Architectures neuronales : les réseaux de neurones comme architectures numériques

Neural architectures: neural networks as digital architectures

Bernard Girau - Biscuit team - Loria - Université de Lorraine

ARCHI'2017 - 10 mars 2017

Goal of this talk

- ▶ Why a neural network may stand as a hardware architecture.
- Which kind of neural computation.
- Where it comes from (biological inspiration).
- Why it is not so simple to map neural networks onto digital hardware.
- How neural spikes partially solve the problems.

Neural networks as hardware architectures

Usual neural networks Neural networks: from model to hardware design

Neural computations, foundations and models

Neural computation Dynamic neurons

Digital implementations of neural networks

Neuron implementation Network implementation

Spike-based computations

Spiking neurons Hardware consequences

Conclusion

Neural networks as hardware architectures

Usual neural networks Neural networks: from model to hardware design

Neural computations, foundations and models

Neural computation Dynamic neurons

Digital implementations of neural networks

Neuron implementation Network implementation

Spike-based computations

Spiking neurons Hardware consequences

Conclusion

Neural networks as hardware architectures

Usual neural networks

Artificial neural networks?

- several definitions
- many "architectures"
- graphs of small computing units that exchange data

-Neural networks as hardware architectures

Usual neural networks

Example: convolutional network, n=121, c=630

-Neural networks as hardware architectures

Usual neural networks

Example: liquid state machine, n=200, c=1200

- Neural networks as hardware architectures
 - Usual neural networks

Some neural network sizes

LeNet5 (1998) : n = 8 094, c = 582 824

©Y. Lecun

AlexNet (2012) : n = 594 376, c = 947 985 976

©F. Hu, G.S. Xia, H. Jingwen and Z. Liangpei

• Visual attention DNF model : n = 9801, c = 36350000

- Neural networks as hardware architectures
 - └─ Neural networks: from model to hardware design

Context

- need to implement neural-based solutions on hardware devices
 - embedded system
 - speed up NN computation for statistical study
- search for cheap and flexible solutions (FPGAs?)

-Neural networks as hardware architectures

-Neural networks: from model to hardware design

Neural parallelism

- Neural networks are "naturally" parallel . . . not so simple !
- Different levels of neural parallelism, e.g. for standard feedforward NN:
 - session parallelism (mostly for learning)
 - data parallelism
 - layer parallelism (and thus pipeline)
 - neuron parallelism
 - connection parallelism
- About on-chip learning: only in specific conditions
 - to speed up learning of huge networks
 - to continuously adapt embedded system (e.g. ambulatory systems)

Neural networks as hardware architectures

-Neural networks: from model to hardware design

Hardware devices for neural networks

- Choice of parallel substratum: neural computation is fine-grain and requires dense interconnections.
- Hardware parallelism better fits specific aspects of neural parallelism.
- Analog hardware: yes, but does not fit the context.
- Several regular neural architectures fit GPU computations (convolutions, ...): not presented here.
- ► Neuromorphic chips: not so accessible.

Neural networks as hardware architectures

-Neural networks: from model to hardware design

About neuromorphic chips

- "old" approach: neuroprocessors, neuro-computers
- recent and booming trend: neuromorphic chips
- the ancestor ZISC (zero instruction set computer, 1993): 36 neurons
- the Cognitive Memory chip C1MK (2007): 1024 neurons, 0.5 mW

Neural networks as hardware architectures

-Neural networks: from model to hardware design

About neuromorphic chips ...

 IBM SyNAPSE/TrueNorth (2014): 1 million neurons, 256 million synapses, 70 mW, 46 billion synapses computed per second and per watt, 5.4 billion transistors

©IBM

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips ...

 Qualcomm Zeroth (2013-2015): now dedicated to deep learning in mobile solutions

©Qualcomm

in the race: Intel, HP, Samsung

Neural networks as hardware architectures

Neural networks: from model to hardware design

About neuromorphic chips ...

 SpiNNaker (Human Brain Project, 2005-2014): 18000 neurons per chip, 500000 chip manycore architecture, flexible address-event connectivity

©Univ. Manchester

Neural networks as hardware architectures

-Neural networks: from model to hardware design

About neuromorphic chips ...

- still difficult to use/access
- at the origin of this booming: spikes !

-Neural networks as hardware architectures

└─ Neural networks: from model to hardware design

(back) Hardware devices for neural networks

- ► FPGAs: flexible, accessible, constantly improving
- Straightforward approach: directly map the neural architecture onto the chip
- Neurons: computing units, "operators"
- Connections: wiring

Neural networks as hardware architectures

-Neural networks: from model to hardware design

Implementation issues

NN may define their hardware architecture, but not so easy to map onto digital hardware devices ...

