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Lignes connectiques de processeur. 
Bouclier de protection (résistance). 
Masque (visage) celtique.

Typographie moderne.

PROP. 5

https://gitlab.inria.fr/sentieys/dnn_acc

https://gitlab.inria.fr/sentieys/dnn_acc
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What will you learn in this course?
• Principle and design of DNN Accelerators
– Energy efficiency of hardware accelerators
– Speeding up the GEMM kernel
– Designing hardware accelerators for 

GEMM/CONV
– Available accelerators for DNNs
– Computing at the right precision

–2https://gitlab.inria.fr/sentieys/dnn_acc

https://gitlab.inria.fr/sentieys/dnn_acc
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Complexity Issues of Deep Neural Networks 

• Two main tasks
– training - determine set of network 

parameters to solve a task 
(minimize a loss on a training set)

– inference - given an input, compute 
(forward propagate) using the 
trained network

ResNet-50 
training batch=4

Poplar® graphs have many 
more vertices than 
TensorFlow graphs – typically 
millions, to load-balance a 
machine executing tens of 
thousands of codelets in 
parallel.

The TensorFlow IPU backend 
uses the Poplar® libraries to 
break TensorFlow compute 
functions and large tensors 
into fragments.

ResNet-50 
training batch=4

Poplar® graphs have many 
more vertices than 
TensorFlow graphs – typically 
millions, to load-balance a 
machine executing tens of 
thousands of codelets in 
parallel.

The TensorFlow IPU backend 
uses the Poplar® libraries to 
break TensorFlow compute 
functions and large tensors 
into fragments.
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Computing Demand of AI
• is higher than what computer architectures can bring
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Evolution of the Number of Parameters
• is much higher than available (on-chip) memory capacity
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Memory Bottleneck

Data movement
• move input data & model from 

memory to compute units
• send partial results back to 

memory

Computations
• vector/matrix manipulations
• done on CPU, GPU, or 

custom accelerators (e.g., 
FPGA, ASIC)
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Evolution of Bandwidth
• is much slower than FLOPS



8

On the Computer 
Architecture Side
The Hardware Lottery

Sarah Hooker, The Hardware Lottery, Communications of The ACM, 2021
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Silicon Technology Evolution
• Now several billions or transistors!

– Apple M1: 33 B.Tr, 5nm, 2.5cm2

• Amazing compute progress
– 12 orders of magnitude performance improvement in last 60 years
– A supercomputer in every body’s pocket

G

S

D

n+ n+L

Semiconductor technology enabled 
amazing compute progress 

12 orders of magnitude performance improvement in 
last 60 years.

A supercomputer in every body’s pocket.

Access to human knowledge at your fingertips.

7
2022

1965

Palo Alta Electron

CDC 6600
3 Mega FLOPS

HPE Frontier
1.6 Exa FLOPS

HPE Frontier
1.6 Exa FLOPS
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The Many Walls of Computer Architecture

Power Wall
limit of ~25W/cm2

Memory Wall
Microarchitecture

Increasing Complexity
Dark Silicon

More transistors
Saturating perf.
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Energy Cost in a Chip
• Fetching operands costs more than computing

CMOS 28nm

500 pJ Efficient
off-chip link

16 nJ DRAM
Rd/Wr

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

256-bit
buses

50 pJ
256-bit access

8 kB SRAM

[after B. Dally, NVIDIA & Stanford]

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2
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Energy Efficiency

• Power budget is fixed
• How to increase energy efficiency while 

maintaining performance?

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑆𝑒𝑐𝑜𝑛𝑑

𝐽𝑜𝑢𝑙𝑒𝑠
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑤𝑒𝑟	 =	 ×

Performance
e.g., Tera op/s (TOPS)

Energy 
Efficiency
e.g., TOPS/Watt
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Improving Energy Efficiency
• Technology?

– What can advanced technology nodes bring?
– Dark Silicon Era

• Accelerate 
– Energy advantages of specialized hardware

• Approximate
– Playing with precision and number representations to 

reduce energy

• Key message of this course: specialized hardware 
that computes at the right (lowest) precision
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Outline
• Part I: the clear need for specialized hardware 

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– A bit of arithmetic
– Inference and training with low precision
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Energy Cost in a Processor
• Operations
– 32-bit addition: 0.05pJ
– 16-bit multiply: 0.25pJ
– 64-bit FPU: 20pJ/op

• Instructions
– fetch, decode, read two 

operands from RF, 
execute, write back 

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

General Purpose Processor
91 pJ/instruction
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Achieving Higher Performance
• Pushing clock frequency…
• Branch/value prediction
• Cache memory
• In-core parallelism
– Superscalar
– Out of order execution
– VLIW+good compilers

• Multiple cores on a single chip
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Pushing for Hardware 
Acceleration!
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What is a Hardware Accelerator?
• Specialized hardware for a 

given set of kernels
• With limiting 

programmability
• Computes just right!

• e.g., Matrix Multiplication

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Memory Buffer

M
em

or
y 

Bu
ffe

r

External Memory
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Energy Savings in Specialized HW
D-cache

6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

GPP: 91 pJ/instr.

D-cache
6% Datapath

3%

Energy
Saved
91%

Specialized Core: 8 pJ/instr.
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An example: Bitcoin Mining
Type Model Mhash/s Mhash/J Power (W)

GPP Intel Xeon X5355 (dual) 22.76 0.09 120

GPP ARMCortex-A9 0.57 1.14 1.5

GPP Intel Core i7 3930k 66.6 0.51 130

GPU AMD 7970x3 2050 2.41 850

GPU Nvidia GTX460 158 0.66 240

ASIC AntMiner S1 180.000 500 360

ASIC AntMiner S5 1.155.000 1957 590

FPGA Bitcoin Dominator X5000 100 14.7 6.8

FPGA Butterflylabs Mini Rig 25.200 20.16 1250
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Apple Silicon M2 Max
• 5 nm (TSMC 2G), 40 billion 

transistors
• 8 performance cores

– 38 Int MOPS, 56 MFLOPS
– NEON vector processor

• 4 power-efficiency cores
• Unified memory (32-96 GB 

LPDDR5-6400) next to the  (400 
GB/s bandwidth) for GPU&CPU

• 89W (peak CPU+GPU), CPU 
36W (peak)

• High-performance media 
engine

• 16 TOPS Neural Engine
– 10,000 times the GPU speed 

for ML tasks
– “power-efficient” (but no 

reported power figures)
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Accelerators for MLAccelerators for ML 

21 

? 
CPU GPU FPGA TPU Next 

Threads 
SIMD 

Massive Threads 
SIMD 
HBM 

LUTs 
DSP 
BRAM 

MM Unit 
BRAM 

??? 
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Key Takeaways
• Energy efficiency requires deeply specialized 

hardware
– which also may come  with pain from the 

programmer/designer
• Basic tasks of DNNs are easy to accelerate
– this course is mainly focused on matrix multiplication

• Number representations and precisions are key 
techniques
– also memory access since execution is often memory-

bound
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TARAN Team at a Glance
Domain-Specific Computers
in the post Moore’s law era

• ~40 people, Rennes and Lannion campuses
• Our focus: hardware specialization and 

acceleration
– Energy Efficiency of hardware accelerators
– Domain-specific architectures, languages and 

compilers
• Automatically create hardware that is resilient, 

secured, and computes just right
– From Sensors to Clouds

Rennes

Lannion

Lignes connectiques de processeur. 
Bouclier de protection (résistance). 
Masque (visage) celtique.

Typographie moderne.

