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Neural architectures

Introduction

Goal of this talk

I Why a neural network may stand as a hardware architecture.

I Which kind of neural computation.

I Where it comes from (biological inspiration).

I Why it is not so simple to map neural networks onto digital
hardware.

I How neural spikes partially solve the problems.
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Neural networks as hardware architectures

Usual neural networks

Artificial neural networks ?

I several definitions

I many “architectures”

I graphs of small
computing units that
exchange data
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Neural networks as hardware architectures

Usual neural networks

Example: convolutional network, n=121, c=630
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Neural networks as hardware architectures

Usual neural networks

Example: liquid state machine, n=200, c=1200
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Neural networks as hardware architectures

Usual neural networks

Some neural network sizes

I LeNet5 (1998) : n = 8 094, c = 582 824

c©Y. Lecun

I AlexNet (2012) : n = 594 376, c = 947 985 976

c©F. Hu, G.S. Xia, H. Jingwen and Z. Liangpei

I Visual attention DNF model : n = 9 801, c = 36 350 000
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Neural networks as hardware architectures

Neural networks: from model to hardware design

Context

I need to implement neural-based solutions on hardware devices
I embedded system
I speed up NN computation for statistical study

I search for cheap and flexible solutions (FPGAs ?)
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Neural networks as hardware architectures

Neural networks: from model to hardware design

Neural parallelism

I Neural networks are “naturally” parallel . . . not so simple !
I Different levels of neural parallelism, e.g. for standard

feedforward NN:
I session parallelism (mostly for learning)
I data parallelism
I layer parallelism (and thus pipeline)
I neuron parallelism
I connection parallelism

I About on-chip learning: only in specific conditions
I to speed up learning of huge networks
I to continuously adapt embedded system (e.g. ambulatory

systems)
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Neural networks as hardware architectures

Neural networks: from model to hardware design

Hardware devices for neural networks

I Choice of parallel substratum: neural computation is
fine-grain and requires dense interconnections.

I Hardware parallelism better fits specific aspects of neural
parallelism.

I Analog hardware: yes, but does not fit the context.

I Several regular neural architectures fit GPU computations
(convolutions, . . . ): not presented here.

I Neuromorphic chips: not so accessible.
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Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I “old” approach: neuroprocessors, neuro-computers

I recent and booming trend: neuromorphic chips

I the ancestor ZISC (zero instruction set computer, 1993): 36
neurons

I the Cognitive Memory chip C1MK (2007): 1024 neurons, 0.5
mW
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Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I IBM SyNAPSE/TrueNorth (2014): 1 million neurons, 256
million synapses, 70 mW, 46 billion synapses computed per
second and per watt, 5.4 billion transistors

c©IBM
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Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I Qualcomm Zeroth (2013-2015): now dedicated to deep
learning in mobile solutions

c©Qualcomm

I in the race: Intel, HP, Samsung
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Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I SpiNNaker (Human Brain Project, 2005-2014): 18000
neurons per chip, 500000 chip manycore architecture, flexible
address-event connectivity

c©Univ. Manchester
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Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips . . .

I still difficult to use/access

I at the origin of this booming: spikes !
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Neural networks as hardware architectures

Neural networks: from model to hardware design

(back) Hardware devices for neural networks

I FPGAs: flexible, accessible, constantly improving

I Straightforward approach: directly map the neural
architecture onto the chip

I Neurons: computing units, “operators”

I Connections: wiring
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Neural networks as hardware architectures

Neural networks: from model to hardware design

Implementation issues

NN may define their hardware ar-
chitecture, but not so easy to map
onto digital hardware devices ...

I Bandwidth issues

I Connection issues

I Area-greedy operators
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Neural networks as hardware architectures

Neural networks: from model to hardware design

Implementation issues

Solving these issues requires to know more about neural networks.
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Neural computations, foundations and models

Neural computation

Neural modeling
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Neural computations, foundations and models

Neural computation

Neuron ?

