
Neural architectures

Architectures neuronales : les réseaux de
neurones comme architectures numériques

Neural architectures: neural networks
as digital architectures

Bernard Girau - Biscuit team - Loria - Université de Lorraine

ARCHI’2017 - 10 mars 2017

Neural architectures

Introduction

Goal of this talk

I Why a neural network may stand as a hardware architecture.

I Which kind of neural computation.

I Where it comes from (biological inspiration).

I Why it is not so simple to map neural networks onto digital
hardware.

I How neural spikes partially solve the problems.

Neural architectures

Introduction

Neural networks as hardware architectures
Usual neural networks
Neural networks: from model to hardware design

Neural computations, foundations and models
Neural computation
Dynamic neurons

Digital implementations of neural networks
Neuron implementation
Network implementation

Spike-based computations
Spiking neurons
Hardware consequences

Conclusion

Neural architectures

Neural networks as hardware architectures

Neural networks as hardware architectures
Usual neural networks
Neural networks: from model to hardware design

Neural computations, foundations and models
Neural computation
Dynamic neurons

Digital implementations of neural networks
Neuron implementation
Network implementation

Spike-based computations
Spiking neurons
Hardware consequences

Conclusion

Neural architectures

Neural networks as hardware architectures

Usual neural networks

Artificial neural networks ?

I several definitions

I many “architectures”

I graphs of small
computing units that
exchange data

Neural architectures

Neural networks as hardware architectures

Usual neural networks

Example: convolutional network, n=121, c=630

Neural architectures

Neural networks as hardware architectures

Usual neural networks

Example: liquid state machine, n=200, c=1200

Neural architectures

Neural networks as hardware architectures

Usual neural networks

Some neural network sizes

I LeNet5 (1998) : n = 8 094, c = 582 824

c©Y. Lecun

I AlexNet (2012) : n = 594 376, c = 947 985 976

c©F. Hu, G.S. Xia, H. Jingwen and Z. Liangpei

I Visual attention DNF model : n = 9 801, c = 36 350 000

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

Context

I need to implement neural-based solutions on hardware devices
I embedded system
I speed up NN computation for statistical study

I search for cheap and flexible solutions (FPGAs ?)

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

Neural parallelism

I Neural networks are “naturally” parallel . . . not so simple !
I Different levels of neural parallelism, e.g. for standard

feedforward NN:
I session parallelism (mostly for learning)
I data parallelism
I layer parallelism (and thus pipeline)
I neuron parallelism
I connection parallelism

I About on-chip learning: only in specific conditions
I to speed up learning of huge networks
I to continuously adapt embedded system (e.g. ambulatory

systems)

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

Hardware devices for neural networks

I Choice of parallel substratum: neural computation is
fine-grain and requires dense interconnections.

I Hardware parallelism better fits specific aspects of neural
parallelism.

I Analog hardware: yes, but does not fit the context.

I Several regular neural architectures fit GPU computations
(convolutions, . . .): not presented here.

I Neuromorphic chips: not so accessible.

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I “old” approach: neuroprocessors, neuro-computers

I recent and booming trend: neuromorphic chips

I the ancestor ZISC (zero instruction set computer, 1993): 36
neurons

I the Cognitive Memory chip C1MK (2007): 1024 neurons, 0.5
mW

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I IBM SyNAPSE/TrueNorth (2014): 1 million neurons, 256
million synapses, 70 mW, 46 billion synapses computed per
second and per watt, 5.4 billion transistors

c©IBM

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I Qualcomm Zeroth (2013-2015): now dedicated to deep
learning in mobile solutions

c©Qualcomm

I in the race: Intel, HP, Samsung

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I SpiNNaker (Human Brain Project, 2005-2014): 18000
neurons per chip, 500000 chip manycore architecture, flexible
address-event connectivity

c©Univ. Manchester

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I still difficult to use/access

I at the origin of this booming: spikes !

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

(back) Hardware devices for neural networks

I FPGAs: flexible, accessible, constantly improving

I Straightforward approach: directly map the neural
architecture onto the chip

I Neurons: computing units, “operators”

I Connections: wiring

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

Implementation issues

NN may define their hardware ar-
chitecture, but not so easy to map
onto digital hardware devices ...

I Bandwidth issues

I Connection issues

I Area-greedy operators

Neural architectures

Neural networks as hardware architectures

Neural networks: from model to hardware design

Implementation issues

Solving these issues requires to know more about neural networks.