PROP. 5
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Outline
• Part I: the clear need for specialized hardware 

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– A bit of arithmetic
– Inference and training with low precision
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Speeding Up GEMM
Efficient Processing of Matrix Multplication

Focus on Convolution Neural Networks (CNN)
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2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

H: Height of Input Activation 
W: Width of Input Activation 
R: Height of Weight
S: Width of Weight 
T: Height of Output Activation
U: Width of Output Activation 

Input Activations Weights Output Activations

R

S

T

U

Example is with:
§ stride=1 

# of rows/columns traversed per step
§ padding=0 

# of zero rows/columns added 
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2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

𝐴 = 𝑎×1 + 𝑏×2 + 𝑐×3 + 𝑓×4 + 𝑔×5 + ℎ×6 + 𝑘×7 + 𝑙×8 + 𝑚×9

Input Activations Weights Output Activations

R

S

T

U

(R×S) Multiply and Accumulate (MAC) operations
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2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

𝐵 = 𝑏×1 + 𝑐×2 + 𝑑×3 + 𝑔×4 + ℎ×5 + 𝑖×6 + 𝑙×7 + 𝑚×8 + 𝑛×9

Input Activations Weights Output Activations

R

S

T

U

(R×S) Multiply and Accumulate (MAC) operations

stride=1
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2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

Input Activations Weights Output Activations

R

S

T

U

(T×U × R×S) MAC operations in total

A lot of potential data reuse for memory accesses

𝑇 =
𝐻 − 𝑅
𝑠𝑡𝑟𝑖𝑑𝑒 + 1

𝑈 =
𝑊 − 𝑆
𝑠𝑡𝑟𝑖𝑑𝑒 + 1
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3D Convolution

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

* =

W

Input Activations Weights Output Activations

C: # of Input Channels 
K: # of Output Channels
N: Batch size 

C

S

1 2 3

4 5 6

7 8 9

R

C

S

1 2 3

4 5 6

7 8 9

R

C

K

U

A B C

D E F

G H I

T

K

N
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Convolution Loop Nest
for (n=0; n<N; n++) { // for each Batch
for (k=0; k<K; k++) { // for each Output Channel
for (t=0; t<T; t++) { // OA Height
for (u=0; u<U; u++) { // OA Width
OA[n][k][t][u]= 0; 
for (r=0; r<R; r++) { // W Height 
for (s=0; s<S; s++) { // W Width
for (c=0; c<C; c++) { // for each Input Channel
h = t * stride – pad + r; 
w = u * stride – pad + s; 
OA[n][k][t][u] += IA[n][c][h][w] * W[k][c][r][s];

}
}

}
Activation(OA[n][k][t][u]);

} 
}

}
}

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

* =
H

W

C

S

1 2 3

4 5 6

7 8 9
R

C

S

1 2 3

4 5 6

7 8 9
R

C

K

U

A B C

D E F

G H I
T

K

N

CONV
kernel
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Opportunities for 
Data Reuse
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Convolution Kernel

* =

W

Weights Output Activations

C: # of Input Channels 
K: # of Output Channels
N: Batch size 

C

S

R

C

S

R

C
K

U

T

K

N

Input Activations
(feature maps)
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Opportunities for Data Reuse
• Input reuse
– different filters 

are applied to the 
same input

– each input is 
reused K times*

Input Activations 
(feature maps)

Weights

K

C: # of Input Channels 
K: # of Output Channels
N: Batch size 
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Opportunities for Data Reuse
• Filter (weight) reuse
– when processing a 

batch of size N, all 
inputs are applied to 
the same filter

– each filter weight is 
reused N times

*

Input Activations 
(feature maps)

Weights

C: # of Input Channels 
K: # of Output Channels
N: Batch size 

C

N

C



37

Opportunities for Data Reuse
• Conv. reuse
– filters slide across 

different positions of 
the same input

– each weight is reused 
≈T.U times

– each input is reused 
≈R.S times

*
Input Activations 
(feature maps)

Weights

C: # of Input Channels 
K: # of Output Channels
N: Batch size 

S

R

W
= T

Output Activations
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Other Kernels
• Fully-Connected Layer

– H=W=R=S=T=U=1
• Depth-Wise Convolution

– K=1
• Pooling Layer

– [MAX, AVG], pooling stride and kernel size
• BatchNorm Layer

– provides zero-mean, unit-variance activations 
• Activations

– ReLU, L-ReLU, sigmoid, tanh, clipping



39

Speeding Up the GEMM Kernel
for (m=0; m<M; m++) 
for (n=0; n<N; n++) 
for (k=0; k<K; k++) 

C[m][n] += A[m][k] * B[k][n]

𝐶!×# = 𝐴!×$×𝐵$×#

note: a register should be used instead of C[m][n]
note: C[m][n] should be intialized to 0

M

K
m

K

N

M

N

Output 
Activations

C

Input 
Activations

A

Weights
B

k
nk

Baseline
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Speeding Up the GEMM Kernel
m=0
n=0
for (k=0; k<K; k++) 

       C[m][n] += A[m][k] * B[k][n]

m

k
nk

Traversal Order

Baseline
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Speeding Up the GEMM Kernel
m=0
n=1
for (k=0; k<K; k++) 

       C[m][n] += A[m][k] * B[k][n]

m

k
nk

– Assuming the storage is 
row-major, what 
happens in the cache 
memory?

– For which matrix?

Traversal Order

Baseline
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Caching
• CPU caches are orders of magnitude faster, but much 

smaller, so using them correctly is critical 
– Automatically managed by the CPU. 
– Every time we fetch data from the main memory, the CPU 

automatically loads it and its neighboring memory into the 
cache, hoping to utilize locality of reference. 
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Caching
• In our case:

– once we access 
A[m, k], the next 
element in the 
row, A[m, k+1] is 
already cached

– but we get a 
cache miss for 
each data from 
matrix B fetched 
B[k, n] 

for (m=0; m<M; m++) 
for (n=0; n<N; n++) 
for (k=0; k<K; k++) 

       C[m][n] += A[m][k] * B[k][n]

Baseline
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Speeding Up the GEMM Kernel
for (m=0; m<M; m++) 
for (n=0; n<N; n++) 
for (k=0; k<K; k++) 

       C[m][n] += A[m][k] * B[k][n]

M

K

K

N

M

NTraversal Order

Baseline
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Speeding Up the GEMM Kernel

• Reordering the loops 
from m,n,k to m,k,n
• Improve data locality 
 (better cache usage)

for (m=0; m<M; m++) 
for (k=0; k<K; k++) 
for (n=0; n<N; n++) 

      C[i][j] += A[i][k] * B[k][j]

Baseline Reordered
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Speeding Up the GEMM Kernel
m=0
k=0
for (n=0; n<N; n++) 

      C[i][j] += A[i][k] * B[k][j]

M

K
m

K

M

N

k
nk

Traversal Order

Baseline Reordered
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Speeding Up the GEMM Kernel
m=0
k=1
for (n=0; n<N; n++) 

      C[i][j] += A[i][k] * B[k][j]

M

K
m

K

M

N

k
nk

Traversal Order

– Assuming the storage is 
row-major, what 
happens in the cache 
memory?

– Why does this loop 
reordering result in 
better cache usage?

