
1

Hardware Accelerators for Deep
Neural Networks
Energy Efficiency of Hardware Acceleration

Olivier Sentieys
Univ. Rennes, Inria, IRISA
olivier.sentieys@irisa.fr

Lignes connectiques de processeur.
Bouclier de protection (résistance).
Masque (visage) celtique.

Typographie moderne.

PROP. 5

https://gitlab.inria.fr/sentieys/dnn_acc

https://gitlab.inria.fr/sentieys/dnn_acc

22

What will you learn in this course?
• Principle and design of DNN Accelerators
– Energy efficiency of hardware accelerators
– Speeding up the GEMM kernel
– Designing hardware accelerators for

GEMM/CONV
– Available accelerators for DNNs
– Computing at the right precision

–2https://gitlab.inria.fr/sentieys/dnn_acc

https://gitlab.inria.fr/sentieys/dnn_acc

33

Complexity Issues of Deep Neural Networks

• Two main tasks
– training - determine set of network

parameters to solve a task
(minimize a loss on a training set)

– inference - given an input, compute
(forward propagate) using the
trained network

ResNet-50
training batch=4

Poplar® graphs have many
more vertices than
TensorFlow graphs – typically
millions, to load-balance a
machine executing tens of
thousands of codelets in
parallel.

The TensorFlow IPU backend
uses the Poplar® libraries to
break TensorFlow compute
functions and large tensors
into fragments.

ResNet-50
training batch=4

Poplar® graphs have many
more vertices than
TensorFlow graphs – typically
millions, to load-balance a
machine executing tens of
thousands of codelets in
parallel.

The TensorFlow IPU backend
uses the Poplar® libraries to
break TensorFlow compute
functions and large tensors
into fragments.

Inference outputNew input data
! "! !

#[#]
#[%] #[&]

#[']
#[(]

!["]
![$]

![%]
![&]

![']

44

Computing Demand of AI
• is higher than what computer architectures can bring

55

Evolution of the Number of Parameters
• is much higher than available (on-chip) memory capacity

66

Memory Bottleneck

Data movement
• move input data & model from

memory to compute units
• send partial results back to

memory

Computations
• vector/matrix manipulations
• done on CPU, GPU, or

custom accelerators (e.g.,
FPGA, ASIC)

77

Evolution of Bandwidth
• is much slower than FLOPS

8

On the Computer
Architecture Side
The Hardware Lottery

Sarah Hooker, The Hardware Lottery, Communications of The ACM, 2021

99

Silicon Technology Evolution
• Now several billions or transistors!

– Apple M1: 33 B.Tr, 5nm, 2.5cm2

• Amazing compute progress
– 12 orders of magnitude performance improvement in last 60 years
– A supercomputer in every body’s pocket

G

S

D

n+ n+L

Semiconductor technology enabled
amazing compute progress

12 orders of magnitude performance improvement in
last 60 years.

A supercomputer in every body’s pocket.

Access to human knowledge at your fingertips.

7
2022

1965

Palo Alta Electron

CDC 6600
3 Mega FLOPS

HPE Frontier
1.6 Exa FLOPS

HPE Frontier
1.6 Exa FLOPS

1010

The Many Walls of Computer Architecture

Power Wall
limit of ~25W/cm2

Memory Wall
Microarchitecture

Increasing Complexity
Dark Silicon

More transistors
Saturating perf.

1111

Energy Cost in a Chip
• Fetching operands costs more than computing

CMOS 28nm

500 pJ Efficient
off-chip link

16 nJ DRAM
Rd/Wr

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

256-bit
buses

50 pJ
256-bit access

8 kB SRAM

[after B. Dally, NVIDIA & Stanford]

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2

1212

Energy Efficiency

• Power budget is fixed
• How to increase energy efficiency while

maintaining performance?

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑆𝑒𝑐𝑜𝑛𝑑

𝐽𝑜𝑢𝑙𝑒𝑠
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑤𝑒𝑟	 =	 ×

Performance
e.g., Tera op/s (TOPS)

Energy
Efficiency
e.g., TOPS/Watt

1313

Improving Energy Efficiency
• Technology?

– What can advanced technology nodes bring?
– Dark Silicon Era

• Accelerate
– Energy advantages of specialized hardware

• Approximate
– Playing with precision and number representations to

reduce energy

• Key message of this course: specialized hardware
that computes at the right (lowest) precision

1414

Outline
• Part I: the clear need for specialized hardware

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– A bit of arithmetic
– Inference and training with low precision

1515

Energy Cost in a Processor
• Operations
– 32-bit addition: 0.05pJ
– 16-bit multiply: 0.25pJ
– 64-bit FPU: 20pJ/op

• Instructions
– fetch, decode, read two

operands from RF,
execute, write back

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

General Purpose Processor
91 pJ/instruction

1616

Achieving Higher Performance
• Pushing clock frequency…
• Branch/value prediction
• Cache memory
• In-core parallelism
– Superscalar
– Out of order execution
– VLIW+good compilers

• Multiple cores on a single chip

17

Pushing for Hardware
Acceleration!

1818

What is a Hardware Accelerator?
• Specialized hardware for a

given set of kernels
• With limiting

programmability
• Computes just right!

• e.g., Matrix Multiplication

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Memory Buffer

M
em

or
y

Bu
ffe

r

External Memory

19–19

Energy Savings in Specialized HW
D-cache

6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

GPP: 91 pJ/instr.

D-cache
6% Datapath

3%

Energy
Saved
91%

Specialized Core: 8 pJ/instr.

2020

An example: Bitcoin Mining
Type Model Mhash/s Mhash/J Power (W)

GPP Intel Xeon X5355 (dual) 22.76 0.09 120

GPP ARMCortex-A9 0.57 1.14 1.5

GPP Intel Core i7 3930k 66.6 0.51 130

GPU AMD 7970x3 2050 2.41 850

GPU Nvidia GTX460 158 0.66 240

ASIC AntMiner S1 180.000 500 360

ASIC AntMiner S5 1.155.000 1957 590

FPGA Bitcoin Dominator X5000 100 14.7 6.8

FPGA Butterflylabs Mini Rig 25.200 20.16 1250

2121

Apple Silicon M2 Max
• 5 nm (TSMC 2G), 40 billion

transistors
• 8 performance cores

– 38 Int MOPS, 56 MFLOPS
– NEON vector processor

• 4 power-efficiency cores
• Unified memory (32-96 GB

LPDDR5-6400) next to the (400
GB/s bandwidth) for GPU&CPU

• 89W (peak CPU+GPU), CPU
36W (peak)

• High-performance media
engine

• 16 TOPS Neural Engine
– 10,000 times the GPU speed

for ML tasks
– “power-efficient” (but no

reported power figures)

22

Accelerators for MLAccelerators for ML

21

?
CPU GPU FPGA TPU Next

Threads
SIMD

Massive Threads
SIMD
HBM

LUTs
DSP
BRAM

MM Unit
BRAM

???

23

Key Takeaways
• Energy efficiency requires deeply specialized

hardware
– which also may come with pain from the

programmer/designer
• Basic tasks of DNNs are easy to accelerate
– this course is mainly focused on matrix multiplication

• Number representations and precisions are key
techniques
– also memory access since execution is often memory-

bound

24

TARAN Team at a Glance
Domain-Specific Computers
in the post Moore’s law era

• ~40 people, Rennes and Lannion campuses
• Our focus: hardware specialization and

acceleration
– Energy Efficiency of hardware accelerators
– Domain-specific architectures, languages and

compilers
• Automatically create hardware that is resilient,

secured, and computes just right
– From Sensors to Clouds

Rennes

Lannion

Lignes connectiques de processeur.
Bouclier de protection (résistance).
Masque (visage) celtique.

Typographie moderne.