- Bandwidth issues
- Connection issues
- Area-greedy operators

Neural networks as hardware architectures

Neural networks: from model to hardware design

Implementation issues

Solving these issues requires to know more about neural networks.

Neural networks as hardware architectures

Usual neural networks Neural networks: from model to hardware design

Neural computations, foundations and models Neural computation Dynamic neurons

Digital implementations of neural networks

Neuron implementation Network implementation

Spike-based computations

Hardware consequences

Conclusion

-Neural computations, foundations and models

-Neural computation

Neural modeling

-Neural computations, foundations and models

Neural computation

Neuron?

- Neuron models range from biologically plausible models (e.g. Hodgkin-Huxley type) to simplistic models (e.g. ReLU).
- Many neural networks use simple models like the McCulloch&Pitts neuron.

Neural computations, foundations and models

-Neural computation

Neuron ?

but...

- ► Recent conceptual advances use more bio-inspired neurons.
- Even according to deep learning founders (LeCun, Bengio and Hinton), unsupervised and bio-inspired learning is "the future of deep learning".

-Neural computations, foundations and models

Neural computation

- ho $\simeq 10^{11}$ neurons in the brain
- $\blacktriangleright \simeq 10^{15}$ dendrites
- Cell body: $\simeq 10 \, \mu m$
- Axon: drives the neural signal (1 mm to 1 m) then branches
- Synapses: connect axon branches to dendrites of other neurons. Transmission of electrical signals between cells thanks to chemical processes.

-Neural computations, foundations and models

Neural computation

- Membrane potential
- Ionic channels and pumps
- Resting potential
- Action potential (~spike)
- Post-synaptic potential (PSP): inhibitory (IPSP), excitatory (EPSP)
- Neurotransmitters: bind to neuroreceptors to open channels.

Neural computations, foundations and models

Neural computation

- Accumulation of potential variations (received from dendrites) in the soma
- Non-linear processing: if the accumulated potential reaches a threshold, an action potential is generated at the basis of the axon
- Refractory period: unability to immediately generate new spikes

-Neural computations, foundations and models

-Neural computation

Neural computations, foundations and models

-Neural computation

Neuron modeling

Neuron models depend on how precise each component of the biological neural computation is modeled.

-Neural computations, foundations and models

-Neural computation

Spiking models (1/3)

 (biological modeling) electric and ionic mechanisms: biophysical models, e.g. Hodgkin-Huxley

$$rac{dV_m(t)}{dt} = -rac{1}{C_m}\left(I_{injected} + \sum_{ion} I_{ion}(t)
ight)$$

$$I_{ion}(t) = G_{ion} * m^p(t) * h^q(t) * (V_m(t) - E_{ion}(t))$$

PSP and AP: e.g. SRM (spike response models)

$$u_i(t) = \eta(t-t_i^{(f)}) + \sum_j w_{ij} \sum_{t_j^{(f)}} \epsilon_{ij} \left(t - t_i^{(f)}, t - t_j^{(f)}\right) + \int_0^\infty \kappa(t - t_i^{(f)}, s) I(t-s) ds$$

Neural computations, foundations and models

-Neural computation

Spiking models (2/3)

- simple input integration and firing: e.g. IF and LIF (leaky integrate and fire)
 - membrane potential $u: \tau \frac{du}{dt} = -u(t) + \alpha I(t)$
 - firing: if $u(t) \ge \theta$ and $u'(t) \ge 0$, the neuron fires, firing time $t^{(f)} = t$

Neural computations, foundations and models

-Neural computation

Spiking models (3/3)

Neural computations, foundations and models

-Neural computation

Rate-coded models

average activity: e.g. formal neuron, ReLU

$$y_i = \phi\left(b_i + \sum_j w_{ij} x_j\right)$$

with time: e.g. recurrent networks

$$y_i(t+1) = \phi\left(b_i + \sum_j w_{ij}x_j + \sum_k w_{ik}y_k(t)\right)$$

dynamic activity: e.g. DNF, dynamic neural fields

$$\tau \frac{du_i}{dt} = -u_i(t) + \alpha I_i(t) + \sum_j w_{ij} f(u_j(t)) + h$$

Neural computations, foundations and models

- Dynamic neurons

Neural population dynamics

- Population coding
- Emergent computation
- Temporal computing
- Inspiration: lateral and feedback connections in the brain, e.g. visual system

Neural computations, foundations and models

Dynamic neurons

Elementary dynamic neuron

Let's choose a simple rate-coded neuron model.