Baseline Reordered
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Speeding Up the GEMM Kernel

• Reordering the loops 
from m,n,k to m,k,n
• Improve data locality 
 (better cache usage)

for (m=0; m<M; m++) 
for (k=0; k<K; k++) 
for (n=0; n<N; n++) 

      C[i][j] += A[i][k] * B[k][j]

Baseline Reordered
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Speeding Up the GEMM Kernel
• Tiling
– Looping on smaller submatrices (tiles of size T ×	T)

• small enough to fit in the cache

	 	

M

K

K

N

M

NT

A1 A2 B1 C1

B4

𝑪𝟏 = 𝑨𝟏×𝑩𝟏 + 𝑨𝟐×𝑩𝟒
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Speeding Up the GEMM Kernel
• Tiling
– Looping on smaller submatrices (tiles of size T ×	T)

• small enough to fit in the cache

M

N

C8

	 	

M

K

K

N

A5 A6

B2

B5

𝑪𝟖 = 𝑨𝟓×𝑩𝟐 + 𝑨𝟔×𝑩𝟓
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Speeding Up the GEMM Kernel
• Tiling
– Looping on smaller submatrices (tiles of size T ×	T)

for (m=0; m<M/T; m++) // Tile row index
for (n=0; n<N/T; n++) // Tile column index
for (k=0; k<K/T; k++) // Tile inner index

for (mt=0; mt<T; mt++) // Tile-level mult.
for (nt=0; nt<T; nt++)
for (kt=0; kt<T; kt++)

            C[m*T+mt][n*T+nt] += A[m*T+mt][k*T+kt] 
        * B[k*T+kt][n*T+nt]

note: for this code M, N and 
K must be divisible by T

Tiling
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Speeding Up the GEMM Kernel

• More of Tiling
– Tile inner loops can be vectorized and unrolled
– Tiles can run in parallel (multithreading)

Results on CPU
(Apple Silicon M2 Pro)
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Try it yourself
git clone https://gitlab.inria.fr/sentieys/dnn_acc.git
cd GEMM
# look at the C code: baseline.c, baseline_reordered.c, opti-l1.c, 
opti-l2.c
make all

How to add SIMD and vectorization?

https://gitlab.inria.fr/sentieys/dnn_acc.git
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Designing Hardware 
Accelerators for 
GEMM/CONV
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Building the Accelerator

Pipeline (Dataflow) 
Architecture

Global memory

L0

In

OA

O

OAL1 L2
W W W

Li: Layer i

Global 
Architecture

Gl
ob

al
 m

em
or

y

W

In

IA

OA

Sequential 
Architecture
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Building the Accelerator
• Sequential Architecture
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Building the Accelerator
• Dataflow Architecture
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Exploiting Data Reuse in PE Array
• Temporal Architecture

– SIMD (CPU), SIMT (GPU)
– Classical Memory Hierarchy

• Spatial Architecture
– Dataflow accelerators

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Memory Buffer

M
em

or
y 

Bu
ffe

r

External Memory

Memory Buffer (or Cache)

ALU ALU ALU ALU

Register File

External Memory
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Exploiting Data Reuse
• Why reuse is important?
– Relative energy costs
– Memory access is the bottleneck

Computer arithmetic
I at the core of computing we find number representations (integer

and real) + basic arithmetic operations (e.g. +, ◊, ÷, Ô
)

I energy consumption varies a lot between numeric formats

Task: optimize number format and values for target application accuracy

5/13

X

+
RF

PE

SRAMDRAM SRAM DRAM

EnergyMAC: 1xPE: 2xSRAM: 6x
(cache, buffer)

DRAM: 200x
(external)
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Exploiting Data Reuse
• Temporal Reuse

– e.g., memory hierarchy
– the same data is used more than 

once over time by the same PE 

• Temporal and Spatial Reuse
– Memory hierarchy and multiple 

PEs

• Spatial Architecture
– e.g., systolic, multicast
– the same data is used by more 

than one PE at different spatial 
locations of the hw 

X
+RF

PE

SRAMDRAM PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE

PE

PE

PE

PE

systolic multicast
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Back to the GEMM Kernel
for (m=0; m<M; m++) {
for (n=0; n<N; n++) {
C[m][n] = 0;
for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
}

𝑪𝑴×𝑵 = 𝑨𝑴×𝑲×𝑩𝑲×𝑵

M

K

K

N

Output 
Activations

C

Input 
Activations

A

Weights
B
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Accelerating GEMM
• Parallelizing most inner loop

– (1) Adder tree
• Typical width: 8-64

– e.g. NVDLA, NVIDIA Tensor cores, FINN

for (m=0; m<M; m++) {
for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
}

for: temporal execution order
parallel_for: parallel execution Shao Spring 2021 © UCBHardware for Machine Learning 22

Datapath Optimization 1: Spatial-K
for (m=0; m<M; m++) {

for (n=0; n<N; n++) {
OA[n,m] = 0;
spatial_for (k=0; k<K; k++) {

OA[n,m] +=  IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}X X X X

+ +

+
+

OA-REG

• Type 1: Adder Tree
• Example: NVDLA, DianNao
• Typical width: 8-64
• Applicable to any accumulation dimensions

• E.g., R, S, C in convolution

[Credit: Sophia Shao, Hardware for 
Machine Learning, Course@UC Berkeley]
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Accelerating GEMM
• Parallelizing most inner loop
– (2) Systolic Multiply-And-Accumulate (MAC)

• Typical width: 8-256

– e.g. Gemmini, Google TPU
for (m=0; m<M; m++) {
for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
}

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC
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Accelerating GEMM
• Parallelizing second inner loop
– (3) Multicasting a (sub)line of weights

• Typical width: 8-16
– e.g. NVDLA, NVIDIA Tensor cores

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
}

Shao Spring 2021 © UCBHardware for Machine Learning 24

Datapath Optimization 2: Spatial-N
for (m=0; m<M; m++) {

spatial_for (n=0; n<N; n++) {
OA[n,m] = 0;
for (k=0; k<K; k++) {

OA[n,m] +=  IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}
• Type 1: Direct-wiring multicast
• Example: NVDLA, DianNao
• Typical width: 8-16
• Applicable to any non-accumulation 

dimensions

X X X X

+ +++
[Credit: Sophia Shao, Hardware for 
Machine Learning, Course@UC Berkeley]

for: temporal execution order
parallel_for: parallel execution 
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Datapath Optimization 2: Spatial-N
for (m=0; m<M; m++) {

spatial_for (n=0; n<N; n++) {
OA[n,m] = 0;
for (k=0; k<K; k++) {

OA[n,m] +=  IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}
• Type 2: Systolic multicast
• Example: TPU, Gemmini
• Typical width: 8-256
• Applicable to any non-accumulation 

dimensions

X X X X

+ +++

IA
-R

EG

IA
-R

EG

IA
-R

EG

Accelerating GEMM
• Parallelizing second inner loop
– (4) Systolic multicast

• Typical width: 8-256

– e.g. Gemmini, Google TPU

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
} [Credit: Sophia Shao, Hardware for 

Machine Learning, Course@UC Berkeley]
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Datapath Optimization Combined: NVDLA
for (m=0; m<M; m++) {

spatial_for (n=0; n<N; n++) {
OA[n,m] = 0;
spatial_for (k=0; k<K; k++) {

OA[n,m] +=  IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}

• Adder-tree accumulation
• Direct-wiring multicast

MAC Cell

Accelerating GEMM
• Parallelizing second and most inner loops
– (1)+(3) Adder Tree + Multicast
– e.g. NVDLA, FINN

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
} [Credit: Sophia Shao, Hardware for 

Machine Learning, Course@UC Berkeley]
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Accelerating GEMM
• Parallelizing second and most inner loops
– (2)+(4) Systolic MAC + Systolic Multicast
– e.g. Gemmini, Google TPU

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

       C[m][n] += A[m][k] * B[k][n];
    }
  }
} [Credit: Sophia Shao, Hardware for 

Machine Learning, Course@UC Berkeley]
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Systolic Arrays
• Replace single Processing Element (PE) with an array of 

regular PEs

• Orchestrate data flow for high throughput with less memory 
access than classical architectures

• Each PE may have (small) local instruction and data memory
• Analogy with the heart     blood     (many)cells      heart

Mem

PE

Mem

PE PE PE PE
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Systolic Arrays are New?
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Systolic Array Matrix Multiplication
b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,0 b1,3

b2,0 b2,1 b2,0 b2,3

b3,0 b3,1 b3,0 b3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,0 a1,3

a2,0 a2,1 a2,0 a2,3

a3,0 a3,1 a3,0 a3,3

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,0 c1,3

c2,0 c2,1 c2,0 c2,3

c3,0 c3,1 c3,0 c3,3

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE
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PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

b1,0

b0,0

a0,3 a0,2 a0,1 a0,0

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

bi,j

ak,l

X

+

cm,n

cm,n += ak,l x bi,j

ak,l

bi,j

time

• Output (C)
Stationary 
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• Cycle 1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

b1,0

b0,0

a0,3 a0,2 a0,1 a0,0

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,0 x b0,0
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• Cycle 2