PROP. 5

25

Outline
• Part I: the clear need for specialized hardware

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– A bit of arithmetic
– Inference and training with low precision

26

Speeding Up GEMM
Efficient Processing of Matrix Multplication

Focus on Convolution Neural Networks (CNN)

27

2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

H: Height of Input Activation
W: Width of Input Activation
R: Height of Weight
S: Width of Weight
T: Height of Output Activation
U: Width of Output Activation

Input Activations Weights Output Activations

R

S

T

U

Example is with:
§ stride=1

of rows/columns traversed per step
§ padding=0

of zero rows/columns added

28

2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

𝐴 = 𝑎×1 + 𝑏×2 + 𝑐×3 + 𝑓×4 + 𝑔×5 + ℎ×6 + 𝑘×7 + 𝑙×8 + 𝑚×9

Input Activations Weights Output Activations

R

S

T

U

(R×S) Multiply and Accumulate (MAC) operations

29

2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

𝐵 = 𝑏×1 + 𝑐×2 + 𝑑×3 + 𝑔×4 + ℎ×5 + 𝑖×6 + 𝑙×7 + 𝑚×8 + 𝑛×9

Input Activations Weights Output Activations

R

S

T

U

(R×S) Multiply and Accumulate (MAC) operations

stride=1

30

2D Convolution
a b c d e

f g h i j

k l m n o

p q r s t

u v w x y
*

1 2 3

4 5 6

7 8 9
=

A B C

D E F

G H I

H

W

Input Activations Weights Output Activations

R

S

T

U

(T×U × R×S) MAC operations in total

A lot of potential data reuse for memory accesses

𝑇 =
𝐻 − 𝑅
𝑠𝑡𝑟𝑖𝑑𝑒 + 1

𝑈 =
𝑊 − 𝑆
𝑠𝑡𝑟𝑖𝑑𝑒 + 1

31

3D Convolution

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

* =

W

Input Activations Weights Output Activations

C: # of Input Channels
K: # of Output Channels
N: Batch size

C

S

1 2 3

4 5 6

7 8 9

R

C

S

1 2 3

4 5 6

7 8 9

R

C

K

U

A B C

D E F

G H I

T

K

N

32

Convolution Loop Nest
for (n=0; n<N; n++) { // for each Batch
for (k=0; k<K; k++) { // for each Output Channel
for (t=0; t<T; t++) { // OA Height
for (u=0; u<U; u++) { // OA Width
OA[n][k][t][u]= 0;
for (r=0; r<R; r++) { // W Height
for (s=0; s<S; s++) { // W Width
for (c=0; c<C; c++) { // for each Input Channel
h = t * stride – pad + r;
w = u * stride – pad + s;
OA[n][k][t][u] += IA[n][c][h][w] * W[k][c][r][s];

}
}

}
Activation(OA[n][k][t][u]);

}
}

}
}

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

* =
H

W

C

S

1 2 3

4 5 6

7 8 9
R

C

S

1 2 3

4 5 6

7 8 9
R

C

K

U

A B C

D E F

G H I
T

K

N

CONV
kernel

33

Opportunities for
Data Reuse

34

Convolution Kernel

* =

W

Weights Output Activations

C: # of Input Channels
K: # of Output Channels
N: Batch size

C

S

R

C

S

R

C
K

U

T

K

N

Input Activations
(feature maps)

35

Opportunities for Data Reuse
• Input reuse
– different filters

are applied to the
same input

– each input is
reused K times*

Input Activations
(feature maps)

Weights

K

C: # of Input Channels
K: # of Output Channels
N: Batch size

36

Opportunities for Data Reuse
• Filter (weight) reuse
– when processing a

batch of size N, all
inputs are applied to
the same filter

– each filter weight is
reused N times

*

Input Activations
(feature maps)

Weights

C: # of Input Channels
K: # of Output Channels
N: Batch size

C

N

C

37

Opportunities for Data Reuse
• Conv. reuse
– filters slide across

different positions of
the same input

– each weight is reused
≈T.U times

– each input is reused
≈R.S times

*
Input Activations
(feature maps)

Weights

C: # of Input Channels
K: # of Output Channels
N: Batch size

S

R

W
= T

Output Activations

38

Other Kernels
• Fully-Connected Layer

– H=W=R=S=T=U=1
• Depth-Wise Convolution

– K=1
• Pooling Layer

– [MAX, AVG], pooling stride and kernel size
• BatchNorm Layer

– provides zero-mean, unit-variance activations
• Activations

– ReLU, L-ReLU, sigmoid, tanh, clipping

39

Speeding Up the GEMM Kernel
for (m=0; m<M; m++)
for (n=0; n<N; n++)
for (k=0; k<K; k++)

C[m][n] += A[m][k] * B[k][n]

𝐶!×# = 𝐴!×$×𝐵$×#

note: a register should be used instead of C[m][n]
note: C[m][n] should be intialized to 0

M

K
m

K

N

M

N

Output
Activations

C

Input
Activations

A

Weights
B

k
nk

Baseline

40

Speeding Up the GEMM Kernel
m=0
n=0
for (k=0; k<K; k++)

 C[m][n] += A[m][k] * B[k][n]

m

k
nk

Traversal Order

Baseline

41

Speeding Up the GEMM Kernel
m=0
n=1
for (k=0; k<K; k++)

 C[m][n] += A[m][k] * B[k][n]

m

k
nk

– Assuming the storage is
row-major, what
happens in the cache
memory?

– For which matrix?

Traversal Order

Baseline

42

Caching
• CPU caches are orders of magnitude faster, but much

smaller, so using them correctly is critical
– Automatically managed by the CPU.
– Every time we fetch data from the main memory, the CPU

automatically loads it and its neighboring memory into the
cache, hoping to utilize locality of reference.

43

Caching
• In our case:

– once we access
A[m, k], the next
element in the
row, A[m, k+1] is
already cached

– but we get a
cache miss for
each data from
matrix B fetched
B[k, n]

for (m=0; m<M; m++)
for (n=0; n<N; n++)
for (k=0; k<K; k++)

 C[m][n] += A[m][k] * B[k][n]

Baseline

44

Speeding Up the GEMM Kernel
for (m=0; m<M; m++)
for (n=0; n<N; n++)
for (k=0; k<K; k++)

 C[m][n] += A[m][k] * B[k][n]

M

K

K

N

M

NTraversal Order

Baseline

45

Speeding Up the GEMM Kernel

• Reordering the loops
from m,n,k to m,k,n
• Improve data locality
 (better cache usage)

for (m=0; m<M; m++)
for (k=0; k<K; k++)
for (n=0; n<N; n++)

 C[i][j] += A[i][k] * B[k][j]

Baseline Reordered

46

Speeding Up the GEMM Kernel
m=0
k=0
for (n=0; n<N; n++)

 C[i][j] += A[i][k] * B[k][j]

M

K
m

K

M

N

k
nk

Traversal Order

Baseline Reordered

47

Speeding Up the GEMM Kernel
m=0
k=1
for (n=0; n<N; n++)

 C[i][j] += A[i][k] * B[k][j]

M

K
m

K

M

N

k
nk

Traversal Order

– Assuming the storage is
row-major, what
happens in the cache
memory?

– Why does this loop
reordering result in
better cache usage?