I Neuron models range from biologically plausible models (e.g.
Hodgkin-Huxley type) to simplistic models (e.g. ReLU).

I Many neural networks use simple models like the
McCulloch&Pitts neuron.
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Neural computations, foundations and models

Neural computation

Neuron ?

but. . .

I Recent conceptual advances use more bio-inspired neurons.

I Even according to deep learning founders (LeCun, Bengio and
Hinton), unsupervised and bio-inspired learning is “the future
of deep learning”.
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Neural computations, foundations and models

Neural computation

Back to biological foundations

I ' 1011 neurons in the brain

I ' 1015 dendrites

I Cell body: ' 10µm

I Axon: drives the neural signal
(1 mm to 1 m) then branches

I Synapses: connect axon
branches to dendrites of other
neurons. Transmission of
electrical signals between cells
thanks to chemical processes.
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Neural computations, foundations and models

Neural computation

Back to biological foundations

I Membrane potential

I Ionic channels and
pumps

I Resting potential

I Action potential
('spike)

I Post-synaptic
potential (PSP):
inhibitory (IPSP),
excitatory (EPSP)

I Neurotransmitters: bind
to neuroreceptors to
open channels.
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Neural computations, foundations and models

Neural computation

Back to biological foundations

I Accumulation of potential
variations (received from
dendrites) in the soma

I Non-linear processing: if the
accumulated potential reaches
a threshold, an action
potential is generated at the
basis of the axon

I Refractory period: unability to
immediately generate new
spikes
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Neural computations, foundations and models

Neural computation

Back to biological foundations

Pulse/spike train

PSP

AP
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Neural computations, foundations and models

Neural computation

Neuron modeling

Neuron models depend on how precise each component of the
biological neural computation is modeled.
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Neural computations, foundations and models

Neural computation

Spiking models (1/3)

I (biological modeling) electric and ionic mechanisms:
biophysical models, e.g. Hodgkin-Huxley

dVm(t)

dt
= − 1

Cm

(
Iinjected +

∑
ion

Iion(t)

)

Iion(t) = Gion ∗mp(t) ∗ hq(t) ∗ (Vm(t)− Eion(t))

I PSP and AP: e.g. SRM (spike response models)

ui (t) = η(t−t(f )i )+
∑
j

wij

∑
t
(f )
j

εij

(
t − t

(f )
i , t − t

(f )
j

)
+

∫ ∞
0

κ(t−t(f )i , s)I (t−s)ds
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Neural computations, foundations and models

Neural computation

Spiking models (2/3)

I simple input integration and firing: e.g. IF and LIF (leaky
integrate and fire)

I membrane potential u: τ
du

dt
= −u(t) + αI (t)

I firing: if u(t) ≥ θ and u′(t) ≥ 0, the neuron fires, firing time
t(f ) = t

I reset: u(t(f )) = 0

potential firing rate
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Neural computations, foundations and models

Neural computation

Spiking models (3/3)

I with other neurons

membrane potential: τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wijδj(t)

I firing: δi (t) = Dirac(t − t(f ))

I with delays: τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wijδj(t − dij)



Neural architectures

Neural computations, foundations and models

Neural computation

Rate-coded models

I average activity: e.g. formal neuron, ReLU

yi = φ

bi +
∑
j

wijxj


I with time: e.g. recurrent networks

yi (t + 1) = φ

bi +
∑
j

wijxj +
∑
k

wikyk(t)


I dynamic activity: e.g. DNF, dynamic neural fields

τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wij f (uj(t)) + h
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Neural computations, foundations and models

Dynamic neurons

Neural population dynamics

I Population coding

I Emergent computation

I Temporal computing

I Inspiration: lateral and
feedback connections in
the brain, e.g. visual
system
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Neural computations, foundations and models

Dynamic neurons

Elementary dynamic neuron

Let’s choose a simple rate-coded neuron model.

u′t =
1

τ
(−ut + It + h)

I leak, input, resting potential

I continuous integration of informations
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Neural computations, foundations and models

Dynamic neurons

Implementation

I discretization (u′ = f (t, u)):

ut+dt = ut + slope(t, ut , dt)

I numerical solutions of differential equations: multistep
methods, Runge-Kutta methods ?