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

b1,0

a0,3 a0,2 a0,1

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b3,3

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,1 x b1,0
+

a0,0 x b0,0

a0,0 x b0,1

a1,0 x b0,0

b0,0

a0,0
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• Cycle 3

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

a0,3 a0,2

b3,1

b2,1

b1,1

b3,2

b2,2

b1,2

b0,2

b3,3

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

b0,0

a0,0
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• Cycle 4

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

a0,3

b3,1

b2,1

b3,2

b2,2

b1,2

b3,3

b2,3

b1,3

b0,3

a1,3 a1,2

a2,3 a2,2 a2,1

a3,3 a3,2 a3,1 a3,0
b0,0

a0,0 C0,0
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• Cycle 5

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,1

b3,2

b2,2

b3,3

b2,3

b1,3

a1,3

a2,3 a2,2

a3,3 a3,2 a3,1

C0,0 C0,1

C1,0
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• Cycle 6

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,2

b3,3

b2,3

a2,3

a3,3 a3,2
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• Cycle 7: all PEs contain Ci,j results 
• Ci,j values can be shifted to last column/row 

through the PEs at each cycle

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,3

a3,3
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• Weight (B) 
Stationary
– First phase: 

load weights 
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

b0,3

b1,3

b2,3

b3,3 time
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• Weight (B) Stationary
– Second phase: 

matrix multiplication

a0,3 a0,2 a0,1 a0,0

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

time

bi,j

ai,j

X

+

acc

ppi+1,j = ai,j+1 x bi+1,j + ppi,j

ai,l+1

bi+1,j

ppi,j

ppi+1,j

PEi,j

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,”

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3
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Systolic Array Matrix Multiplication (WS)
• Cycle 1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3 a0,2 a0,1 a0,0

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,0 x b0,0
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Systolic Array Matrix Multiplication (WS)
• Cycle 2

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3 a0,2 a0,1

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,1 x b0,0 a0,0 x b0,1

a1,0 x b1,0
+

a0,0 x b0,0

pp1,0

a0,0
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Systolic Array Matrix Multiplication (WS)
• Cycle 3

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3 a0,2

a1,3 a1,2 a1,1

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,0a0,1

a1,0

pp1,0

pp2,0

a0,2 x b0,0 a0,1 x b0,1

a1,1 x b1,0 +
a0,1 x b0,0

a0,0 x b0,2

a2,0 x b2,0 +
a1,0 x b1,0 +
a0,0 x b0,0

a1,0 x b1,1 +
a0,0 x b0,1
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Systolic Array Matrix Multiplication (WS)
• Cycle 4

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3

a1,3 a1,2

a2,3 a2,2 a2,1

a3,3 a3,2 a3,1 a3,0

a0,0

c0,0 =
a3,0 x b3,0 +
a2,0 x b2,0 +
a1,0 x b1,0 +
a0,0 x b0,0c0,0
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• Cycle 5
– New inputs can start to be broadcasted

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a1,3

a2,3 a2,2

a3,3 a3,2 a3,1

c1,0

c0,0
c0,1

a’0,3
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• Cycle 6

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a2,3

a3,3 a3,2

c2,0

c1,0
c0,0

c1,1

c0,1
c0,2
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• Cycle 7
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PEa3,3

c3,0

c2,0
c1,0
c0,0

c2,1

c1,1
c0,1

c1,2

c0,2
c0,3



88

• Cycle 10: all Ci,j
results have 
been outputted 

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

c3,0
c2,0
c1,0
c0,0

c3,1
c2,1
c1,1
c0,1

c3,2
c2,2
c1,2
c0,2

c3,3

c2,3
c1,3
c0,3
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Outline
• Part I: the clear need for specialized hardware 

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– A bit of arithmetic
– Inference and training with low precision
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Accelerators for ML

• Accelerators: GPU, TPU
• Open-source accelerators: NVDLA, Gemmini
• FPGA: overlays, dataflow (e.g., FINN)

Accelerators for ML 

21 

? 
CPU GPU FPGA TPU Next 

Threads 
SIMD 

Massive Threads 
SIMD 
HBM 

LUTs 
DSP 
BRAM 

MM Unit 
BRAM 

??? 
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GV100

21B transistors
815 mm2

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2

300 GB/s NVLink

*full GV100 chip contains 84 SMs

More details - Volta: Programmability and Performance (HotChips 2017)
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf

GPU
• NVIDIA Volta GV100 (2017, 14nm)

• NVIDIA Hopper GH100 (2022, 4nm)
– 144 SMs
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Volta SM

TEX

Sub-
Core

L1 D$ & SMEM

Sub-
Core

Sub-
Core

Sub-
Core

L1 I$
SM

GPU
• Volta GV100: SM’s details
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NVIDIA Tensor Cores
• Mixed-Precision Matrix Math
– 4x4 matrices operations in one cycle

10/01/18 Stanford CS 217 52

Tensor Core Unit of Nvidia 

Tensor Core Throughputs
Multiply-Accumulates per clock per SM
(multiply by 2x for ops counts)

(C) NVIDIA 9

FP32 FP16 INT8 INT4 INT1
Volta 64 512
Turing 64 512 1,024 2,048 8,192
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NVIDIA GPU
• Highest Peak Performance

• A new chip in less than two years now…
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GPU
• GPU have high control overhead

• But also have very efficient tensor cores

• Last generation: Hopper GH100 GPU 
– 144 SMs with 128 FP32 cores, 64 FP64 cores, 64 INT32 cores, and four 

Tensor Cores per SM
– Support for FP8 format
– 4nm, 700 Watts...

Half-precision Fused Multiply-Add

Half-precision 4-way Dot Product

H.-p. Matrix Multiply and Acc.
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TPU: Tensor Processing Unit (Google) 
• TPUv1

– 2016, 28nm, 700MHz
– 8GB DDR3, 28MB on-chip mem
– 75W, 23 TOPS

• TPUv3
– 2018, 16nm, 940 MHz
– 32GB HBM, 32 MB
– 450W, 92 TOPS

TPU Card●
●

Up to 4 cards per serverStanford CS217 20



97

TPU 
• Coarse-grained matrix 

multiply and data read/write 
instructions

• Compute intensive
– 64K MACs per cycle

• Memory intensive
– 4 MB of on-chip 

Accumulator Memory
– 24 MB of on-chip Unified 

Buffer (activation memory)
– Two 2133MHz DDR3 DRAM, 

8 GiB of off-chip (weight 
DRAM)

• >25X as many MACs vs GPU

Shao Spring 2021 © UCBHardware for Machine Learning 38

Tensor Processing Unit
• Inst. Decoding Logic:

• Coarse-grained matrix multiply and data 
read/write instructions

• Datapath:
• Spatial-K: Systolic Accumulation

• Multi-cycle with registers
• Spatial-N: Systolic multicast

• Multi-cycle with registers
• Better scalability

• Memory
• Custom systolic registers
• Dedicated accumulation and weight buffers
• Double-buffered, weight-stationary dataflow

TPU
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TPU
• Matrix Multiply Unit: 256x256 

(65,536) 8-bit MAC as a systolic 
array
– Peak: 92 TOPS

• 2x65,536x700MHz
• Datapath:

– Parallel-K: systolic accumulation
– Parallel-N: systolic multicast

• Memory
– Custom systolic registers
– Dedicated accumulation and 

weight buffers 
– Double-buffered, weight-

stationary dataflow

47

WS Example: Google TPU

weights

activations

psums

Top-Level Architecture Matrix Multiply Unit

Parallel processing: weights from different 2D planes

C

M

[Jouppi et al., ISCA 2017]
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Accelerators for ML

• Accelerators: GPU, TPU
• Open-source accelerators: NVDLA, Gemmini
• FPGA: overlays, dataflow (e.g., FINN)

Accelerators for ML 

21 

? 
CPU GPU FPGA TPU Next 

Threads 
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Massive Threads 
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LUTs 
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BRAM 

MM Unit 
BRAM 

??? 
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NVDLA
• NVIDIA Deep Learning Accelerator
– 8-16 bit datapath, weight compression
– Int8, Int16, FP16
– large-small config.