Baseline Reordered

48

Speeding Up the GEMM Kernel

• Reordering the loops
from m,n,k to m,k,n
• Improve data locality
 (better cache usage)

for (m=0; m<M; m++)
for (k=0; k<K; k++)
for (n=0; n<N; n++)

 C[i][j] += A[i][k] * B[k][j]

Baseline Reordered

49

Speeding Up the GEMM Kernel
• Tiling
– Looping on smaller submatrices (tiles of size T ×	T)

• small enough to fit in the cache

	 	

M

K

K

N

M

NT

A1 A2 B1 C1

B4

𝑪𝟏 = 𝑨𝟏×𝑩𝟏 + 𝑨𝟐×𝑩𝟒

50

Speeding Up the GEMM Kernel
• Tiling
– Looping on smaller submatrices (tiles of size T ×	T)

• small enough to fit in the cache

M

N

C8

	 	

M

K

K

N

A5 A6

B2

B5

𝑪𝟖 = 𝑨𝟓×𝑩𝟐 + 𝑨𝟔×𝑩𝟓

51

Speeding Up the GEMM Kernel
• Tiling
– Looping on smaller submatrices (tiles of size T ×	T)

for (m=0; m<M/T; m++) // Tile row index
for (n=0; n<N/T; n++) // Tile column index
for (k=0; k<K/T; k++) // Tile inner index

for (mt=0; mt<T; mt++) // Tile-level mult.
for (nt=0; nt<T; nt++)
for (kt=0; kt<T; kt++)

 C[m*T+mt][n*T+nt] += A[m*T+mt][k*T+kt]
 * B[k*T+kt][n*T+nt]

note: for this code M, N and
K must be divisible by T

Tiling

52

Speeding Up the GEMM Kernel

• More of Tiling
– Tile inner loops can be vectorized and unrolled
– Tiles can run in parallel (multithreading)

Results on CPU
(Apple Silicon M2 Pro)

53

Try it yourself
git clone https://gitlab.inria.fr/sentieys/dnn_acc.git
cd GEMM
look at the C code: baseline.c, baseline_reordered.c, opti-l1.c,
opti-l2.c
make all

How to add SIMD and vectorization?

https://gitlab.inria.fr/sentieys/dnn_acc.git

54

Designing Hardware
Accelerators for
GEMM/CONV

55

Building the Accelerator

Pipeline (Dataflow)
Architecture

Global memory

L0

In

OA

O

OAL1 L2
W W W

Li: Layer i

Global
Architecture

Gl
ob

al
 m

em
or

y

W

In

IA

OA

Sequential
Architecture

56

Building the Accelerator
• Sequential Architecture

57

Building the Accelerator
• Dataflow Architecture

58

Exploiting Data Reuse in PE Array
• Temporal Architecture

– SIMD (CPU), SIMT (GPU)
– Classical Memory Hierarchy

• Spatial Architecture
– Dataflow accelerators

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Memory Buffer

M
em

or
y

Bu
ffe

r

External Memory

Memory Buffer (or Cache)

ALU ALU ALU ALU

Register File

External Memory

59

Exploiting Data Reuse
• Why reuse is important?
– Relative energy costs
– Memory access is the bottleneck

Computer arithmetic
I at the core of computing we find number representations (integer

and real) + basic arithmetic operations (e.g. +, ◊, ÷, Ô
)

I energy consumption varies a lot between numeric formats

Task: optimize number format and values for target application accuracy

5/13

X

+
RF

PE

SRAMDRAM SRAM DRAM

EnergyMAC: 1xPE: 2xSRAM: 6x
(cache, buffer)

DRAM: 200x
(external)

60

Exploiting Data Reuse
• Temporal Reuse

– e.g., memory hierarchy
– the same data is used more than

once over time by the same PE

• Temporal and Spatial Reuse
– Memory hierarchy and multiple

PEs

• Spatial Architecture
– e.g., systolic, multicast
– the same data is used by more

than one PE at different spatial
locations of the hw

X
+RF

PE

SRAMDRAM PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE

PE

PE

PE

PE

systolic multicast

61

Back to the GEMM Kernel
for (m=0; m<M; m++) {
for (n=0; n<N; n++) {
C[m][n] = 0;
for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
}

𝑪𝑴×𝑵 = 𝑨𝑴×𝑲×𝑩𝑲×𝑵

M

K

K

N

Output
Activations

C

Input
Activations

A

Weights
B

62

Accelerating GEMM
• Parallelizing most inner loop

– (1) Adder tree
• Typical width: 8-64

– e.g. NVDLA, NVIDIA Tensor cores, FINN

for (m=0; m<M; m++) {
for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
}

for: temporal execution order
parallel_for: parallel execution Shao Spring 2021 © UCBHardware for Machine Learning 22

Datapath Optimization 1: Spatial-K
for (m=0; m<M; m++) {

for (n=0; n<N; n++) {
OA[n,m] = 0;
spatial_for (k=0; k<K; k++) {

OA[n,m] += IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}X X X X

+ +

+
+

OA-REG

• Type 1: Adder Tree
• Example: NVDLA, DianNao
• Typical width: 8-64
• Applicable to any accumulation dimensions

• E.g., R, S, C in convolution

[Credit: Sophia Shao, Hardware for
Machine Learning, Course@UC Berkeley]

63

Accelerating GEMM
• Parallelizing most inner loop
– (2) Systolic Multiply-And-Accumulate (MAC)

• Typical width: 8-256

– e.g. Gemmini, Google TPU
for (m=0; m<M; m++) {
for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
}

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

64

Accelerating GEMM
• Parallelizing second inner loop
– (3) Multicasting a (sub)line of weights

• Typical width: 8-16
– e.g. NVDLA, NVIDIA Tensor cores

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
}

Shao Spring 2021 © UCBHardware for Machine Learning 24

Datapath Optimization 2: Spatial-N
for (m=0; m<M; m++) {

spatial_for (n=0; n<N; n++) {
OA[n,m] = 0;
for (k=0; k<K; k++) {

OA[n,m] += IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}
• Type 1: Direct-wiring multicast
• Example: NVDLA, DianNao
• Typical width: 8-16
• Applicable to any non-accumulation

dimensions

X X X X

+ +++
[Credit: Sophia Shao, Hardware for
Machine Learning, Course@UC Berkeley]

for: temporal execution order
parallel_for: parallel execution

65

Shao Spring 2021 © UCBHardware for Machine Learning 25

Datapath Optimization 2: Spatial-N
for (m=0; m<M; m++) {

spatial_for (n=0; n<N; n++) {
OA[n,m] = 0;
for (k=0; k<K; k++) {

OA[n,m] += IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}
• Type 2: Systolic multicast
• Example: TPU, Gemmini
• Typical width: 8-256
• Applicable to any non-accumulation

dimensions

X X X X

+ +++

IA
-R

EG

IA
-R

EG

IA
-R

EG

Accelerating GEMM
• Parallelizing second inner loop
– (4) Systolic multicast

• Typical width: 8-256

– e.g. Gemmini, Google TPU

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
} [Credit: Sophia Shao, Hardware for

Machine Learning, Course@UC Berkeley]

66

Shao Spring 2021 © UCBHardware for Machine Learning 26

Datapath Optimization Combined: NVDLA
for (m=0; m<M; m++) {

spatial_for (n=0; n<N; n++) {
OA[n,m] = 0;
spatial_for (k=0; k<K; k++) {

OA[n,m] += IA[m, k]
* W[k, n];

}
OA[n,m] = Activation(OA[n,m]);

}
}

• Adder-tree accumulation
• Direct-wiring multicast

MAC Cell

Accelerating GEMM
• Parallelizing second and most inner loops
– (1)+(3) Adder Tree + Multicast
– e.g. NVDLA, FINN

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
} [Credit: Sophia Shao, Hardware for

Machine Learning, Course@UC Berkeley]

67

Accelerating GEMM
• Parallelizing second and most inner loops
– (2)+(4) Systolic MAC + Systolic Multicast
– e.g. Gemmini, Google TPU

for (m=0; m<M; m++) {
parallel_for (n=0; n<N; n++) {
C[m][n] = 0;
parallel_for (k=0; k<K; k++) {

 C[m][n] += A[m][k] * B[k][n];
 }
 }
} [Credit: Sophia Shao, Hardware for

Machine Learning, Course@UC Berkeley]

68

Systolic Arrays
• Replace single Processing Element (PE) with an array of

regular PEs

• Orchestrate data flow for high throughput with less memory
access than classical architectures

• Each PE may have (small) local instruction and data memory
• Analogy with the heart blood (many)cells heart

Mem

PE

Mem

PE PE PE PE

69

Systolic Arrays are New?

