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Neural architectures
L introduction

Goal of this talk

v

Why a neural network may stand as a hardware architecture.

v

Which kind of neural computation.

v

Where it comes from (biological inspiration).

v

Why it is not so simple to map neural networks onto digital
hardware.

v

How neural spikes partially solve the problems.
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L Neural networks as hardware architectures

I—Usu:-JI neural networks

Artificial neural networks ?

» several definitions
» many “architectures”

» graphs of small
computing units that
exchange data
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Neural architectures
L Neural networks as hardware architectures

|—Usual neural networks

Example: convolutional network, n=121, c=630
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Neural architectures
L Neural networks as hardware architectures

|—Usual neural networks

Example: liquid state machine, n=200, c=1200




Neural architectures
L Neural networks as hardware architectures

I—Usu:-JI neural networks

Some neural network sizes

> LeNet5 (1998) : n = 8094, c = 582824
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> AlexNet (2012) : n = 594376, c = 947985976
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(@©F. Hu, G.S. Xia, H. Jingwen and Z. Liangpei

> Visual attention DNF model : n = 9801, ¢ = 36350000
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L Neural networks as hardware architectures

LNeuraI networks: from model to hardware design

Context

» need to implement neural-based solutions on hardware devices

» embedded system
» speed up NN computation for statistical study

» search for cheap and flexible solutions (FPGAs ?)
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L Neural networks as hardware architectures

LNeuraI networks: from model to hardware design

Neural parallelism

» Neural networks are “naturally” parallel ... not so simple!

» Different levels of neural parallelism, e.g. for standard
feedforward NN:

» session parallelism (mostly for learning)
data parallelism

layer parallelism (and thus pipeline)
neuron parallelism

connection parallelism

vV vy vVvYy

» About on-chip learning: only in specific conditions
> to speed up learning of huge networks
» to continuously adapt embedded system (e.g. ambulatory
systems)
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L Neural networks as hardware architectures

LNeuraI networks: from model to hardware design

Hardware devices for neural networks

» Choice of parallel substratum: neural computation is
fine-grain and requires dense interconnections.

» Hardware parallelism better fits specific aspects of neural
parallelism.

» Analog hardware: yes, but does not fit the context.

» Several regular neural architectures fit GPU computations
(convolutions, ...): not presented here.

» Neuromorphic chips: not so accessible.
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L Neural networks as hardware architectures

LNeuraI networks: from model to hardware design

About neuromorphic chips ...

» “old" approach: neuroprocessors, neuro-computers

» recent and booming trend: neuromorphic chips

> the ancestor ZISC (zero instruction set computer, 1993): 36
neurons

» the Cognitive Memory chip CIMK (2007): 1024 neurons, 0.5
mW
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L Neural networks as hardware architectures

|—Neural networks: from model to hardware design

About neuromorphic chips ...

» IBM SyNAPSE/TrueNorth (2014): 1 million neurons, 256
million synapses, 70 mW, 46 billion synapses computed per
second and per watt, 5.4 billion transistors

®©IBM
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L Neural networks as hardware architectures

|—Neural networks: from model to hardware design

About neuromorphic chips ...

» Qualcomm Zeroth (2013-2015): now dedicated to deep
learning in mobile solutions

©Qualcomm

> in the race: Intel, HP, Samsung
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L Neural networks as hardware architectures

|—Neural networks: from model to hardware design

About neuromorphic chips ...

» SpiNNaker (Human Brain Project, 2005-2014): 18000
neurons per chip, 500000 chip manycore architecture, flexible
address-event connectivity

@©Univ. Manchester
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L Neural networks as hardware architectures

LNeuraI networks: from model to hardware design

About neuromorphic chips ...

» still difficult to use/access

> at the origin of this booming:

spikes !
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L Neural networks as hardware architectures

LNeuraI networks: from model to hardware design

(back) Hardware devices for neural networks

» FPGAs: flexible, accessible, constantly improving

» Straightforward approach: directly map the neural
architecture onto the chip

» Neurons: computing units, “operators”

» Connections: wiring
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L Neural networks as hardware architectures

|—Neural networks: from model to hardware design

Implementation issues

NN may define their hardware ar-
chitecture, but not so easy to map |
onto digital hardware devices ...

