap
StoreLocalCap
Seal
Unseal
System
BranchSealedPair
CompartmentID
MutableLoad
User[4]

Simultaneous
views of 63:0

Object type
0: Capability is mutable
Non-0: Capability is sealed

Not all combinations of
bounds and value can be
represented

25 © 2023 Arm

A capability representable region covers the
range of values that are between 12.5%
below the base and 25% above the limit.
A representability check is applied when
manipulating a Capability value.

Bounds representability

limit

4

3

…

1

base 0

…

capability

Representable
region

26 © 2023 Arm

Need to support “past-the-end” programming idiom (and all its variations)
• Idiom largely used in software, by developpers AND compilers

C example:
int tab[10];
for (int* ptr=tab; ptr<tab+10; ptr++) // tab+10 == &tab[10]

*ptr = 0;

C++ example:
vector<int> tab;
for (auto iter = tab.begin(); iter != tab.end(); iter++)

*iter = 0;

Need to be able to represent / compare to tab+10 / tab.end()
• But dereferencing tab+10 / tab.end() must be an error !

How far is precise representation needed ?
• What about vectorization’s stride width (compiler transformations) ?

Precise out of bounds is needed !

27 © 2023 Arm

But the real world is actually more complex than this…
What about memory allocation ?
Weird sizes are often requested by users:

char *str = malloc(57);
The memory allocator will probably allocate 64 bytes for your data
• Even though 57 were requested.
• Should the bound be set to 57 or 64 ?

The memory allocator will probably “steal” some of (your) space.
• Stash its own metadata, often at addresses below &str[0] (glibc)

28 © 2023 Arm

Bounds compression – the essence of it
• See CHERI Concentrate: Practical Compressed Capabilities – Morello is different in

detail
• Details are described in DDI0606 / A.k , section 2.5.1 Morello Bounds format

• Not all bounds values are representable, constraining how far Value can be taken out
of bounds before it is impossible to represent the derived capability

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://developer.arm.com/documentation/ddi0606/ak/

29 © 2023 Arm

The world is still legacy !
• Most of the world’s codebase is NOT using capabilities
• Compilers can automatically use capabities instead of pointers

• But most codebase will break
• Compilers can not easily add extra semantic to the current language

• Rewriting / porting the code to take advantage of capabilities will take time
• A migration / transition path is required

30 © 2023 Arm

• A64:
• Aarch64 ISA + minimum set of instructions to operate on capabilities
• Memory accesses are address-based by default (pointer = address)

• C64:
• Aarch64 ISA + minimum set of instruction to operate on pointers
• Memory accesses are capability-based by default (pointer = capability ¹ address)
• Address-based memory accesses are interpreted relative to DDC

Morello machine states & instructions

A64

AArch64
operations add x0, x1, x2

memory load x0, [x1]

Extension

operations add c0, c1, x2

memory
load x0, [c1]

load c0, [c1]

C64
add x0, x1, x2

load x0, [c1]

add c0, c1, x2

load x0, [x1]

load c0, [x1]

31 © 2023 Arm

• Same instruction encoding, but “address” interpretation depends on the machine state

Morello machine states & instructions --- intended use

C64
• Operate in a capability-based world – pointer ¹ address
• Minimum set of instructions to operate on pointers as

(DDC-relative) addresses

A64
• Legacy, AArch64 support – pointer = address
• Minimum a set of instructions to operate on capabilities

Inter-operate between capability and legacy modes at a protection boundary,
e.g. EL0 / EL1.

32 © 2023 Arm

A glimpse at some instructions
• Getters:

gclen x0, c1 ; Get length
gcperm x0, c1 ; Get permissions

• Setters:
scperm c1, c0, x2 ; Set permission (reduce only)
scbnds c1, c0, x2 ; Set bounds (reduce only)

• Memory accesses:
ldr x1, [c0, #8] ; load

• Control flow:
bl c0 ; Branch & Link

© 2023 Arm

A higher-level view on
Cheri / Morello

34 © 2023 Arm

Let’s take a step back…
• The tag bit essentially makes a hardware type !

• The raw data interpretation no longer just depend on the instruction

• Benefits goes beyond memory safety.
• Transitive closure of the root capabilities allows fine grained compartimentalization
• In practice, (provably) perfect security is impossible to achieve. If an attacker compromises a

compartment, the attacker cannot easily break out of the compartment.

35 © 2023 Arm

Fine grained protection – Compartments

• Ideally, in any address space in any EL / security state / …
• And as strong as MMU based compartments (VMs, processes)

• Ideally, cheap to create and destroy compartments
• Encourage the use of lots of small compartments, reduce the attack surface for all types of exploits

• Ideally, supporting different trust models
• At least symmetric and asymmetric distrust…

code

private
data

code

private
data

shared
data

Transfer of control to
specific entry points only private

code
private
code

36 © 2023 Arm

Compartments – the essence of it

• The memory image of a compartment is all the memory transitively reachable from the
root capabilities it was started with.

• Transfer of control between compartments requires:
• Atomically (from the perspective of code executing at this exception level) jumping to an entry (resp.

resume) point in the other compartment
• Swapping the memory context so that the memory from the first compartment is inaccessible (other

than transferring control back to the origin, or thru capabilities passed explicitly as arguments) when
entering the second compartment.