– open-source
• system Verilog
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Gemmini
• UC Berkeley
– open-source (Chisel), systolic array

[Gemmini, DAC 2021]
https://github.com/ucb-bar/gemmini

https://github.com/ucb-bar/gemmini
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Gemmini
• Weight-Stationary or Output-Stationary dataflow

https://github.com/ucb-bar/gemmini

https://github.com/ucb-bar/gemmini
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Accelerators for ML

• Accelerators: GPU, TPU
• Open-source accelerators: NVDLA, Gemmini
• FPGA: overlays, dataflow (e.g., FINN)

Accelerators for ML 

21 
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CPU GPU FPGA TPU Next 

Threads 
SIMD 

Massive Threads 
SIMD 
HBM 

LUTs 
DSP 
BRAM 

MM Unit 
BRAM 

??? 
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FPGA
• Xilinx Alveo U55C card 
– PCIe® Gen3x16 or dual Gen4x8

• Ethernet 2 x 100 Gb/s
• XCU55 UltraScale+ FPGA 
– 16 GB High-Bandwidth Memory 

(HBM2), 460GB/s bandwidth
– 1.3M CLBs
– 270+70M BRAM
– 9K DSP blocks, 4 INT8 MAC/DSP
– 28 TOPS INT8 (peak, 800MHz)
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HLS vs. Overlays
• HLS synthesizes C-like high-level design and performs 

code transformations and synthesis optimizations
• FPGA overlay is a coarse-grained design abstraction layer 

over fine-grained FPGA resources

y
out_data

Finite State Machine (FSM)
C0

x3

out_ce
out_addr

out_we

x

C1 C2 C3

+b

a

c

in_data

+
*

void foo(int in[3], char a, char b, char c, int out[3])
{

int x,y;
for(int i = 0; i < 3; i++) {

x = in[i]; y = a*x + b + c;
out[i] = y;

}
}

in_addr
in_ce

AddSub AddSub Memory
Access MUL

AddSub

Scheduling
Phase

Initial
Binding
Phase

AddSub AddSub Block
RAM DSP48

Target
Binding
Phase

+

Clock Cycle

Control
Logic
Extraction

(a) Scheduling, Binding, and Control Logic Extrac-
tion phases in Vivado HLS compilation flow

RAM

C Program

DSP

FF

LUT

Instruction Memory

ALU

FF

N

FF
FF

S
W
E
M

FF

D1 D2

ADDR1 ADDR2
W/R1 W/R2

Q2Q1

FF N
S
W
E
MData

Mem

User Design

SCGRA Overlay

FPGA Device

(b) ArchSyn using an SCGRA overlay between user design and FPGA
device

Figure 1: Overview of Vivado HLS & ArchSyn.

And then in target binding phase, the operations are bind-
ing to physical components inside the target FPGA device.
Finally a FSM is created to control when the registers store
data and the state of any I/O control signals.

2.2 ArchSyn
As illustrated in Figure 1(b), an layer called Soft Coarse-

Grained Reconfigurable Array (SCGRA) Overlay is proposed
by ArchSyn [11]. SCGRA is an overlay between user high-
level design and target FPGA hardware. Instead of mapping
user high-level design to FPGA resources directly as most
HLS tools, the process of ArchSyn compilation is divided
into two steps.

First, user high-level design is mapped to the SCGRA
overlay. The SCGRA overlay consists of an array of directly
connected simple configurable processing elements (CPEs).
Each CPE performs primitive compute operations accord-
ing to a small local sequencer at each clock cycle. Data are
communicated via multi-hop routing within the direct in-
terconnect network. The scheduler schedules each compute
operation to execute on a particular CPE at a particular
cycle. It also determines the communication schedule of
the intermediate data among the producing and consuming
CPEs, optionally buffering them with distributed individual
memory along the path.

After mapping user high-level design to the SCGRA over-
lay, ArchSyn implements the overlay on target FPGA. The
SCGRA overlay takes advantage of reconfigurability of low-
level FPGA. Both CPEs and interconnect network can be
reconfigured at hardware implementation level. The coarse-
grained CPEs can be pre-implemented or can be tailored
according to scheduling results. The CPE implementation
is optimized towards low-level FPGA architecture.

3. EVALUATION METHODOLOGY

3.1 Evaluation Flow
In the evaluation flow, computational kernel designs in

C/C++ are first compiled into RTL designs using Vivado
HLS. Then, Vivado Design Suite transforms the RTL imple-
mentations into device configuration through logic synthe-

sis and implementation, and then reports the performance,
hardware resource utilization and power consumption met-
rics. The latest version of Vivado suite, 2015.4, is used.

With the same kernels as inputs, ArchSyn outputs RTL
design of the SCGRA overlay, which consists of an array of
CPEs. The scheduler of ArchSyn generates a sequence of
instructions, controlling execution of CPEs in the SCGRA
overlay. Except for the instruction ROM of each CPE, the
logic design of the CPE array remains unchanged, thus it
can be pre-implemented on target FPGA device. Once the
scheduler completes the scheduling, the size and content of
the the instruction ROMs are determined, and incremen-
tal implementation flow is used to implement the ROM in-
stances into each CPE. The Virtex-7 FPGA chip with most
memory resource, XC7VX1140T, is chosen as the target de-
vice to implement the SCGRA overlay design.

3.2 Computation Kernels
In our evaluation, two computation intensive application

kernels are selected, namely matrix-matrix multiplication
and fast Fourier transform.

Matrix-matrix multiplication (MxM) calculates the prod-
uct matrix C of two matrices A and B, C = A×B. If A is an
m-by-p matrix and B is a p-by-n matrix, the (i, j)-th entry
of C is defined by cij =

∑p
k=1 aik · bkj , and the product C

is an m-by-n matrix. In this paper, only the multiplication
with square matrices are evaluated.

Fast Fourier transform (FFT) is an efficient algorithm
to compute the discrete Fourier transform and its inverse,
and it is widely used in many applications, including radar,
sonar, MPEG audio compression and spectral analysis. The
most common FFT algorithm, radix-2 Cooley-Tukey, is used
as an evaluation benchmark kernel in this paper.

3.3 Computation Parallelism
To fully utilize the massively parallel compute resources

of FPGA, both Vivado HLS and ArchSyn automatically ex-
ploit computation parallelism from high-level user design to
improve computation performance while maintaining effi-
cient resource utilization and low power consumption. With
a given parallelism factor, p, ArchSyn generates an array

ACM SIGARCH Computer Architecture News 93 Vol. 44 No. 4 September 2016
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HLS vs. Overlays
• HLS synthesizes C-like high-level design and performs 

code transformations and synthesis optimizations
– FINN (Xilinx): SIMD + parallel Matrix Vector Activate Unit
– HLS4ML: "true" HLS style + reuse
– HLS Libraries: e.g., Vitis Accelerated Blas Library, 

GEMM_HLS, HLS_LIB, AC_ML
• FPGA overlay is a coarse-grained design abstraction 

layer over fine-grained FPGA resources
– Xilinx Deep Learning Processing Unit (DPU) + Vitis AI 

software stack + runtime (XRT)
– VTA+TVM
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TVM+VTA
• End-to-end 

hardware-software 
DL system stack
– hardware design
– sequential 

architecture
– drivers, JIT runtime
– optimizing compiler 

stack based on TVM
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FINN
• Experimental framework from Xilinx 

Research Labs
– Provides an HLS library of standard NN 

layers
– Design space exploration of QNN 

accelerators on FPGAs
– Generates HLS code that supports a wide 

range of precisions

• Inference only, focused on Quantized NNs
– Pipelined dataflow architecture
– AXI controlled dataflow structure for low 

latency
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Outline
• Part I: the clear need for specialized hardware 

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– Number representation and precision
– Inference and training with low precision
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Computing just right!
(with the right accuracy and precision)
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Number Representations and Precision
• Energy, delay, and area vary a lot between 

numeric formats and word-length

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2
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Humans Approximate….
But Computers Do Not!