I Biological modeling: RK4

slope(t, ut , dt) =
k1 + 2k2 + 2k3 + k4

6

k1 = f (t, ut) k2 = f (t +
dt

2
, u + k1

dt

2
)

k3 = f (t +
dt

2
, u + k2

dt

2
) k4 = f (tdt, u + k3dt)
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Neural computations, foundations and models

Dynamic neurons

Implementation

I Bio-inspired computing: first order methods appear sufficient

(Euler) ut+dt = ut +
dt

τ
(−ut + It + h)

justifications: “neurons are robust”, “small order, small dt”,
“simpler implementation ”, “dynamic behaviour is
maintained”, . . .
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Neural computations, foundations and models

Dynamic neurons

Maps of dynamic neurons

Let’s make our neuron able to interact with other neurons

u′t =
1

τ
(−ut + Latt + Afft + h)

I lateral information: from other neurons

I afferent information: from some “external” inputs

Let’s also give a position x to our neuron

u′x ,t =
1

τ
(−ux ,t + Latx ,t + Affx ,t + h)
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Neural computations, foundations and models

Dynamic neurons

Maps of dynamic neurons

Let’s take into account synaptic influence

u′x ,t =
1

τ
(−ux ,t +

∫
x ′

w(x , x ′)f (ux ′,t) + Afft + h)

I synaptic weights

I integration over the whole population
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Neural computations, foundations and models

Dynamic neurons

Example: dynamic neural fields (DNF)

If w only depends on the inter-neuron distance, e.g. according to
some difference of gaussians ... we obtain standard DNFs

w(x , x ′) = ω(||x − x ′||)

ω(d) = Ae
−d2

a2 −Be
−d2

b2 ,A, a,B, b ∈ R∗+.
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Neural computations, foundations and models

Dynamic neurons

DNF: dynamic neural fields

I Each map capable of target selection, tracking, etc.

I Numerous higher level applications: visual attention, motor
planning, change detection, etc.

I Decentralization and robustness

Demo ???
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Digital implementations of neural networks

Neuron implementation

Simple formal neuron

yi = φ

bi +
∑
j

wijxj
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Digital implementations of neural networks

Neuron implementation

Dynamic neuron

τ
dui

dt
= −ui (t) + αIi (t) +

∑
j

wij f (uj(t)) + h



Neural architectures

Digital implementations of neural networks

Network implementation

Connecting neurons

I The network is the architecture.
I Unsolved issues

I bandwidth
I dense interconnections
I area-greedy operators



Neural architectures

Digital implementations of neural networks

Network implementation

Arithmetic tricks

To obtain smaller operators:

I serial arithmetic (storing weights in LUTs)

I pipeline between operators: non-linear units are MSBF

I on-line arithmetic: serial & MSBF
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Digital implementations of neural networks

Network implementation

Arithmetic tricks

I bitstream arithmetic
I Each real value is encoded in a stream of bits
I Encoding of value x ∈ [0, 1] uses a bitstream where for each

bit b,P(b = 1) = x

I Compact multiplication: P(A ∧ B) = P(A)P(B)

1,1,1,1,1,1,1,1 (8/8)
A

1,1,1,0,1,0,1,0 (5/8)
B

1,1,1,0,1,0,1,0 (5/8)
AB

I Biased addition: P(A|B) = P(A) + P(B)− P(A ∧ B)

0,0,1,1,0,1,1,0 (4/8)
A

1,1,1,0,1,0,1,0 (5/8)
B

1,1,1,1,1,1,1,0 (7/8)
A+ B − AB
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Digital implementations of neural networks