37 © 2023 Arm

Architectural challenges and opportunities
• Instructions to transfer control between compartments (security domains) give

opportunities to purge or limit speculative state and the opportunity to exploit it
• [CHERI architecture] states: In order to achieve compartmentalization, and not simply isolation,

CHERI’s selective nonmonotonic mechanisms can be used:
exception handling
jump-based invocation

• CHERI also defines a compartment ID register that hardware can monitor
• Whatever the mechanism, and whatever the distrust relationship between compartments,

natural, identified points in the instruction stream are needed to tame speculative execution
attacks between security domains

Without first-class compartments, the only mitigation hook is a speculation barrier instruction, resembling
those introduced in v8.5 of Arm’s 64-bit architecture

• It remains micro-architecturally challenging to effectively use this architectural opportunity !

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf

38 © 2023 Arm

Hardware enforced const qualifier:
void function(const Object *p)

Give only access to a smaller range of memory:
struct S { /* some fields */ };
void f(struct S *p);
struct S *tab = malloc(10 * sizeof(struct S));
for(int i=0; i<10; i++)

f(&tab[i]); // f can not access outside the object it was given !

Compartment unsafe libraries / untrusted code:
libjpeg_decode(&MyShip, “~/Download/alien.jpeg”); // No one will hear you scream

Compartment safe / trusted code:
Err = EverCrypt_AEAD_encrypt(…);

Garbage collection

What can / could be done better with capabilities ?

39 © 2023 Arm

Compilation and language issues
• C/C++ fundamental assumption that pointer = address = integer
• Pointer provenance
• *cpy / *move functionality needs extra care to preserve tags
• Code generation tactics (e.g. for managing stack frames) may make material differences

to resisting the first essential step in an exploit chain that breaks memory safety
• This is how 2/3 of today’s exploits begin (according to Google and Microsoft)

40 © 2023 Arm

• We have recompiled many large code bases. Most had to be “fixed”…
• Most of the world’s software has migrated to 64bits pointers, so moving to 128bits pointers will be

easy because they have learned the lesson, haven’t they ?
• Lots of code bases built for CHERI exhibited out of bounds access…
• People are doing smart horrible things with pointers
• The good point is … this shows right away that CHERI is useful !

• Some applications play fast and loose with pointer provenance…
• See, for example, Exploring C Semantics and Pointer Provenance

• The above led to some innovative research into what programmers believe about C
• See, for example, Into the depths of C: elaborating the de facto standards

Experience return J

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201901-popl-cerberus.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201606-pldi2016-clanguage.pdf

© 2023 Arm

Open questions on
Morello

42 © 2023 Arm

• No !
• ABI impacts ?
• CHERI allows plain old pointers to coexist with fat pointers, in order to ease the

migration… But how to handle that ?
• Linking applications is becoming even more interesting...
• Loading applications and “seeding” the capabilities…
• This all requires changes in the OS / libc / ld.so / debuggers / traces / …
• People distributing full environment (Android, …) need to be involved as they will have

to manage a transition. On the other hand, they have a strong incentive to improve
security.

• Memory safety is only a part of the security problem --- a significant one though

Are all problem solved then ?

43 © 2023 Arm

• To take full advantage of capabilities, software must be rewritten
• Is it still worth rewriting it in C/C++ or should it be done with Rust (for example) ?
• Can Rust (or its competitors) benefit from capabilities ?

• How to analyze and automate compartmentalization of large existing code bases ?

• (How) do proven components compose ?
• For example, is SeL4 + CHERI + Morello secure ?
• What does “secure” mean in this context ?
• How to prove it ?

• Side channels (timing, EM, power) & fault injection
• Are there single points of failure in the architecture ?

• That is, failure points independent of micro-architectural implementation
• Or is it all about the micro-architecture ?

Open questions

© 2023 Arm

Morello resources

45 © 2023 Arm

Resources
• https://www.morello-project.org/ Morello open-source software, including core

repositories
• https://www.arm.com/architecture/cpu/morello : Architecture specifications, platform

model, technical reference manual, …
• Morello Platform Model (FVP) and Morello Instruction Emulator (IE)
• Toolchains (compilers, debuggers, runtime libraries): LLVM and GCC
• Arm Development Studio, Morello Edition

• Available environments:
• Bare-metal enablement
• Android / Linux
• CheriBSD (hosted and maintained by CUCL)

• https://github.com/herd/herdtools7 : Memory Model Tools support

https://www.morello-project.org/
https://www.arm.com/architecture/cpu/morello
https://github.com/herd/herdtools7

© 2023 Arm

Misc.

47 © 2023 Arm

Misc notes:
• What’s the smallest variety of CHERI? (MSR, Risc-V)

• https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/

• FlexCap: Exploring Hardware Capabilities in Unikernels and Flexible Isolation OSes
• https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X015610/1

https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X015610/1

© 2023 Arm

49 © 2023 Arm

• Architectural features are useful to help solving a problem
• But deploying them in a complete system is actually the main problem:

• Cost
• Performance
• Debug
• Language and compiler support
• OS support
• Existing code bases
• New tools

Conclusion

This Photo by Unknown Author is licensed under CC BY-SA-NC

http://lancetre.vefblog.net/8.html
https://creativecommons.org/licenses/by-nc-sa/3.0/

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