• High-precision computations often lead to inefficiency

923
21

> 1.75

YES

923
21

> 45

NO

• No need for complex 
computation

• More accurate 
computation is required
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Resilience of ANN?

• Our biological neurons are tolerant to computing 
errors and noisy inputs

• Quantization of parameters and computations 
provides benefits in throughput, energy, storage

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it
deosn’t mttaer in waht oredr the ltteers in a wrod are,
the olny iprmoatnt tihng is taht the frist and lsat ltteer
be at the rghit pclae. And we spnet hlaf our lfie larennig
how to splel wrods. Amzanig, no! [O. Temam, ISCA10]



114

Number Representations
• Floating-Point (FlP)

– Easy to use
– High dynamic range
– Hardware cost and power

• Fixed-Point (FxP)

– Integer arithmetic
– Efficient operators

• Speed, power, cost
– Harder to use...

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

s: sign, m: mantissa, e: exponent
x = p⇥K

p: integer, K=2-n: fixed scale factor
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What can be Customized?
• Floating-Point (FlP)
• Precision

– Exponent (E) and Mantissa 
(M) bit-width

– e and m both impact 
accuracy

• Play with exponent bias
• Sub-normal numbers or 

not?
• 0, ∞, NaN?
• Rounding modes

– stochastic, to nearest, 
truncation, to 0/∞

• Fixed-Point (FxP)
• Precision

– Integer (m) and fractional (n) 
bit-width

– n impacts accuracy
– m impacts dynamic range
– Wordlength (W=m+n+1)

• Rounding modes
– stochastic, to nearest, 

truncation, to 0/∞
• Saturation modes

– wrap, max/min
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Energy Gains of Low Precision
• Multiplier (float) • Adder (float)

8 bits 32 bits>30x8 bits 32 bits>200x
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Very Low-Precision floatMultiplication
• Example: 7 bits (7,5,1)

Sx 1 0/1ex 1.mx = {1.0; 1.5}

X Sy 1ey 1.my = {1.0; 1.5}0/1

ez = ex + ey + (mx AND my) 
1.mz = {1.0; 1.5; 2.25}

1

1.mz = {1.0; 1.5; 1.5 or 1.0}

mz = mx OR/XOR mySz

sz = sx NXOR sy
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How does this apply 
to DNNs?
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Low-Precision Inference
• Not only Weights, but also Activations, Per-Layer 

Quantization, etc.

4-bit activations and 
10-bit weights keeps 
accuracy near (98.4%) 
32-bit float reference 

Resnet-18, CIFAR100
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Even Worse for Training…
• Carbon footprint of DNN training

• Many more operations than inference 
• More pressure on memory access
• Much more difficult to accelerate

Analyzing the carbon footprint of current natural-language processing models 
shows an alarming trend: training one huge model for machine translation emits 
the same amount of CO2 as five cars in their lifetimes (fuel included)

Need for a Significant Reduction of the Carbon 
Footprint of Neural Network Training Hardware 

[Strubell et al., ACL 2019]



121

Mixed Precision DNN Training
• GEMMs and weight 

updates are performed 
in custom precision

• GEMMs are performed 
on GPU or FPGA kernels

• Different arithmetic 
configurations for FWD, 
BWD and WU operations
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Mixed Precision DNN Training
• We can reach baseline 

accuracy using lower 
precision

• Too low of a precision could 
lead to divergence

• A Performance-Precision 
equilibrium must be found

[FPT2022]
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Putting It All Together
• MPtorch-FPGA: a Custom Mixed Precision 

Framework for FPGA-based DNN Training
[DATE2025]

Systolic Array: 
C cores of N

PEs of M MAC 
units
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Results
• Optimize <N,M,C,F> configuration for a given DNN model
• Explore model accuracy for different arithmetic configurations

– FP8 multiplier, FP12 (E6M5) with Stochastic Rounding
– with less than 2% accuracy loss w.r.t FP32

FP32 baseline

FP8/FP12 SR
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What’s next?
• Efficiency of hardware specialization
– Domain-specific architectures and languages

• Computing just right 
– @design-time or @run- time

• Hardware-aware optimizations are mandatory
– Deep knowledge of the hardware is required to 

propose energy-efficient DNN models
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Design of Efficient DNN Algorithms

o Focus on reducing number of MACs and weights
o Does it translate to energy savings and reduced latency?

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

... also reduced precision

Popular efficient DNN algorithm approaches 

Vivienne Sze (   @eems_mit) Website: http://sze.mit.edu 26

Pruning

• Does pruning always translate into energy savings?

a b c d e

f 0 0 i 0

0 l m 0 o

p 0 r 0 t

u v 0 x y

• Solution: 
structured pruning
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Backup Slides
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Key Metrics
• Accuracy

– Evaluate using the appropriate DNN model 
and dataset 

• Programmability
– Support multiple applications 

• Throughput / Latency 
– GOPS, frame rate, delay 

• Energy / Power
– Energy per operation and memory access

• DRAM Bandwidth 
• Area Cost (memory size, # of cores) 

• Number of FLOPs, MACS, and Weights are 
not a good proxy for energy and latency 

5

Key Metrics to Evaluate DNN Hardware

• Accuracy
– Evaluate using the appropriate 

DNN model and dataset

• Programmability
– Support multiple applications 

• Throughput / Latency 
– GOPS, frame rate, delay

• Energy / Power
– Energy per operation
– DRAM Bandwidth

• Cost 
– Area (memory size, # of cores)

Computer 
Vision

Speech 
Recognition

DRAMCHIP
BW

MNIST

[Sze et al., CICC 2017]
[Eyeriss tutorial]



129

NVDLA

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla TSMC 16 nm process at 1 GHz

• Small configuration

INT8 MACs
(# instances)

Conv. 
Buffer
(KB)

Area
(mm2)

Memory 
BW

(GB/s)

ResNet50

Perf
(frames/s)

Power
(mW)

Power Eff.
(DL TOPS/W)

2048 512 3.3 20 269 388 5.4

1024 256 1.8 15 153 185 6.3

512 256 1.4 10 93 107 6.8

256 256 1.0 5 46 64 5.6

128 256 0.84 2 20 41 3.8

64 128 0.55 1 7.3 28 2.0

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla
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NVDLA

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla TSMC 16 nm process at 1 GHz

• Large configuration
Configuration

Data 
Type

Internal 
RAM Size

ResNet50

INT16/FP16 512 MACs
Perf
(frames/s)

Power
(mW)

Power Eff.
(DL TOPS/W)

INT8 1024 MACs

Conv Buffer 256 KB INT8 none 165 267 4.8

Area 2.4 mm2 FP16 none 59 276 1.6

DRAM BW 15 GB/s INT8 2M 230 348 5.1

TCM R/W BW 25/25 GB/s FP16 2M 115 475 1.9

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla
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FPGA: DSP
• DSP Double Data Rate (DDR) technique 
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Deep Learning Processing Unit (DPU) 

• DPU: programmable engine 
optimized for DNNs

• Includes
– high-performance scheduler
– hybrid computing array module
– instruction fetch unit module
– global memory pool module

• Uses a specialized instruction 
set 

• Sequential architecture 
model APU - Application Processing Unit 

PE - Processing Engine 
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Vitis AI Stack
• Vitis AI
– AI Compiler
– AI Quantizer
– AI Optimizer
– AI Profiler
– AI Library
– Xilinx Runtime 

Library (XRT) 
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Vitis AI Stack
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xDNN processing engine
• instruction memory
• execution controller 
• element-wise processing units 
• systolic array

WP504 (v1.0.1) October 14, 2018 www.xilinx.com  3
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xDNN Processing Engine Architectural Highlights
• Dual Mode: Throughput-Optimized or Latency-Optimized
• Command-Level Parallel Execution
• HW-Assisted Image Tiling
• Custom Layer Support (Heterogeneous Execution)
• Systolic Array Architecture

Throughput and Latency Optimized Modes 
One of the architectural features of xDNN processing engine includes two operational modes, one 
for throughput optimization and another for latency optimization. In throughput optimized mode, 
data flow parallelism is exploited by creating an optimized processing engine (PE) to handle 
specific layers that map inefficiently to a general systolic array.