70

Systolic Array Matrix Multiplication
b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,0 b1,3

b2,0 b2,1 b2,0 b2,3

b3,0 b3,1 b3,0 b3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,0 a1,3

a2,0 a2,1 a2,0 a2,3

a3,0 a3,1 a3,0 a3,3

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,0 c1,3

c2,0 c2,1 c2,0 c2,3

c3,0 c3,1 c3,0 c3,3

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

71

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

b1,0

b0,0

a0,3 a0,2 a0,1 a0,0

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

bi,j

ak,l

X

+

cm,n

cm,n += ak,l x bi,j

ak,l

bi,j

time

• Output (C)
Stationary

72

• Cycle 1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

b1,0

b0,0

a0,3 a0,2 a0,1 a0,0

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,0 x b0,0

73

• Cycle 2

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

b1,0

a0,3 a0,2 a0,1

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b3,3

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,1 x b1,0
+

a0,0 x b0,0

a0,0 x b0,1

a1,0 x b0,0

b0,0

a0,0

74

• Cycle 3

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

b2,0

a0,3 a0,2

b3,1

b2,1

b1,1

b3,2

b2,2

b1,2

b0,2

b3,3

b2,3

b1,3

b0,3

a1,3 a1,2 a1,1

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

b0,0

a0,0

75

• Cycle 4

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,0

a0,3

b3,1

b2,1

b3,2

b2,2

b1,2

b3,3

b2,3

b1,3

b0,3

a1,3 a1,2

a2,3 a2,2 a2,1

a3,3 a3,2 a3,1 a3,0
b0,0

a0,0 C0,0

76

• Cycle 5

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,1

b3,2

b2,2

b3,3

b2,3

b1,3

a1,3

a2,3 a2,2

a3,3 a3,2 a3,1

C0,0 C0,1

C1,0

77

• Cycle 6

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,2

b3,3

b2,3

a2,3

a3,3 a3,2

78

• Cycle 7: all PEs contain Ci,j results
• Ci,j values can be shifted to last column/row

through the PEs at each cycle

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b3,3

a3,3

79

• Weight (B)
Stationary
– First phase:

load weights
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

b0,0

b1,0

b2,0

b3,0

b0,1

b1,1

b2,1

b3,1

b0,2

b1,2

b2,2

b3,2

b0,3

b1,3

b2,3

b3,3 time

80

• Weight (B) Stationary
– Second phase:

matrix multiplication

a0,3 a0,2 a0,1 a0,0

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

time

bi,j

ai,j

X

+

acc

ppi+1,j = ai,j+1 x bi+1,j + ppi,j

ai,l+1

bi+1,j

ppi,j

ppi+1,j

PEi,j

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,”

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

81

Systolic Array Matrix Multiplication (WS)
• Cycle 1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3 a0,2 a0,1 a0,0

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,0 x b0,0

82

Systolic Array Matrix Multiplication (WS)
• Cycle 2

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3 a0,2 a0,1

a1,3 a1,2 a1,1 a1,0

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,1 x b0,0 a0,0 x b0,1

a1,0 x b1,0
+

a0,0 x b0,0

pp1,0

a0,0

83

Systolic Array Matrix Multiplication (WS)
• Cycle 3

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3 a0,2

a1,3 a1,2 a1,1

a2,3 a2,2 a2,1 a2,0

a3,3 a3,2 a3,1 a3,0

a0,0a0,1

a1,0

pp1,0

pp2,0

a0,2 x b0,0 a0,1 x b0,1

a1,1 x b1,0 +
a0,1 x b0,0

a0,0 x b0,2

a2,0 x b2,0 +
a1,0 x b1,0 +
a0,0 x b0,0

a1,0 x b1,1 +
a0,0 x b0,1

84

Systolic Array Matrix Multiplication (WS)
• Cycle 4

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a0,3

a1,3 a1,2

a2,3 a2,2 a2,1

a3,3 a3,2 a3,1 a3,0

a0,0

c0,0 =
a3,0 x b3,0 +
a2,0 x b2,0 +
a1,0 x b1,0 +
a0,0 x b0,0c0,0

85

• Cycle 5
– New inputs can start to be broadcasted

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a1,3

a2,3 a2,2

a3,3 a3,2 a3,1

c1,0

c0,0
c0,1

a’0,3

86

• Cycle 6

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

a2,3

a3,3 a3,2

c2,0

c1,0
c0,0

c1,1

c0,1
c0,2

87

• Cycle 7
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PEa3,3

c3,0

c2,0
c1,0
c0,0

c2,1

c1,1
c0,1

c1,2

c0,2
c0,3

88

• Cycle 10: all Ci,j
results have
been outputted

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

c3,0
c2,0
c1,0
c0,0

c3,1
c2,1
c1,1
c0,1

c3,2
c2,2
c1,2
c0,2

c3,3

c2,3
c1,3
c0,3

89

Outline
• Part I: the clear need for specialized hardware

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– A bit of arithmetic
– Inference and training with low precision

90

Accelerators for ML

• Accelerators: GPU, TPU
• Open-source accelerators: NVDLA, Gemmini
• FPGA: overlays, dataflow (e.g., FINN)

Accelerators for ML

21

?
CPU GPU FPGA TPU Next

Threads
SIMD

Massive Threads
SIMD
HBM

LUTs
DSP
BRAM

MM Unit
BRAM

???

91

GV100

21B transistors
815 mm2

80 SM
5120 CUDA Cores
640 Tensor Cores

16 GB HBM2
900 GB/s HBM2

300 GB/s NVLink

*full GV100 chip contains 84 SMs

More details - Volta: Programmability and Performance (HotChips 2017)
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf

GPU
• NVIDIA Volta GV100 (2017, 14nm)

• NVIDIA Hopper GH100 (2022, 4nm)
– 144 SMs

92

Volta SM

TEX

Sub-
Core

L1 D$ & SMEM

Sub-
Core

Sub-
Core

Sub-
Core

L1 I$
SM

GPU
• Volta GV100: SM’s details

93

NVIDIA Tensor Cores
• Mixed-Precision Matrix Math
– 4x4 matrices operations in one cycle

10/01/18 Stanford CS 217 52

Tensor Core Unit of Nvidia

Tensor Core Throughputs
Multiply-Accumulates per clock per SM
(multiply by 2x for ops counts)

(C) NVIDIA 9

FP32 FP16 INT8 INT4 INT1
Volta 64 512
Turing 64 512 1,024 2,048 8,192

94

NVIDIA GPU
• Highest Peak Performance

• A new chip in less than two years now…

95

GPU
• GPU have high control overhead

• But also have very efficient tensor cores

• Last generation: Hopper GH100 GPU
– 144 SMs with 128 FP32 cores, 64 FP64 cores, 64 INT32 cores, and four

Tensor Cores per SM
– Support for FP8 format
– 4nm, 700 Watts...

Half-precision Fused Multiply-Add

Half-precision 4-way Dot Product

H.-p. Matrix Multiply and Acc.