Neural architectures

Neural computations, foundations and models

Neural networks as hardware architectures
Usual neural networks
Neural networks: from model to hardware design

Neural computations, foundations and models
Neural computation
Dynamic neurons

Digital implementations of neural networks
Neuron implementation
Network implementation

Spike-based computations
Spiking neurons
Hardware consequences

Conclusion

Neural architectures

Neural computations, foundations and models

Neural computation

Neural modeling

Neural architectures

Neural computations, foundations and models

Neural computation

Neuron ?

I Neuron models range from biologically plausible models (e.g.
Hodgkin-Huxley type) to simplistic models (e.g. ReLU).

I Many neural networks use simple models like the
McCulloch&Pitts neuron.

Neural architectures

Neural computations, foundations and models

Neural computation

Neuron ?

but. . .

I Recent conceptual advances use more bio-inspired neurons.

I Even according to deep learning founders (LeCun, Bengio and
Hinton), unsupervised and bio-inspired learning is “the future
of deep learning”.

Neural architectures

Neural computations, foundations and models

Neural computation

Back to biological foundations

I ' 1011 neurons in the brain

I ' 1015 dendrites

I Cell body: ' 10µm

I Axon: drives the neural signal
(1 mm to 1 m) then branches

I Synapses: connect axon
branches to dendrites of other
neurons. Transmission of
electrical signals between cells
thanks to chemical processes.

Neural architectures

Neural computations, foundations and models

Neural computation

Back to biological foundations

I Membrane potential

I Ionic channels and
pumps

I Resting potential

I Action potential
('spike)

I Post-synaptic
potential (PSP):
inhibitory (IPSP),
excitatory (EPSP)

I Neurotransmitters: bind
to neuroreceptors to
open channels.

Neural architectures

Neural computations, foundations and models

Neural computation

Back to biological foundations

I Accumulation of potential
variations (received from
dendrites) in the soma

I Non-linear processing: if the
accumulated potential reaches
a threshold, an action
potential is generated at the
basis of the axon

I Refractory period: unability to
immediately generate new
spikes

Neural architectures

Neural computations, foundations and models

Neural computation

Back to biological foundations

Pulse/spike train

PSP

AP

Neural architectures

Neural computations, foundations and models

Neural computation

Neuron modeling

Neuron models depend on how precise each component of the
biological neural computation is modeled.

Neural architectures

Neural computations, foundations and models

Neural computation

Spiking models (1/3)

I (biological modeling) electric and ionic mechanisms:
biophysical models, e.g. Hodgkin-Huxley

dVm(t)

dt
= − 1

Cm

(
Iinjected +

∑
ion

Iion(t)

)

Iion(t) = Gion ∗mp(t) ∗ hq(t) ∗ (Vm(t)− Eion(t))

I PSP and AP: e.g. SRM (spike response models)

ui (t) = η(t−t(f)i)+
∑
j

wij

∑
t
(f)
j

εij

(
t − t

(f)
i , t − t

(f)
j

)
+

∫ ∞
0

κ(t−t(f)i , s)I (t−s)ds

Neural architectures

Neural computations, foundations and models

Neural computation

Spiking models (2/3)

I simple input integration and firing: e.g. IF and LIF (leaky
integrate and fire)

I membrane potential u: τ
du

dt
= −u(t) + αI (t)

I firing: if u(t) ≥ θ and u′(t) ≥ 0, the neuron fires, firing time
t(f) = t

I reset: u(t(f)) = 0

potential firing rate

Neural architectures

Neural computations, foundations and models

Neural computation

Spiking models (3/3)

I with other neurons

membrane potential: τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wijδj(t)

I firing: δi (t) = Dirac(t − t(f))

I with delays: τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wijδj(t − dij)

Neural architectures

Neural computations, foundations and models

Neural computation

Rate-coded models

I average activity: e.g. formal neuron, ReLU

yi = φ

bi +
∑
j

wijxj


I with time: e.g. recurrent networks

yi (t + 1) = φ

bi +
∑
j

wijxj +
∑
k

wikyk(t)


I dynamic activity: e.g. DNF, dynamic neural fields

τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wij f (uj(t)) + h

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Neural population dynamics

I Population coding

I Emergent computation

I Temporal computing

I Inspiration: lateral and
feedback connections in
the brain, e.g. visual
system

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Elementary dynamic neuron

Let’s choose a simple rate-coded neuron model.

u′t =
1

τ
(−ut + It + h)

I leak, input, resting potential

I continuous integration of informations

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Implementation

I discretization (u′ = f (t, u)):

ut+dt = ut + slope(t, ut , dt)

I numerical solutions of differential equations: multistep
methods, Runge-Kutta methods ?