For example, the first layer of GoogLeNet v1 is an RGB layer, which represents nearly 10% of the 
overall compute overhead, does not map efficiently to a systolic array that efficiently computes the 
remainder of the network. In this throughput optimized mode, xDNNv3 includes an additional 
systolic array customized for three input channels. The net effect of this change is higher overall 
compute efficiency because the first layer of the next image can be computed while the previous 
image convolution and FC layers complete their respective processing.

For applications where the lowest single-image latency is desired, users have the option of 
deploying a latency-optimized version of the engine. For those applications, xDNN PE pipelining 
can be adjusted to reduce latency.

X-Ref Target - Figure 1

Figure 1: xDNN Hardware Architecture
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Systolic Array Architecture
The xDNN processing engine leverages techniques, such as those described in the “SuperTile” 
paper(1), to achieve a high operating frequency. This SuperTile DSP macro provides a relationally 
placed macro that can be tiled to build larger compute arrays such as matrix multiplication and 
convolutions, the most compute-intensive operations of a CNN.

Figure 6 shows an example of the logical processing element being mapped into the DSP48 and 
CLB-M (LUTRAM) tiles in the FPGA. This macro cell is the fundamental processing unit within the 
xDNN systolic array.

1. E. Wu et al., Xilinx Inc. IEEEXplore Digital Library, Sept. 2017, A High-Throughput Reconfigurable Processing Array for Neural Networks.

X-Ref Target - Figure 6

Figure 6: MAC and Weight Packing in DSP Macro Example
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Command-Level Parallel Execution
The xDNN processing engine has dedicated execution paths for each type of command (download, 
conv, pooling, element-wise, and upload). This allows for convolution commands to be run in 
parallel with other commands if the network graph allows it. Certain network graphs have parallel 
branches of different instruction types that sometimes allow for parallel processing. For example, in 
the GoogLeNet v1 inception module, the 3 x 3 max pooling layer is a prime example of a layer that 
can be run in parallel with the other 1 x 1 / 3 x 3 /5 x 5 convolutions using the xDNN processing 
engine. Figure 2 shows the inception module of the GoogLeNet v1 network. 

As shown in Figure 3, the software can schedule 3 x 3 max pooling in parallel with 3 x 3 convolution 
of the second branch.

X-Ref Target - Figure 2

Figure 2: Inception Layer in GoogLeNet v1

X-Ref Target - Figure 3

Figure 3: xDNN Scheduling of Inception Layer in GoogLeNet v1
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xDNN processing engine
• Command-Level Parallel Execution 

– Scheduling

• Hardware-Assisted Image Tiling 
• Custom Network Support through Heterogeneous Execution 
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the GoogLeNet v1 inception module, the 3 x 3 max pooling layer is a prime example of a layer that 
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Hardware-Assisted Image Tiling
The xDNN processing engine has a built-in hardware-assisted image tiling feature to support 
networks with large image/activation sizes. The xDNN processing engine allows input feature map 
tiling across both width and height. This is illustrated in Figure 4.

Hardware-assisted image tiling takes a single non-data move instruction (Conv, Pool, EW) and 
generates the correct sequence of micro-operations (Download, Operation, Upload). The 
micro-operations are fully pipelined in hardware by logically partitioning activation memory into 
two regions, like a double buffer.

Custom Network Support through Heterogeneous Execution
Even though the xDNN processing engine supports a wide range of CNN operations, new custom 
networks are constantly being developed—and sometimes, select layers/instructions might not be 
supported by the engine in the FPGA. Layers of networks that are not supported in the xDNN 
processing engine are identified by the xfDNN compiler and can be executed on the CPU. These 
unsupported layers can be in any part of the network—beginning, middle, end, or in a branch.

Figure 5 shows how the processing can be partitioned by the compiler onto various PEs within the 
xDNN processing engine, or even the CPU.

X-Ref Target - Figure 4

Figure 4: Hardware-Assisted Image Tiling Feature
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Figure 5: Processing Partitioned by the Compiler
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xfDNN Inference Toolbox 

© Copyright 2018 Xilinx

xfDNN Inference Toolbox

Network Optimization Graph Compiler xfDNN Quantizer

� Python tools to quickly compile 
networks from common 
Frameworks ± Caffe, MxNet and 
Tensorflow

� Automatic network optimizations for 
lower latency by fusing layers and 
buffering on-chip memory 

� Quickly reduce precision of trained 
models for deployment 

� Maintains 32bit accuracy at 8 bit 
within 2% 
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Mixed Low Precision

© Copyright 2018 Xilinx

Architecture perspective: Mixed Low-Precision
Accelerator(1)
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VTA: Versatile Tensor Accelerator
• VTA: an open, 

generic, and 
customizable DL 
accelerator 
– Sequential 

architecture model

• Complete TVM-
based compiler stack
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TVM: Open Deep Learning Compiler Stack
• Apache TVM is an open source machine 

learning (ML) compiler framework for CPUs, 
GPUs, and accelerators
– optimize and run computations efficiently on any 

hardware backend
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FINN Matrix Vector Activate Unit
• Two versions: block and streaming

• Computation structure
– PEs based on SIMD units
– #PE and #SIMD/PE are configurable
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FINN Matrix Vector Activate Unit
Weight matrix

Input vector

HLS sources: MVAU, MAC

# PE = 4
# SIMD = 4

2 clock cycles

# PE = 4
# SIMD = 2

4 clock cycles

https://github.com/Xilinx/finn-hlslib/blob/master/mvau.hpp
https://github.com/Xilinx/finn-hlslib/blob/master/mac.hpp
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HLS4ML
• hls4ml converts DNN models into a full HLS project 
• Supports many kinds of models (MLP, CNN, RNN) and 

different formats (Keras/Tensorflow, Pytorch, ONNX)

– Lacks good 
optimization 
(resource usage), 
models needs to be 
quantized 
aggressively

– Limited board, 
FPGA, recent HLS 
compiler support 
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Integer Addition
• Ripple-Carry Adder 

• Parallel prefix adders

9.2. The Primitives and Their Cost 275

AFAFAF

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.1: Carry-ripple adder.

4 4

4

44

4

4 4

4

ADADAD

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.2: Decimal addition. Each decimal digit is coded in BCD by 4 bits.

is simply the paper-and-pencil algorithm learned at school. A carry-ripple
adder has O(n) area and O(n) delay, where n is the size in digits of the num-
bers to be added.

The building block of the binary carry-ripple adder is the full adder (FA),
which outputs the sum of three input bits xi, yi, and zi (this sum is between
0 and 3) as a 2-bit binary number cisi. Formally, it implements the equation
2ci + si = xi + yi + zi. The full adder can be implemented in many ways with
a two-gate delay [126]. Typically, one wants to minimize the delay on the
carry propagation path (horizontal in Figure 9.1). Much research has been
dedicated to implementing full adders in transistors; see, for instance,
Zimmermann [443] for a review. A clean CMOS implementation requires 28
transistors, but many designs have been suggested with as few as 10 transis-
tors (see [440, 1, 376, 61] among others). These transistor counts are given for
illustration only: smaller designs have limitations, for instance they cannot be
used for building carry-ripple adders of arbitrary sizes. The best choice of a
full-adder implementation depends much on the context in which it is used.