» Bandwidth issues

» Connection issues

> Area-greedy operators




Solving these issues requires to know more about neural networks.
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LNeural computations, foundations and models

L Neural computation

Neural modeling
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Neural architectures

I—Neural computations, foundations and models

L Neural computation

Neuron?

» Neuron models range from biologically plausible models (e.g.
Hodgkin-Huxley type) to simplistic models (e.g. ReLU).

» Many neural networks use simple models like the
McCulloch&Pitts neuron.

Wy = b
Fixed input x, 0—-— - k

[ O
Activation
function
e
Vg Outpu
Inpu w(+) .

Summing
junction

Synaptic
weights
(including bias)
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I—Neural computations, foundations and models

L Neural computation

Neuron?

but. ..
» Recent conceptual advances use more bio-inspired neurons.

» Even according to deep learning founders (LeCun, Bengio and
Hinton), unsupervised and bio-inspired learning is “the future
of deep learning”.
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L Neural computation

Back to biological foundations

» ~ 10 neurons in the brain
~ 10%® dendrites

Cell body: ~ 10 um

Axon: drives the neural signal
(1 mm to 1 m) then branches

v

NEURON

v

v

» Synapses: connect axon
branches to dendrites of other
neurons. Transmission of Soma
electrical signals between cells
thanks to chemical processes.
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L Neural computation

Back to biological foundations

» Membrane potential
» lonic channels and
pumps

» Resting potential

» Action potential
(~spike)

» Post-synaptic
potential (PSP):
inhibitory (IPSP),
excitatory (EPSP)

» Neurotransmitters: bind
to neuroreceptors to
open channels.
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L Neural computation

Back to biological foundations

» Accumulation of potential
variations (received from
dendrites) in the soma

» Non-linear processing: if the
accumulated potential reaches
a threshold, an action
potential is generated at the
basis of the axon

» Refractory period: unability to / 100 ms

immediately generate new
spikes
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L Neural computation

Back to biological foundations

Pulse/spike train
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I—Neural computations, foundations and models

L Neural computation

Neuron modeling

Neuron models depend on how precise each component of the
biological neural computation is modeled.

mV

Urest T \/_T
AN | 0
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L Neural computation

Spiking models (1/3)

» (biological modeling) electric and ionic mechanisms:
biophysical models, e.g. Hodgkin-Huxley

dVp(t 1
(;nt( ) - _Ci (linjected + Z /ion(t)>

ion

lion(t) = Gion * mP(t) * h9(t) * (Vin(t) — Eion(t))
» PSP and AP: e.g. SRM (spike response models)

ui(t) = n(t— t”>+Zw,,Zs,, (e—e"e t}“)+/0°° w(t—tD 5)I(t—s)ds
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LNeuraI computation
Spiking models (2/3)

» simple input integration and firing: e.g. IF and LIF (leaky
integrate and fire)

d
» membrane potential u: 72— —u(t) + al(t)
» firing: if u(t) > 6 and u'(t) > 0, the neuron fires, firing time
tf) = ¢t

» reset: u(t() =0

uld
v (kHz)

4 )
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t(ms) I, (mA)

potential firing rate
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I—Neural computation
Spiking models (3/3)

> with other neurons
S du,-
membrane potential: T —ui(t) + ali(t) + Z w;j0;(t)
J

» firing: 6;(t) = Dirac(t - t(f))

. du;
» with delays: 7— = —u;(t) + ali(t) + E wij0; djj)
dt
4
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I—Neural computations, foundations and models

L Neural computation

Rate-coded models

> average activity: e.g. formal neuron, ReLU

y,-:¢ b;—f—ZW,'ij
J

» with time: e.g. recurrent networks

yi(t+1) = b+Zw,,x,+Zw,kyk

» dynamic activity: e.g. DNF, dynamic neural fields

du,-
T T ui(t) + ali(t —|—ZWU uj(t

+h
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I—Neural computations, foundations and models

I—Dynamic neurons

Neural population dynamics

» Population coding
> Emergent computation

» Temporal computing

> Inspiration: lateral and
feedback connections in
the brain, e.g. visual
system




Neural architectures
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L Dynamic neurons

Elementary dynamic neuron

Let's choose a simple rate-coded neuron model.