96

TPU: Tensor Processing Unit (Google)
• TPUv1

– 2016, 28nm, 700MHz
– 8GB DDR3, 28MB on-chip mem
– 75W, 23 TOPS

• TPUv3
– 2018, 16nm, 940 MHz
– 32GB HBM, 32 MB
– 450W, 92 TOPS

TPU Card●
●

Up to 4 cards per serverStanford CS217 20

97

TPU
• Coarse-grained matrix

multiply and data read/write
instructions

• Compute intensive
– 64K MACs per cycle

• Memory intensive
– 4 MB of on-chip

Accumulator Memory
– 24 MB of on-chip Unified

Buffer (activation memory)
– Two 2133MHz DDR3 DRAM,

8 GiB of off-chip (weight
DRAM)

• >25X as many MACs vs GPU

Shao Spring 2021 © UCBHardware for Machine Learning 38

Tensor Processing Unit
• Inst. Decoding Logic:

• Coarse-grained matrix multiply and data
read/write instructions

• Datapath:
• Spatial-K: Systolic Accumulation

• Multi-cycle with registers
• Spatial-N: Systolic multicast

• Multi-cycle with registers
• Better scalability

• Memory
• Custom systolic registers
• Dedicated accumulation and weight buffers
• Double-buffered, weight-stationary dataflow

TPU

98

TPU
• Matrix Multiply Unit: 256x256

(65,536) 8-bit MAC as a systolic
array
– Peak: 92 TOPS

• 2x65,536x700MHz
• Datapath:

– Parallel-K: systolic accumulation
– Parallel-N: systolic multicast

• Memory
– Custom systolic registers
– Dedicated accumulation and

weight buffers
– Double-buffered, weight-

stationary dataflow

47

WS Example: Google TPU

weights

activations

psums

Top-Level Architecture Matrix Multiply Unit

Parallel processing: weights from different 2D planes

C

M

[Jouppi et al., ISCA 2017]

99

Accelerators for ML

• Accelerators: GPU, TPU
• Open-source accelerators: NVDLA, Gemmini
• FPGA: overlays, dataflow (e.g., FINN)

Accelerators for ML

21

?
CPU GPU FPGA TPU Next

Threads
SIMD

Massive Threads
SIMD
HBM

LUTs
DSP
BRAM

MM Unit
BRAM

???

100

NVDLA
• NVIDIA Deep Learning Accelerator
– 8-16 bit datapath, weight compression
– Int8, Int16, FP16
– large-small config.

– open-source
• system Verilog

101

Gemmini
• UC Berkeley
– open-source (Chisel), systolic array

[Gemmini, DAC 2021]
https://github.com/ucb-bar/gemmini

https://github.com/ucb-bar/gemmini

102

Gemmini
• Weight-Stationary or Output-Stationary dataflow

https://github.com/ucb-bar/gemmini

https://github.com/ucb-bar/gemmini

103

Accelerators for ML

• Accelerators: GPU, TPU
• Open-source accelerators: NVDLA, Gemmini
• FPGA: overlays, dataflow (e.g., FINN)

Accelerators for ML

21

?
CPU GPU FPGA TPU Next

Threads
SIMD

Massive Threads
SIMD
HBM

LUTs
DSP
BRAM

MM Unit
BRAM

???

104

FPGA
• Xilinx Alveo U55C card
– PCIe® Gen3x16 or dual Gen4x8

• Ethernet 2 x 100 Gb/s
• XCU55 UltraScale+ FPGA
– 16 GB High-Bandwidth Memory

(HBM2), 460GB/s bandwidth
– 1.3M CLBs
– 270+70M BRAM
– 9K DSP blocks, 4 INT8 MAC/DSP
– 28 TOPS INT8 (peak, 800MHz)

105

HLS vs. Overlays
• HLS synthesizes C-like high-level design and performs

code transformations and synthesis optimizations
• FPGA overlay is a coarse-grained design abstraction layer

over fine-grained FPGA resources

y
out_data

Finite State Machine (FSM)
C0

x3

out_ce
out_addr

out_we

x

C1 C2 C3

+b

a

c

in_data

+
*

void foo(int in[3], char a, char b, char c, int out[3])
{

int x,y;
for(int i = 0; i < 3; i++) {

x = in[i]; y = a*x + b + c;
out[i] = y;

}
}

in_addr
in_ce

AddSub AddSub Memory
Access MUL

AddSub

Scheduling
Phase

Initial
Binding
Phase

AddSub AddSub Block
RAM DSP48

Target
Binding
Phase

+

Clock Cycle

Control
Logic
Extraction

(a) Scheduling, Binding, and Control Logic Extrac-
tion phases in Vivado HLS compilation flow

RAM

C Program

DSP

FF

LUT

Instruction Memory

ALU

FF

N

FF
FF

S
W
E
M

FF

D1 D2

ADDR1 ADDR2
W/R1 W/R2

Q2Q1

FF N
S
W
E
MData

Mem

User Design

SCGRA Overlay

FPGA Device

(b) ArchSyn using an SCGRA overlay between user design and FPGA
device

Figure 1: Overview of Vivado HLS & ArchSyn.

And then in target binding phase, the operations are bind-
ing to physical components inside the target FPGA device.
Finally a FSM is created to control when the registers store
data and the state of any I/O control signals.

2.2 ArchSyn
As illustrated in Figure 1(b), an layer called Soft Coarse-

Grained Reconfigurable Array (SCGRA) Overlay is proposed
by ArchSyn [11]. SCGRA is an overlay between user high-
level design and target FPGA hardware. Instead of mapping
user high-level design to FPGA resources directly as most
HLS tools, the process of ArchSyn compilation is divided
into two steps.

First, user high-level design is mapped to the SCGRA
overlay. The SCGRA overlay consists of an array of directly
connected simple configurable processing elements (CPEs).
Each CPE performs primitive compute operations accord-
ing to a small local sequencer at each clock cycle. Data are
communicated via multi-hop routing within the direct in-
terconnect network. The scheduler schedules each compute
operation to execute on a particular CPE at a particular
cycle. It also determines the communication schedule of
the intermediate data among the producing and consuming
CPEs, optionally buffering them with distributed individual
memory along the path.

After mapping user high-level design to the SCGRA over-
lay, ArchSyn implements the overlay on target FPGA. The
SCGRA overlay takes advantage of reconfigurability of low-
level FPGA. Both CPEs and interconnect network can be
reconfigured at hardware implementation level. The coarse-
grained CPEs can be pre-implemented or can be tailored
according to scheduling results. The CPE implementation
is optimized towards low-level FPGA architecture.

3. EVALUATION METHODOLOGY

3.1 Evaluation Flow
In the evaluation flow, computational kernel designs in

C/C++ are first compiled into RTL designs using Vivado
HLS. Then, Vivado Design Suite transforms the RTL imple-
mentations into device configuration through logic synthe-

sis and implementation, and then reports the performance,
hardware resource utilization and power consumption met-
rics. The latest version of Vivado suite, 2015.4, is used.

With the same kernels as inputs, ArchSyn outputs RTL
design of the SCGRA overlay, which consists of an array of
CPEs. The scheduler of ArchSyn generates a sequence of
instructions, controlling execution of CPEs in the SCGRA
overlay. Except for the instruction ROM of each CPE, the
logic design of the CPE array remains unchanged, thus it
can be pre-implemented on target FPGA device. Once the
scheduler completes the scheduling, the size and content of
the the instruction ROMs are determined, and incremen-
tal implementation flow is used to implement the ROM in-
stances into each CPE. The Virtex-7 FPGA chip with most
memory resource, XC7VX1140T, is chosen as the target de-
vice to implement the SCGRA overlay design.

3.2 Computation Kernels
In our evaluation, two computation intensive application

kernels are selected, namely matrix-matrix multiplication
and fast Fourier transform.

Matrix-matrix multiplication (MxM) calculates the prod-
uct matrix C of two matrices A and B, C = A×B. If A is an
m-by-p matrix and B is a p-by-n matrix, the (i, j)-th entry
of C is defined by cij =

∑p
k=1 aik · bkj , and the product C

is an m-by-n matrix. In this paper, only the multiplication
with square matrices are evaluated.