$$u_t'=\frac{1}{\tau}(-u_t+I_t+h)$$

- leak, input, resting potential
- continuous integration of informations

Neural computations, foundations and models

Dynamic neurons

Implementation

• discretization
$$(u' = f(t, u))$$
:

$$u_{t+dt} = u_t + slope(t, u_t, dt)$$

- numerical solutions of differential equations: multistep methods, Runge-Kutta methods ?
- Biological modeling: RK4

$$slope(t, u_t, dt) = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$
$$k_1 = f(t, u_t) \quad k_2 = f(t + \frac{dt}{2}, u + k_1 \frac{dt}{2})$$
$$k_3 = f(t + \frac{dt}{2}, u + k_2 \frac{dt}{2}) \quad k_4 = f(tdt, u + k_3dt)$$

Neural computations, foundations and models

Dynamic neurons

Implementation

Bio-inspired computing: first order methods appear sufficient

(Euler)
$$u_{t+dt} = u_t + \frac{dt}{\tau}(-u_t + l_t + h)$$

justifications: "neurons are robust", "small order, small dt", "simpler implementation ", "dynamic behaviour is maintained", ...

Neural computations, foundations and models

Dynamic neurons

Maps of dynamic neurons

Let's make our neuron able to interact with other neurons

$$u_t' = \frac{1}{\tau}(-u_t + Lat_t + Aff_t + h)$$

Iateral information: from other neurons

afferent information: from some "external" inputs
 Let's also give a position x to our neuron

$$u'_{\mathsf{x},t} = rac{1}{ au}(-u_{\mathsf{x},t} + Lat_{\mathsf{x},t} + Aff_{\mathsf{x},t} + h)$$

Neural computations, foundations and models

Dynamic neurons

Maps of dynamic neurons

Let's take into account synaptic influence

$$u'_{x,t} = \frac{1}{\tau} (-u_{x,t} + \int_{x'} w(x,x') f(u_{x',t}) + Aff_t + h)$$

synaptic weights

integration over the whole population

 ω

Neural computations, foundations and models

Dynamic neurons

Example: dynamic neural fields (DNF)

If w only depends on the inter-neuron distance, e.g. according to some difference of gaussians ... we obtain standard DNFs

0.020 -

COULT

$$w(x, x') = \omega(||x - x'||)$$

$$d) = Ae^{\frac{-d^2}{a^2}} - Be^{\frac{-d^2}{b^2}}, A, a, B, b \in \mathbb{R}^*_+.$$

-Neural computations, foundations and models

Dynamic neurons

DNF: dynamic neural fields

- Each map capable of target selection, tracking, etc.
- Numerous higher level applications: visual attention, motor planning, change detection, etc.
- Decentralization and robustness

Demo ???

Neural networks as hardware architectures

Usual neural networks Neural networks: from model to hardware design

Neural computations, foundations and models Neural computation Dynamic neurons

Digital implementations of neural networks Neuron implementation Network implementation

Spike-based computations

Spiking neurons Hardware consequences

Conclusion

Digital implementations of neural networks

-Neuron implementation

Simple formal neuron

$$y_i = \phi\left(b_i + \sum_j w_{ij} x_j\right)$$

Digital implementations of neural networks

-Neuron implementation

Dynamic neuron

$$\tau \frac{du_i}{dt} = -u_i(t) + \alpha I_i(t) + \sum_j w_{ij} f(u_j(t)) + h$$

- Digital implementations of neural networks
 - -Network implementation

Connecting neurons

- The network is the architecture.
- Unsolved issues
 - bandwidth
 - dense interconnections
 - area-greedy operators

- -Digital implementations of neural networks
 - Network implementation

Arithmetic tricks

To obtain smaller operators:

serial arithmetic (storing weights in LUTs)

- pipeline between operators: non-linear units are MSBF
- on-line arithmetic: serial & MSBF

- Digital implementations of neural networks
 - -Network implementation

Arithmetic tricks

- bitstream arithmetic
 - Each real value is encoded in a stream of bits
 - ► Encoding of value x ∈ [0, 1] uses a bitstream where for each bit b, P(b = 1) = x

• Compact multiplication: $P(A \land B) = P(A)P(B)$

▶ Biased addition: $P(A|B) = P(A) + P(B) - P(A \land B)$

$$\begin{array}{c} A \\ B \end{array} \underbrace{ \begin{array}{c} 0,0,1,1,0,1,1,0 \ (4/8) \\ \hline 1,1,1,0,1,0,1,0 \ (5/8) \end{array} } \\ A + B - AB \end{array}$$

- Digital implementations of neural networks
 - Network implementation

Arithmetic tricks

- advantages of bitstream arithmetic
 - compactness
 - anytime computation
 - biased addition stands for non-linearity
- limits of bitstream arithmetic
 - kinds of operators
 - precision (related to bitstream length)
 - correlated random variables (long computation paths in neural networks)
 - generation of random numbers

Spike-based computations

Neural networks as hardware architectures

Usual neural networks Neural networks: from model to hardware design

Neural computations, foundations and models

Neural computation Dynamic neurons

Digital implementations of neural networks

Neuron implementation Network implementation

Spike-based computations Spiking neurons

Hardware consequences

Conclusion

-Spike-based computations

-Spiking neurons

Spiking neuron

Neurons know how to deal with a constrained bandwidth.