I Biological modeling: RK4

slope(t, ut , dt) =
k1 + 2k2 + 2k3 + k4

6

k1 = f (t, ut) k2 = f (t +
dt

2
, u + k1

dt

2
)

k3 = f (t +
dt

2
, u + k2

dt

2
) k4 = f (tdt, u + k3dt)

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Implementation

I Bio-inspired computing: first order methods appear sufficient

(Euler) ut+dt = ut +
dt

τ
(−ut + It + h)

justifications: “neurons are robust”, “small order, small dt”,
“simpler implementation ”, “dynamic behaviour is
maintained”, . . .

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Maps of dynamic neurons

Let’s make our neuron able to interact with other neurons

u′t =
1

τ
(−ut + Latt + Afft + h)

I lateral information: from other neurons

I afferent information: from some “external” inputs

Let’s also give a position x to our neuron

u′x ,t =
1

τ
(−ux ,t + Latx ,t + Affx ,t + h)

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Maps of dynamic neurons

Let’s take into account synaptic influence

u′x ,t =
1

τ
(−ux ,t +

∫
x ′

w(x , x ′)f (ux ′,t) + Afft + h)

I synaptic weights

I integration over the whole population

Neural architectures

Neural computations, foundations and models

Dynamic neurons

Example: dynamic neural fields (DNF)

If w only depends on the inter-neuron distance, e.g. according to
some difference of gaussians ... we obtain standard DNFs

w(x , x ′) = ω(||x − x ′||)

ω(d) = Ae
−d2

a2 −Be
−d2

b2 ,A, a,B, b ∈ R∗+.

0.0 0.5 1.0

Distance

0.005

0.000

0.005

0.010

0.015

0.020

A
ct

iv
it

y

Inhibition

Lateral

Excitation

Neural architectures

Neural computations, foundations and models

Dynamic neurons

DNF: dynamic neural fields

I Each map capable of target selection, tracking, etc.

I Numerous higher level applications: visual attention, motor
planning, change detection, etc.

I Decentralization and robustness

Demo ???

Neural architectures

Digital implementations of neural networks

Neural networks as hardware architectures
Usual neural networks
Neural networks: from model to hardware design

Neural computations, foundations and models
Neural computation
Dynamic neurons

Digital implementations of neural networks
Neuron implementation
Network implementation

Spike-based computations
Spiking neurons
Hardware consequences

Conclusion

Neural architectures

Digital implementations of neural networks

Neuron implementation

Simple formal neuron

yi = φ

bi +
∑
j

wijxj



Neural architectures

Digital implementations of neural networks

Neuron implementation

Dynamic neuron

τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wij f (uj(t)) + h

Neural architectures

Digital implementations of neural networks

Network implementation

Connecting neurons

I The network is the architecture.
I Unsolved issues

I bandwidth
I dense interconnections
I area-greedy operators

Neural architectures

Digital implementations of neural networks

Network implementation

Arithmetic tricks

To obtain smaller operators:

I serial arithmetic (storing weights in LUTs)

I pipeline between operators: non-linear units are MSBF

I on-line arithmetic: serial & MSBF

Neural architectures

Digital implementations of neural networks

Network implementation

Arithmetic tricks

I bitstream arithmetic
I Each real value is encoded in a stream of bits
I Encoding of value x ∈ [0, 1] uses a bitstream where for each

bit b,P(b = 1) = x

I Compact multiplication: P(A ∧ B) = P(A)P(B)

1,1,1,1,1,1,1,1 (8/8)
A

1,1,1,0,1,0,1,0 (5/8)
B

1,1,1,0,1,0,1,0 (5/8)
AB

I Biased addition: P(A|B) = P(A) + P(B)− P(A ∧ B)

0,0,1,1,0,1,1,0 (4/8)
A

1,1,1,0,1,0,1,0 (5/8)
B

1,1,1,1,1,1,1,0 (7/8)
A+ B − AB

Neural architectures

Digital implementations of neural networks

Network implementation

Arithmetic tricks

I advantages of bitstream arithmetic
I compactness
I anytime computation
I biased addition stands for non-linearity

I limits of bitstream arithmetic
I kinds of operators
I precision (related to bitstream length)
I correlated random variables (long computation paths in neural

networks)
I generation of random numbers

Neural architectures

Spike-based computations

Neural networks as hardware architectures
Usual neural networks
Neural networks: from model to hardware design

Neural computations, foundations and models
Neural computation
Dynamic neurons

Digital implementations of neural networks
Neuron implementation
Network implementation