1
U; = ;(—Ut + /t + h)

> leak, input, resting potential

» continuous integration of informations
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L Dynamic neurons

Implementation

» discretization (v' = f(t, v)):
Upyde = U + S/Ope(ta U, dt)

» numerical solutions of differential equations: multistep
methods, Runge-Kutta methods 7
> Biological modeling: RK4

k 2k 2k: k.
slope(t, uz, dt) = w
dt

dt
k1:f(t,ut) /Q:f(t+ ?,u-i—kl?)

dt dt
ks = f(t+ ?,u—&- sz) ks = f(tdt, u + kzdt)
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L Dynamic neurons

Implementation

» Bio-inspired computing: first order methods appear sufficient

dt
(Euler)  upigr = ue + 7(*Ut + It + h)

justifications: “neurons are robust”, “small order, small dt”,
“simpler implementation ", “dynamic behaviour is
maintained”, ...
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L Dynamic neurons

Maps of dynamic neurons

Let's make our neuron able to interact with other neurons

1
up = =(—ut + Lat; + Aff + h)
T

> lateral information: from other neurons
» afferent information: from some “external” inputs

Let's also give a position x to our neuron

1
U, = ;(—ux,t + Lat, s + Aff. ¢t + h)
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L Dynamic neurons

Maps of dynamic neurons

Let's take into account synaptic influence

1
e = 7 (e / w(x, X )f (uxc) + Aff + h)

> synaptic weights

> integration over the whole population
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L Dynamic neurons

Example: dynamic neural fields (DNF)

If w only depends on the inter-neuron distance, e.g. according to
some difference of gaussians ... we obtain standard DNFs

2

— —_ 2 oo
w(d) = Ae# —Be# A a,B beR.
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L Dynamic neurons

DNF: dynamic neural fields

Inputs Potential Activation

» Each map capable of target selection, tracking, etc.

» Numerous higher level applications: visual attention, motor
planning, change detection, etc.

» Decentralization and robustness

Demo 777
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LDigital implementations of neural networks

L Neuron implementation

Simple formal neuron

Activation
function

Summing
junction

yi=¢ bi+ZWUXj 1
- Co
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LDigital implementations of neural networks

L Neuron implementation

Dynamic neuron

du,-
T = —u;i(t) + ali(t —|—ZW,J (uj(t))
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L Network implementation

Connecting neurons

» The network is the architecture.

» Unsolved issues
» bandwidth
» dense interconnections
» area-greedy operators
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I—Digital implementations of neural networks

L Network implementation

Arithmetic tricks

To obtain smaller operators:

» serial arithmetic (storing weights in LUTs)

a —f F— -5
Full
adder

b —

> pipeline between operators: non-linear units are MSBF
> on-line arithmetic: serial & MSBF
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L Network implementation

Arithmetic tricks

» bitstream arithmetic
» Each real value is encoded in a stream of bits
» Encoding of value x € [0, 1] uses a bitstream where for each
bit b,P(b=1) = x

0/1/0 0|1 1|01 1

» Compact multiplication: P(AA B) = P(A)P(B)

1,1,1,1,1,1,1,1 (8/8)
™ 1,1,1,0,1,0,1,0 (5/8)
1,1,1,0,1,0,1,0 (5/8) AB

B /

> Biased addition: P(A|B) = P(A) + P(B) — P(AA B)

0,0,1,1,0,1,1,0 (4
1,1,1,1,1,1,1,0 (7/8)

/8)
N
1,1,1,0,1,0,1,0 (5/8)) A+ B—AB
I_/
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I—Digital implementations of neural networks

L Network implementation

Arithmetic tricks

» advantages of bitstream arithmetic

» compactness
> anytime computation
» biased addition stands for non-linearity
» limits of bitstream arithmetic
» kinds of operators
» precision (related to bitstream length)
» correlated random variables (long computation paths in neural

networks)
» generation of random numbers
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I—Spike-based computations
LSpiking neurons

Spiking neuron

Neurons know how to deal with a constrained bandwidth.