Network implementation

Arithmetic tricks

I advantages of bitstream arithmetic
I compactness
I anytime computation
I biased addition stands for non-linearity

I limits of bitstream arithmetic
I kinds of operators
I precision (related to bitstream length)
I correlated random variables (long computation paths in neural

networks)
I generation of random numbers
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Spike-based computations

Spiking neurons

Spiking neuron

Neurons know how to deal with a constrained bandwidth.
I action potentials, post-synaptic potentials, etc.
I ok, but ... Hodgkin-Huxley, Izhikevich, SRM, LIF, etc. ???
I computer scientists are “binary”

ux ,t+dt =

{
ux ,t + dt

τ (−ux ,t + Ix ,t + h) if ux ,t < θ,

h if ux ,t ≥ θ

---->

C R

u

>θ

Figure: LIF neuron as RC circuit
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Spike-based computations

Spiking neurons

Spiking neural populations

Same architecture, but neurons only exchange “all or nothing”
information.

Latx ,t =
∑
x ′

w(x , x ′)Sx ′,t (1)

Sx ,t =

{
1 if ux ,t ≥ θ
0 if ux ,t < θ.

(2)

This is so . . . bandwidth-friendly. But does it work ?
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Spike-based computations

Spiking neurons

Current applications of spikes

I applications in perception

I liquid state machines

I spiking deep learning

I spiking neural fields

I . . .
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Spike-based computations

Spiking neurons

Example: spiking dynamic neural fields



Neural architectures

Spike-based computations

Hardware consequences

Spikes on-chip

Spike-based computation reduces bandwidth demands.

It also reduces the implementation area of each neuron:

I slightly more complex neuron (thresholding), but . . .

I no more multiplier

Latx ,t =
∑

S(x ′,t)=1

w(x , x ′)

I multiplication by dt
τ : if dt is small enough to ensure enough

accuracy, reduce it further until dt
τ is 2−p and use simple

binary shifts.
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Spike-based computations

Hardware consequences

Spikes on-chip

Receiving spikes:

I temporal discretization: spikes are events, yet they appear in
the differential equations

I with the LIF model, spikes are instantaneous

ux,t+dt =

{
ux,t + dt

τ (−ux,t + Affx,t + h) + 1
τ

∑
S(x′,t)=1 w(x , x ′) if ux,t < θ,

0 if ux,t ≥ θ

I with a more detailed PSP model, back to numerical simulation
of differential equations

I multiplication of weights by 1
τ : just adapt weights
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Spike-based computations

Hardware consequences

Spikes on chip

Communicating spikes:

I simpler handling of dense interconnections (see further)

I basic idea: one (or just several) spike at a time

I only meaningful information to be sent
I towards asynchronous implementations:

I each spike is a local clock event
I no global clock in IBM TrueNorth
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Spike-based computations

Hardware consequences

An example

I Input: DVS sensor
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Spike-based computations

Hardware consequences

An example

I spike transmission: AER protocol/bus (address-event
representation)

I different formats
I spike type
I location information
I time stamp
I etc.

c©IniLabs

I may be used between chips or within chips
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Spike-based computations

Hardware consequences

An example

I neural model: DNF-based

Input

Focus
Working
Memory

++ +

+

-
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Spike-based computations

Hardware consequences

An example

I architecture

LIF
Neuron

Input

WM

Lat.
LIF

Neuron

Focus

Lat.

Focus DNF WM DNF USB I/O

I 10000-neuron DNF (108 connections) on a single FPGA
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Spike-based computations

Hardware consequences

An example
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Conclusion

I Neural parallelism and hardware parallelism: soon reconciled ?

I Spikes not limited to modeling biology

I Spikes make drastic computation simplifications possible for
digital hardware.

I Spikes make the world a bit more . . . binary.
I Many other spiking tricks:

I randomly propagating spikes
I spike-stream computation: robustness to correlated bitstreams

thanks to potential reset
I etc.
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Conclusion

The end.
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