Fast Fourier transform (FFT) is an efficient algorithm
to compute the discrete Fourier transform and its inverse,
and it is widely used in many applications, including radar,
sonar, MPEG audio compression and spectral analysis. The
most common FFT algorithm, radix-2 Cooley-Tukey, is used
as an evaluation benchmark kernel in this paper.

3.3 Computation Parallelism
To fully utilize the massively parallel compute resources

of FPGA, both Vivado HLS and ArchSyn automatically ex-
ploit computation parallelism from high-level user design to
improve computation performance while maintaining effi-
cient resource utilization and low power consumption. With
a given parallelism factor, p, ArchSyn generates an array

ACM SIGARCH Computer Architecture News 93 Vol. 44 No. 4 September 2016

106

HLS vs. Overlays
• HLS synthesizes C-like high-level design and performs

code transformations and synthesis optimizations
– FINN (Xilinx): SIMD + parallel Matrix Vector Activate Unit
– HLS4ML: "true" HLS style + reuse
– HLS Libraries: e.g., Vitis Accelerated Blas Library,

GEMM_HLS, HLS_LIB, AC_ML
• FPGA overlay is a coarse-grained design abstraction

layer over fine-grained FPGA resources
– Xilinx Deep Learning Processing Unit (DPU) + Vitis AI

software stack + runtime (XRT)
– VTA+TVM

107

TVM+VTA
• End-to-end

hardware-software
DL system stack
– hardware design
– sequential

architecture
– drivers, JIT runtime
– optimizing compiler

stack based on TVM

108

FINN
• Experimental framework from Xilinx

Research Labs
– Provides an HLS library of standard NN

layers
– Design space exploration of QNN

accelerators on FPGAs
– Generates HLS code that supports a wide

range of precisions

• Inference only, focused on Quantized NNs
– Pipelined dataflow architecture
– AXI controlled dataflow structure for low

latency

109

Outline
• Part I: the clear need for specialized hardware

– Energy efficiency of hardware accelerators
• Part II: accelerating GEMM

– DNN kernels with a focus on convolution
– Speeding up the GEMM kernel
– Designing hardware accelerators for GEMM/CONV
– Available accelerators for DNNs

• Part III: computing at the right precision
– Number representation and precision
– Inference and training with low precision

110

Computing just right!
(with the right accuracy and precision)

111

Number Representations and Precision
• Energy, delay, and area vary a lot between

numeric formats and word-length

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2

112

Humans Approximate….
But Computers Do Not!

• High-precision computations often lead to inefficiency

923
21

> 1.75

YES

923
21

> 45

NO

• No need for complex
computation

• More accurate
computation is required

113

Resilience of ANN?

• Our biological neurons are tolerant to computing
errors and noisy inputs

• Quantization of parameters and computations
provides benefits in throughput, energy, storage

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it
deosn’t mttaer in waht oredr the ltteers in a wrod are,
the olny iprmoatnt tihng is taht the frist and lsat ltteer
be at the rghit pclae. And we spnet hlaf our lfie larennig
how to splel wrods. Amzanig, no! [O. Temam, ISCA10]

114

Number Representations
• Floating-Point (FlP)

– Easy to use
– High dynamic range
– Hardware cost and power

• Fixed-Point (FxP)

– Integer arithmetic
– Efficient operators

• Speed, power, cost
– Harder to use...

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

s: sign, m: mantissa, e: exponent
x = p⇥K

p: integer, K=2-n: fixed scale factor

115

What can be Customized?
• Floating-Point (FlP)
• Precision

– Exponent (E) and Mantissa
(M) bit-width

– e and m both impact
accuracy

• Play with exponent bias
• Sub-normal numbers or

not?
• 0, ∞, NaN?
• Rounding modes

– stochastic, to nearest,
truncation, to 0/∞

• Fixed-Point (FxP)
• Precision

– Integer (m) and fractional (n)
bit-width

– n impacts accuracy
– m impacts dynamic range
– Wordlength (W=m+n+1)

• Rounding modes
– stochastic, to nearest,

truncation, to 0/∞
• Saturation modes

– wrap, max/min

116

Energy Gains of Low Precision
• Multiplier (float) • Adder (float)

8 bits 32 bits>30x8 bits 32 bits>200x

117

Very Low-Precision floatMultiplication
• Example: 7 bits (7,5,1)

Sx 1 0/1ex 1.mx = {1.0; 1.5}

X Sy 1ey 1.my = {1.0; 1.5}0/1

ez = ex + ey + (mx AND my)
1.mz = {1.0; 1.5; 2.25}

1

1.mz = {1.0; 1.5; 1.5 or 1.0}

mz = mx OR/XOR mySz

sz = sx NXOR sy

118

How does this apply
to DNNs?

119

Low-Precision Inference
• Not only Weights, but also Activations, Per-Layer

Quantization, etc.

4-bit activations and
10-bit weights keeps
accuracy near (98.4%)
32-bit float reference

Resnet-18, CIFAR100

120

Even Worse for Training…
• Carbon footprint of DNN training

• Many more operations than inference
• More pressure on memory access
• Much more difficult to accelerate

Analyzing the carbon footprint of current natural-language processing models
shows an alarming trend: training one huge model for machine translation emits
the same amount of CO2 as five cars in their lifetimes (fuel included)

Need for a Significant Reduction of the Carbon
Footprint of Neural Network Training Hardware

[Strubell et al., ACL 2019]

121

Mixed Precision DNN Training
• GEMMs and weight

updates are performed
in custom precision

• GEMMs are performed
on GPU or FPGA kernels

• Different arithmetic
configurations for FWD,
BWD and WU operations

122

Mixed Precision DNN Training
• We can reach baseline

accuracy using lower
precision

• Too low of a precision could
lead to divergence

• A Performance-Precision
equilibrium must be found

[FPT2022]

123

Putting It All Together
• MPtorch-FPGA: a Custom Mixed Precision

Framework for FPGA-based DNN Training
[DATE2025]

Systolic Array:
C cores of N

PEs of M MAC
units

124

Results
• Optimize <N,M,C,F> configuration for a given DNN model
• Explore model accuracy for different arithmetic configurations

– FP8 multiplier, FP12 (E6M5) with Stochastic Rounding
– with less than 2% accuracy loss w.r.t FP32

FP32 baseline

FP8/FP12 SR

125

What’s next?
• Efficiency of hardware specialization
– Domain-specific architectures and languages

• Computing just right
– @design-time or @run- time

• Hardware-aware optimizations are mandatory
– Deep knowledge of the hardware is required to

propose energy-efficient DNN models

126

Design of Efficient DNN Algorithms

o Focus on reducing number of MACs and weights
o Does it translate to energy savings and reduced latency?