Spike-based computations
Spiking neurons
Hardware consequences

Conclusion

Neural architectures

Spike-based computations

Spiking neurons

Spiking neuron

Neurons know how to deal with a constrained bandwidth.
I action potentials, post-synaptic potentials, etc.
I ok, but ... Hodgkin-Huxley, Izhikevich, SRM, LIF, etc. ???
I computer scientists are “binary”

ux ,t+dt =

{
ux ,t + dt

τ (−ux ,t + Ix ,t + h) if ux ,t < θ,

h if ux ,t ≥ θ

---->

C R

u

>θ

Figure: LIF neuron as RC circuit

Neural architectures

Spike-based computations

Spiking neurons

Spiking neural populations

Same architecture, but neurons only exchange “all or nothing”
information.

Latx ,t =
∑
x ′

w(x , x ′)Sx ′,t (1)

Sx ,t =

{
1 if ux ,t ≥ θ
0 if ux ,t < θ.

(2)

This is so . . . bandwidth-friendly. But does it work ?

Neural architectures

Spike-based computations

Spiking neurons

Current applications of spikes

I applications in perception

I liquid state machines

I spiking deep learning

I spiking neural fields

I . . .

Neural architectures

Spike-based computations

Spiking neurons

Example: spiking dynamic neural fields

Neural architectures

Spike-based computations

Hardware consequences

Spikes on-chip

Spike-based computation reduces bandwidth demands.

It also reduces the implementation area of each neuron:

I slightly more complex neuron (thresholding), but . . .

I no more multiplier

Latx ,t =
∑

S(x ′,t)=1

w(x , x ′)

I multiplication by dt
τ : if dt is small enough to ensure enough

accuracy, reduce it further until dt
τ is 2−p and use simple

binary shifts.

Neural architectures

Spike-based computations

Hardware consequences

Spikes on-chip

Receiving spikes:

I temporal discretization: spikes are events, yet they appear in
the differential equations

I with the LIF model, spikes are instantaneous

ux,t+dt =

{
ux,t + dt

τ (−ux,t + Affx,t + h) + 1
τ

∑
S(x′,t)=1 w(x , x ′) if ux,t < θ,

0 if ux,t ≥ θ

I with a more detailed PSP model, back to numerical simulation
of differential equations

I multiplication of weights by 1
τ : just adapt weights

Neural architectures

Spike-based computations

Hardware consequences

Spikes on chip

Communicating spikes:

I simpler handling of dense interconnections (see further)

I basic idea: one (or just several) spike at a time

I only meaningful information to be sent
I towards asynchronous implementations:

I each spike is a local clock event
I no global clock in IBM TrueNorth

Neural architectures

Spike-based computations

Hardware consequences

An example

I Input: DVS sensor

Neural architectures

Spike-based computations

Hardware consequences

An example

I spike transmission: AER protocol/bus (address-event
representation)

I different formats
I spike type
I location information
I time stamp
I etc.

c©IniLabs

I may be used between chips or within chips

Neural architectures

Spike-based computations

Hardware consequences

An example

I neural model: DNF-based

Input

Focus
Working
Memory

++ +

+

-

Neural architectures

Spike-based computations

Hardware consequences

An example

I architecture

LIF
Neuron

Input

WM

Lat.
LIF

Neuron

Focus

Lat.

Focus DNF WM DNF USB I/O

I 10000-neuron DNF (108 connections) on a single FPGA

Neural architectures

Spike-based computations

Hardware consequences

An example

Neural architectures

Conclusion

Neural networks as hardware architectures
Usual neural networks
Neural networks: from model to hardware design

Neural computations, foundations and models
Neural computation
Dynamic neurons

Digital implementations of neural networks
Neuron implementation
Network implementation

Spike-based computations
Spiking neurons
Hardware consequences

Conclusion

Neural architectures

Conclusion

I Neural parallelism and hardware parallelism: soon reconciled ?

I Spikes not limited to modeling biology

I Spikes make drastic computation simplifications possible for
digital hardware.

I Spikes make the world a bit more . . . binary.
I Many other spiking tricks:

I randomly propagating spikes
I spike-stream computation: robustness to correlated bitstreams

thanks to potential reset
I etc.

Neural architectures

Conclusion

The end.

	Neural networks as hardware architectures
	Usual neural networks
	Neural networks: from model to hardware design

	Neural computations, foundations and models
	Neural computation
	Dynamic neurons

	Digital implementations of neural networks
	Neuron implementation
	Network implementation

	Spike-based computations
	Spiking neurons
	Hardware consequences

	Conclusion