- action potentials, post-synaptic potentials, etc.
- ok, but ... Hodgkin-Huxley, Izhikevich, SRM, LIF, etc. ???
- computer scientists are "binary"

$$u_{x,t+dt} = \begin{cases} u_{x,t} + \frac{dt}{\tau}(-u_{x,t} + I_{x,t} + h) & \text{if } u_{x,t} < \theta, \\ h & \text{if } u_{x,t} \ge \theta \end{cases}$$

Figure: LIF neuron as RC circuit

Spike-based computations

Spiking neurons

Spiking neural populations

Same architecture, but neurons only exchange "all or nothing" information.

$$Lat_{x,t} = \sum_{x'} w(x,x') S_{x',t}$$
(1)
$$S_{x,t} = \begin{cases} 1 & \text{if } u_{x,t} \ge \theta \\ 0 & \text{if } u_{x,t} < \theta. \end{cases}$$
(2)

This is so ... bandwidth-friendly. But does it work?

Spike-based computations

└─ Spiking neurons

Current applications of spikes

- applications in perception
- liquid state machines
- spiking deep learning
- spiking neural fields
- ▶ ...

Neural architectures

Spike-based computations

Spiking neurons

Example: spiking dynamic neural fields

Spike-based computations

Hardware consequences

Spikes on-chip

Spike-based computation reduces bandwidth demands.

It also reduces the implementation area of each neuron:

- slightly more complex neuron (thresholding), but ...
- no more multiplier

$$Lat_{x,t} = \sum_{S(x',t)=1} w(x,x')$$

► multiplication by dt/\(\frac{dt}{\tau}\): if dt is small enough to ensure enough accuracy, reduce it further until dt/\(\frac{dt}{\tau}\) is 2^{-p} and use simple binary shifts.

Spike-based computations

Hardware consequences

Spikes on-chip

Receiving spikes:

- temporal discretization: spikes are events, yet they appear in the differential equations
 - with the LIF model, spikes are instantaneous

$$u_{x,t+dt} = \begin{cases} u_{x,t} + \frac{dt}{\tau} (-u_{x,t} + Aff_{x,t} + h) + \frac{1}{\tau} \sum_{\mathcal{S}(x',t)=1} w(x,x') & \text{if } u_{x,t} < \theta, \\ 0 & \text{if } u_{x,t} \ge \theta \end{cases}$$

- with a more detailed PSP model, back to numerical simulation of differential equations
- multiplication of weights by $\frac{1}{\tau}$: just adapt weights

- Spike-based computations

Hardware consequences

Spikes on chip

Communicating spikes:

- simpler handling of dense interconnections (see further)
- basic idea: one (or just several) spike at a time
- only meaningful information to be sent
- towards asynchronous implementations:
 - each spike is a local clock event
 - no global clock in IBM TrueNorth

Spike-based computations

Hardware consequences

- Spike-based computations

└─ Hardware consequences

An example

- spike transmission: AER protocol/bus (address-event representation)
 - different formats
 - spike type
 - location information
 - time stamp
 - etc.

apsDVS raw event

© IniLabs

may be used between chips or within chips

Spike-based computations

Hardware consequences

Spike-based computations

Hardware consequences

Spike-based computations

Hardware consequences

- Conclusion

Neural networks as hardware architectures

Usual neural networks Neural networks: from model to hardware design

Neural computations, foundations and models

Neural computation Dynamic neurons

Digital implementations of neural networks

Neuron implementation Network implementation

Spike-based computations

Spiking neurons Hardware consequences

Conclusion

- Conclusion

- Neural parallelism and hardware parallelism: soon reconciled ?
- Spikes not limited to modeling biology
- Spikes make drastic computation simplifications possible for digital hardware.
- Spikes make the world a bit more ... binary.
- Many other spiking tricks:
 - randomly propagating spikes
 - spike-stream computation: robustness to correlated bitstreams thanks to potential reset
 - etc.

Neural architect	ures		
- Conclusion			

The end.