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

... also reduced precision

Popular efficient DNN algorithm approaches

Vivienne Sze (@eems_mit) Website: http://sze.mit.edu 26

Pruning

• Does pruning always translate into energy savings?

a b c d e

f 0 0 i 0

0 l m 0 o

p 0 r 0 t

u v 0 x y

• Solution:
structured pruning

127

Backup Slides

128

Key Metrics
• Accuracy

– Evaluate using the appropriate DNN model
and dataset

• Programmability
– Support multiple applications

• Throughput / Latency
– GOPS, frame rate, delay

• Energy / Power
– Energy per operation and memory access

• DRAM Bandwidth
• Area Cost (memory size, # of cores)

• Number of FLOPs, MACS, and Weights are
not a good proxy for energy and latency

5

Key Metrics to Evaluate DNN Hardware

• Accuracy
– Evaluate using the appropriate

DNN model and dataset

• Programmability
– Support multiple applications

• Throughput / Latency
– GOPS, frame rate, delay

• Energy / Power
– Energy per operation
– DRAM Bandwidth

• Cost
– Area (memory size, # of cores)

Computer
Vision

Speech
Recognition

DRAMCHIP
BW

MNIST

[Sze et al., CICC 2017]
[Eyeriss tutorial]

129

NVDLA

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla TSMC 16 nm process at 1 GHz

• Small configuration

INT8 MACs
(# instances)

Conv.
Buffer
(KB)

Area
(mm2)

Memory
BW

(GB/s)

ResNet50

Perf
(frames/s)

Power
(mW)

Power Eff.
(DL TOPS/W)

2048 512 3.3 20 269 388 5.4

1024 256 1.8 15 153 185 6.3

512 256 1.4 10 93 107 6.8

256 256 1.0 5 46 64 5.6

128 256 0.84 2 20 41 3.8

64 128 0.55 1 7.3 28 2.0

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla

130

NVDLA

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla TSMC 16 nm process at 1 GHz

• Large configuration
Configuration

Data
Type

Internal
RAM Size

ResNet50

INT16/FP16 512 MACs
Perf
(frames/s)

Power
(mW)

Power Eff.
(DL TOPS/W)

INT8 1024 MACs

Conv Buffer 256 KB INT8 none 165 267 4.8

Area 2.4 mm2 FP16 none 59 276 1.6

DRAM BW 15 GB/s INT8 2M 230 348 5.1

TCM R/W BW 25/25 GB/s FP16 2M 115 475 1.9

https://en.wikichip.org/wiki/nvidia/microarchitectures/nvdla

131

FPGA: DSP
• DSP Double Data Rate (DDR) technique

'38७ZLWK७(QKDQFHG७8VDJH७RI७'63
��	"��	o�0Ѵ;�	-|-�!-|;�Ő		!ő�|;1_mbt�;�bv��v;7�|o�blruo�;�|_;�r;u=oul-m1;�-1_b;�;7��b|_�|_;
7;�b1;ĺ�$_;u;=ou;ķ�|�o�bmr�|�1Ѵo1hv�=ou�|_;�	�&�-u;�m;;7;7Ĺ��m;�=ou�];m;u-Ѵ�Ѵo]b1�-m7�-mo|_;u�-|
|�b1;�|_;�=u;t�;m1��=ou�	"��vѴb1;vĺ�$_;�7b@;u;m1;�0;|�;;m�-�	�&�mo|��vbm]�|_;�	"��		!
|;1_mbt�;�-m7�-�	�&�;m_-m1;7��v-];�-u1_b|;1|�u;�bv�v_o�m�_;u;ĺ

�o|;Ĺ��ѴѴ�	�&�-u1_b|;1|�u;v�u;=;uu;7�|o�bm�|_bv�7o1�l;m|�u;=;u�|o�	�&�;m_-m1;7��v-];ķ��mѴ;vv�o|_;u�bv;
vr;1bC;7ĺ

)LJXUH����'LIIHUHQFH७EHWZHHQ७'38७ZLWKRXW७'63७''5७DQG७'38७(QKDQFHG७8VDJH

-1+�
VEQ

-1+�
VEQ

;+8�
VEQ

%

(

& &

6)7

�

�

(74���7PMGI

%�(

1

GPO�\

-1+�
VEQ

-1+�
VEQ

;+8�
VEQ

%

(

&

�

�

(74���7PMGI

%�(

1

GPO�\

;+8�
VEQ

6)7
�

(0=

6)7
�

398
�

398
�

�

%
(0=

(
(0=

&�
%W]RG

&�
%W]RG

(
%W]RG

%
%W]RG

&&
7)0

4'-2

4
4'398

4'398

6)7
�

GPO�\ GPO�\

<������������

3RUW७'HVFULSWLRQV
$_;�1ou;�|orŊѴ;�;Ѵ�bm|;u=-1;v�-u;�v_o�m�bm�|_;�=oѴѴo�bm]�C]�u;ĺ

&KDSWHU����3URGXFW७6SHFLILFDWLRQ

3*ఁ७௱Y௷௲७0DUFK७௵७௹௹ ७ZZZ௷[LOLQ[௷FRP
=\QT७'38 ७௺

132

Deep Learning Processing Unit (DPU)

• DPU: programmable engine
optimized for DNNs

• Includes
– high-performance scheduler
– hybrid computing array module
– instruction fetch unit module
– global memory pool module

• Uses a specialized instruction
set

• Sequential architecture
model APU - Application Processing Unit

PE - Processing Engine

)LJXUH����'38७7RS/HYHO७%ORFN७'LDJUDP

%49

6%1

,MKL�7TIIH�(EXE�8YFI

(49

,MKL�
4IVJSVQERGI�
7GLIHYPIV

-RWXVYGXMSR�
*IXGL�9RMX +PSFEP�1IQSV]�4SSP

,]FVMH�'SQTYXMRK�%VVE]

4) 4) 4) 4)

<������������

�_;u;ķ

Ŏ ��&�Ŋ��rrѴb1-ঞom��uo1;vvbm]�&mb|

Ŏ ���Ŋ��uo1;vvbm]��m]bm;

Ŏ 	�&�Ŋ�	;;r��;-umbm]��uo1;vvbm]�&mb|

Ŏ !���Ŋ�!-m7ol��11;vv��;lou�

'HYHORSPHQW७7RROV
$_;�*bѴbm�ţ�(b�-7oţ�	;vb]m�"�b|;�bv�u;t�bu;7�|o�bm|;]u-|;�|_;�	�&�bm|o��o�u�ruof;1|vĺ�(b�-7o
	;vb]m�"�b|;�ƑƏƐƖĺƑ�ou�Ѵ-|;u��;uvbom�bv�u;1oll;m7;7ĺ��om|-1|��o�u�Ѵo1-Ѵ�v-Ѵ;v�u;ru;v;m|-ঞ�;�b=
|_;�ruof;1|�u;t�bu;v�-m�oѴ7;u��;uvbom�o=�(b�-7oĺ

$_;�(bঞv��mbC;7�vo[�-u;�rѴ-�oul�ƑƏƐƖĺƑ�bv�u;t�bu;7�|o�bm|;]u-|;�|_;�	�&�=ou�|_;�(bঞv�Yo�ĺ

&KDSWHU����2YHUYLHZ

3*ఁ७௱Y௷௲७0DUFK७௵७௹௹ ७ZZZ௷[LOLQ[௷FRP
=\QT७'38 ७ఀ

133

Vitis AI Stack
• Vitis AI
– AI Compiler
– AI Quantizer
– AI Optimizer
– AI Profiler
– AI Library
– Xilinx Runtime

Library (XRT)

)LJXUH����9LWLV७$,७6WDFN

<MPMR\�6YRXMQI�PMFVEV]��<68

(IIT�0IEVRMRK�4VSGIWWMRK�9RMX

:MXMW�%-�1SHIPW

:MXMW�%-�
(IZIPSTQIRX�/MX

3ZIVPE]

%-�'SQTMPIV�`�%-�5YERXM^IV�`�%-�STXMQM^IV

%-�4VSJMPIV�`�%-�0MFVEV]

1SHIP�>SS 'YWXSQ�1SHIPW

8IRWSV�*PS['EJJI*VEQI[SVOW

9WIV�%TTPMGEXMSR

ou�lou;�bm=oul-ঞom�om�|_;�(bঞv����7;�;Ѵorl;m|�hb|ķ�v;;�|_;�(bࢼv����&v;u���b7;�bm�|_;�(bࢼv���
&v;u�	o1�l;m|-ࢼom�Ő&�ƐƓƒƐőĺ