» action potentials, post-synaptic potentials, etc.
» ok, but ... Hodgkin-Huxley, Izhikevich, SRM, LIF, etc. 7?7?
> computer scientists are “binary”

Ut + %(—u” + e+ h) ifuee <0,
Ux t+dt = .
h if ucr >0

R

—|0|— Ie

Figure: LIF neuron as RC circuit
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LSpiking neurons

Spiking neural populations

Same architecture, but neurons only exchange “all or nothing”
information.

Later = > w(x,x')Sc, (1)

/

1 ifu.,>6
See=q. L et= 2)
0 ifu: <@

This is so ... bandwidth-friendly. But does it work ?
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LSpiking neurons

Current applications of spikes

v

applications in perception

v

liquid state machines

v

spiking deep learning

v

spiking neural fields
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|—Spiking neurons

Example: spiking dynamic neural fields

Inputs
L
-

.
.
L
L
L ]
L
.

Potential
-
-
L]
]
-
e
@
@
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Activation
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L Hardware consequences

Spikes on-chip

Spike-based computation reduces bandwidth demands.

It also reduces the implementation area of each neuron:
» slightly more complex neuron (thresholding), but . ..

> no more multiplier

Laty ; = Z w(x, x")
S(x',t)=1
» multiplication by %: if dt is small enough to ensure enough

accuracy, reduce it further until % is 27P and use simple
binary shifts.
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L Hardware consequences

Spikes on-chip

Receiving spikes:
> temporal discretization: spikes are events, yet they appear in
the differential equations

» with the LIF model, spikes are instantaneous

Uy rdt = {Ux,t + %(_Uxﬁt + Affe s + h) + % ZS(X’.t):l w(x,x") if ug, <6,
X’ 0 if U >0

» with a more detailed PSP model, back to numerical simulation
of differential equations

» multiplication of weights by %: just adapt weights
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L Hardware consequences

Spikes on chip

Communicating spikes:

v

simpler handling of dense interconnections (see further)

v

basic idea: one (or just several) spike at a time

v

only meaningful information to be sent

v

towards asynchronous implementations:

> each spike is a local clock event
» no global clock in IBM TrueNorth
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L Hardware consequences

An example

» Input: DVS sensor
b) principle of operation

/‘\V N
o | Ve reconstruction
g
=]
>
time OFF
AV i & & Threshold
diff o o o K
" >/ L~
g ~ X
e+ ——>Reset Level -——
© ©O  oNThreshold
time
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L Hardware consequences

An example

» spike transmission: AER protocol/bus (address-event
representation)
» different formats
> spike type
> location information
> time stamp
> etc.

apsDVS raw event
read
type y addr xaddr, (APs) ADCsample timestamp

\ \
[INENENEESNEEEERENENENENN AN ANEEEENN RN ENNNNNEN ANNENEEE|
63 48 32 [

16

larity (DVS)  trigger (DVS,
type:0=DVS, 1 = APS polarity ) rigger ( )

read: 00 = reset read, 01 = signal read, 11 = IMU read

©]niLabs

» may be used between chips or within chips
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L Hardware consequences

An example

» neural model: DNF-based

Input
® 7 @
©
<— Working
Focus »| Memory
@

G O
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L Hardware consequences

An example

» architecture

v v Input
[ 1 [ 1
LIF LIF
Lat. ’-‘ Neuron‘l Lat. Neuron
1 1
L L) Focus
l WM
Focus DNF WM DNF USB 1/0

» 10000-neuron DNF (108 connections) on a single FPGA
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L Hardware consequences

An example

(b) u Focus (c) u WM

(a) DVS (d) act. Focus (e) act. WM
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L Conclusion

v

v

v

v

v

Neural parallelism and hardware parallelism: soon reconciled ?

Spikes not limited to modeling biology

Spikes make drastic computation simplifications possible for
digital hardware.

Spikes make the world a bit more ... binary.

Many other spiking tricks:

>

>

randomly propagating spikes
spike-stream computation: robustness to correlated bitstreams

thanks to potential reset
etc.



The end.
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