Carry-ripple adders can be built in any radix � (take � = 10 for illustra-
tion). The basic block DA (for digit addition) now computes the sum of an
input carry (0 or 1) and two radix-� digits (between 0 and � � 1). This sum is
between 0 and 2� � 1 and can therefore be written in radix � as cisi, where ci

is an output carry (0 or 1) and si is a radix-� digit.
Useful radices for building hardware floating-point operators are 2,

small powers of 2 (in which case the DA block is simply a binary adder as
shown on Figure 9.4), 10, and small powers of 10. Figure 9.2 gives the example

delay: 𝒪(𝑁)
cost: 𝒪(𝑁)

delay: 𝒪(log𝑁)
cost: 𝒪(𝑁log𝑁)
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Integer Multiplication
• Many implementation depending on 

compression scheme and final adder

282 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

final adder

Booth recoding,
partial product generation

compression tree

Figure 9.8: Binary integer multiplication.

• A second step reduces this array to only two lines using several
carry-save adders, or more generally, compressors. For instance, the 3:2
compressor is the carry-save adder of Figure 9.5, a 4:2 compressor takes
4 binary numbers and writes their sum as two binary numbers (i.e., as
a carry-save number). A 4:2 compressor can be implemented as two
carry-save adders, but it may also be implemented more efficiently
(using fewer transistors). It has been argued that a good 4:2 compressor
implementation may perform the same function as Booth recoding in
less time using less resources [420].

This step can be performed in O(log n) time, using a tree of compres-
sors.

• Finally, the carry-save result of the previous step is summed using a fast
adder in O(log n) time.

This multiplier scheme is quite flexible. It easily accommodates signed
integers at no extra cost. More important for floating-point, rounding can be
performed at almost no cost by adding a few bits in the partial product array,
as detailed in Section 9.4. Finally, computing a multiply-and-add a⇥b+c adds
only one more line of bits (corresponding to c) to the initial partial product
array of a ⇥ b depicted in Figure 9.8. In practice, the requirement of correct
rounding of the FMA makes the overall data path much more complex; see
Section 9.5.

J.-M. Muller et al., Handbook of floating-point arithmetic, Springer, 2009.

delay: 𝒪(log𝑁)
cost: 𝒪(𝑁.)
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• Representation
(w,m,n) 
w=m+n

• Examples
97 = 011000012 in (8,2,6)

1+1/2+1/64 = 1.515625

97 = 011000012 in (8,-2,10)
2-4+2-5+2-10

0.0947265625

Fixed-Point Representation

Integer Part
(range)

Fractional Part
(accuracy)

Arithmetic Rules (scaling)

x x x bm-1 b-6 b-7 b-nb-n+1

2-n

2-1 2-5 2-6
2m-1

S

2-2 2-3 2-4 2-7 2-8 2-9 2-10

m n
w

20

2-n2-121 202m-2

S bm-2 bm-1 b1 b0 b-1 b-2 b-n+2b-n+1 b-n
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Floating-Point Multiplication
Sx 1

X Sy 1

ex

ey

1.mx

1.my

1  1.mx, 1.my < 2

1  1.mx ⇥ 1.my < 4

RoundingNormalization
(shift mz, add 1 to ez)

Sz

1.mzez = ex + ey
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Floating-Point Multiplication
• Representation (W,E,M)

– Exponent e on E bits
– Mantissa m on M bits

• Floating-point 
hardware is doing the 
job for you!
– FlP operators are 

therefore more complex 
than FxP

9.4. Binary Floating-Point Multiplication 297

1 0

0 1 incrementer

p p

p� 1

p� 1

2p
z�1

or

mz

inc

moderounding
logic

b� 1b

ez + b

ey + b 1.mx 1.myex + b

z�1 · · · z�p+1

z�1z0z1 · · · z2p�2

z
p

s

z0 · · · zp�2

e
x

+
e
y

+
b

e
x

+
e
y

+
b

+
1

z
p
�

1

zp+1 · · · z2p�2

c
ou

t
sticky

Figure 9.14: Basic architecture of a floating-point multiplier without subnormal
handling.

• Subnormal handling is not a strong requirement for applications
using FPGA floating-point accelerators. The floating-point format used
in these accelerators can be nonstandard, and in particular can have an
ad hoc exponent range.

• Significand multiplication can be performed efficiently using the small
integer multipliers embedded in the FPGA fabric of high-performance
FPGAs. These multipliers are typically able to perform 18⇥18-bit prod-
ucts, and recent FPGAs have increased this size to 25⇥18-bit to facilitate
the implementation of binary32 arithmetic. For larger significand sizes,
several of these multipliers have to be grouped together; for instance, a
36⇥ 36-bit product can be implemented using four 18⇥ 18-bit multipli-
ers and a few adders. In recent FPGAs, the embedded multipliers are
tightly coupled to specific adders. The main purpose of these blocks is
efficient multiply-and-accumulate operations for digital signal process-
ing (DSP), but they also allow for building larger multipliers [104].

• Embedded multipliers are not able to compute the sticky bit as a
by-product. However, a wide OR can be computed using the fast-carry
circuitry. As soon as more than one embedded multiplier is needed, the
higher part of the result comes from an addition, and the sticky compu-
tation can be overlapped with this addition.

[J.-M. Muller et al., Handbook of Floating-point arithmetic, 2009]
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Floating-Point Addition

0/1 1

Sx 1

± Sy 1

ex

ey

1.mx

1.my

Rounding

ex – ey ≥ 2
(far path)

ex – ey < 2
(close path)

• swap to have ey ≤ ex
• determine if effective 

subtraction
• calculate ex – ey
• shift mantissa my accordingly

• cancellation may occur only if 
ex – ey < 2 

• normalization (LZC/shift)
• rounding

1 0 0 0

0/10/10/1 1

1

1

0 0 0 0 1
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Floating-Point Addition
• Representation (W,E,M)

– Exponent e on E bits
– Mantissa m on M bits

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.
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not a NaN). As the difference between ◦(y) and y is condensed in the round
digit and the sticky bit, the inexact exception will be signaled unless both the
round digit and the sticky bit are equal to 0.

7.2.5 Rounding for actual operations

Actual rounding of the result of an operation involves two additional diffi-
culties.

• Obtaining the intermediate result in normalized formmay require some
work, all the more as some of the inputs, or the result, may belong to the
subnormal range. In addition, decimal inputs may not be normalized
(see the definition of cohorts in Section 3.1.1.2).

• For decimal numbers, the result should not always be normalized (see
the definition of preferred exponents in Section 3.1.3).

These two problems will be addressed on a per-operation basis.

7.2.5.1 Decimal rounding using the binary encoding

The entire discussion in Section 7.2 assumes that the digits of the infinitely
precise significand are available in the radix in which it needs to be rounded.
This is not the case for the binary encoding of the decimal formats (see Sec-
tion 3.1.1.2). In this case, one first needs to convert the binary encoding to
decimal digits, at least for the digits needed for rounding (the round digit
and the digits to its right). Such a conversion is typically done by performing
a division by some 10k (with k > 0) with remainder. Cornea et al. [116, 117]
have provided several efficient algorithms for this purpose, replacing the di-
vision by 10k with a multiplication by a suitable precomputed approximation
to 10−k. They also provide techniques to determine to which precision 10−k

should be precomputed.

7.3 Floating-Point Addition and Subtraction

When x or y is nonzero, the addition of x = (−1)sx · |x| and y = (−1)sy · |y| is
based on the identity

x+ y = (−1)sx ·
(
|x|+ (−1)sz · |y|

)
, sz = sx XOR sy ∈ {0, 1}. (7.4)

For subtraction, a similar identity obviously holds since x − y = x + (−y).
Hence, in what follows we shall consider addition only.

The IEEE 754-2008 specification for |x| ± |y| is summarized in Tables 7.2
and 7.3. Combinedwith (7.2) and (7.4), it defines floating-point addition com-
pletely provided x or y is nonzero. When both x and y are zero, the standard
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Arithmetic Support in Latest Chips?
• Hopper GH100 GPU from Nvidia
– FP8 support in tensor cores provides up to 4x speedup