$_;�r-1h-];�o=�(bঞv����7;�;Ѵorl;m|�hb|�1-m�0;�=u;;Ѵ��7o�mѴo-7;7�=uol�_;u;ĺ

/LFHQVLQJ७DQG७2UGHULQJ
$_bv�*bѴbm�ţ��o]b��!�Ť����lo7�Ѵ;�bv�ruo�b7;7�-|�mo�-77bঞom-Ѵ�1ov|��b|_�|_;�*bѴbm��(b�-7oţ
	;vb]m�"�b|;��m7;u�|_;�|;ulv�o=�|_;�*bѴbm���m7�&v;u��b1;mv;ĺ

�m=oul-ঞom�-0o�|�o|_;u�*bѴbm�ţ��o]b��!�Ť����lo7�Ѵ;v�bv�-�-bѴ-0Ѵ;�-|�|_;�*bѴbm���m|;ѴѴ;1|�-Ѵ
�uor;u|��r-];ĺ�ou�bm=oul-ঞom�-0o�|�rub1bm]�-m7�-�-bѴ-0bѴb|��o=�o|_;u�*bѴbm���o]b��!�����lo7�Ѵ;v
-m7�|ooѴvķ�1om|-1|��o�u�Ѵo1-Ѵ�*bѴbm��v-Ѵ;v�u;ru;v;m|-ঞ�;ĺ

&KDSWHU����2YHUYLHZ

3*ఁ७௱Y௷௲७0DUFK७௵७௹௹ ७ZZZ௷[LOLQ[௷FRP
=\QT७'38 ७௺௹

134

Vitis AI Stack

135

xDNN processing engine
• instruction memory
• execution controller
• element-wise processing units
• systolic array

WP504 (v1.0.1) October 14, 2018 www.xilinx.com 3

Accelerating DNNs with Xilinx Alveo Accelerator Cards

xDNN Processing Engine Architectural Highlights
• Dual Mode: Throughput-Optimized or Latency-Optimized
• Command-Level Parallel Execution
• HW-Assisted Image Tiling
• Custom Layer Support (Heterogeneous Execution)
• Systolic Array Architecture

Throughput and Latency Optimized Modes
One of the architectural features of xDNN processing engine includes two operational modes, one
for throughput optimization and another for latency optimization. In throughput optimized mode,
data flow parallelism is exploited by creating an optimized processing engine (PE) to handle
specific layers that map inefficiently to a general systolic array.

For example, the first layer of GoogLeNet v1 is an RGB layer, which represents nearly 10% of the
overall compute overhead, does not map efficiently to a systolic array that efficiently computes the
remainder of the network. In this throughput optimized mode, xDNNv3 includes an additional
systolic array customized for three input channels. The net effect of this change is higher overall
compute efficiency because the first layer of the next image can be computed while the previous
image convolution and FC layers complete their respective processing.

For applications where the lowest single-image latency is desired, users have the option of
deploying a latency-optimized version of the engine. For those applications, xDNN PE pipelining
can be adjusted to reduce latency.

X-Ref Target - Figure 1

Figure 1: xDNN Hardware Architecture

Bias

Pooling

Bias Bias Bias

Cross Bar

ReLU ReLU ReLU ReLU

Pooling Pooling Pooling Pooling

E
xe

cu
tio

n
C

on
tr

ol
le

r

S
pi

ll/
R

es
to

re
 D

M
A

 C
on

tr
ol

le
r

Image Queue

Instruction Buffer

Systolic Array

Weights DMA Controller

WP504_01_082418

Pooling/
Element-Wise

Addition

WP504 (v1.0.1) October 14, 2018 www.xilinx.com 6

Accelerating DNNs with Xilinx Alveo Accelerator Cards

Systolic Array Architecture
The xDNN processing engine leverages techniques, such as those described in the “SuperTile”
paper(1), to achieve a high operating frequency. This SuperTile DSP macro provides a relationally
placed macro that can be tiled to build larger compute arrays such as matrix multiplication and
convolutions, the most compute-intensive operations of a CNN.

Figure 6 shows an example of the logical processing element being mapped into the DSP48 and
CLB-M (LUTRAM) tiles in the FPGA. This macro cell is the fundamental processing unit within the
xDNN systolic array.

1. E. Wu et al., Xilinx Inc. IEEEXplore Digital Library, Sept. 2017, A High-Throughput Reconfigurable Processing Array for Neural Networks.

X-Ref Target - Figure 6

Figure 6: MAC and Weight Packing in DSP Macro Example
WP504_06_092418

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

1x Clock

DSP48E2

DSP48E2

CLB-M

CLB-M

CLB-M

CLB-M

1x Clock

2x Clock

2x Clock

Weight
Cache
(Pong)

Reformat
P

+ + +

Reformat

Weight
Cache
(Ping)

Weight
Cache
(Pong)

Reformat
P

+ + +

Reformat

Weight
Cache
(Ping)

FPGA Physical Slice Logical Processing Element

136

WP504 (v1.0.1) October 14, 2018 www.xilinx.com 4

Accelerating DNNs with Xilinx Alveo Accelerator Cards

Command-Level Parallel Execution
The xDNN processing engine has dedicated execution paths for each type of command (download,
conv, pooling, element-wise, and upload). This allows for convolution commands to be run in
parallel with other commands if the network graph allows it. Certain network graphs have parallel
branches of different instruction types that sometimes allow for parallel processing. For example, in
the GoogLeNet v1 inception module, the 3 x 3 max pooling layer is a prime example of a layer that
can be run in parallel with the other 1 x 1 / 3 x 3 /5 x 5 convolutions using the xDNN processing
engine. Figure 2 shows the inception module of the GoogLeNet v1 network.

As shown in Figure 3, the software can schedule 3 x 3 max pooling in parallel with 3 x 3 convolution
of the second branch.

X-Ref Target - Figure 2

Figure 2: Inception Layer in GoogLeNet v1

X-Ref Target - Figure 3

Figure 3: xDNN Scheduling of Inception Layer in GoogLeNet v1

WP504_02_092418

Filter
Concatenation

Previous
Layer

Conv 3x3 Conv 5x5 Conv 1x1

Conv 3x3
Reduce

Conv 1x1

Conv 5x5
Reduce

3x3
Max Pooling

WP504_03_092418

Conv 3x3 Reduce

Conv 5x5 ReduceParallel Execution

Conv 1x1

Conv 3x3

Conv 5x5

Conv 1x1

Time

MaxPool 3x3

xDNN processing engine
• Command-Level Parallel Execution

– Scheduling

• Hardware-Assisted Image Tiling
• Custom Network Support through Heterogeneous Execution

WP504 (v1.0.1) October 14, 2018 www.xilinx.com 4

Accelerating DNNs with Xilinx Alveo Accelerator Cards

Command-Level Parallel Execution
The xDNN processing engine has dedicated execution paths for each type of command (download,
conv, pooling, element-wise, and upload). This allows for convolution commands to be run in
parallel with other commands if the network graph allows it. Certain network graphs have parallel
branches of different instruction types that sometimes allow for parallel processing. For example, in
the GoogLeNet v1 inception module, the 3 x 3 max pooling layer is a prime example of a layer that
can be run in parallel with the other 1 x 1 / 3 x 3 /5 x 5 convolutions using the xDNN processing
engine. Figure 2 shows the inception module of the GoogLeNet v1 network.

As shown in Figure 3, the software can schedule 3 x 3 max pooling in parallel with 3 x 3 convolution
of the second branch.

X-Ref Target - Figure 2

Figure 2: Inception Layer in GoogLeNet v1

X-Ref Target - Figure 3

Figure 3: xDNN Scheduling of Inception Layer in GoogLeNet v1

WP504_02_092418

Filter
Concatenation

Previous
Layer

Conv 3x3 Conv 5x5 Conv 1x1

Conv 3x3
Reduce

Conv 1x1

Conv 5x5
Reduce

3x3
Max Pooling

WP504_03_092418

Conv 3x3 Reduce

Conv 5x5 ReduceParallel Execution

Conv 1x1

Conv 3x3

Conv 5x5

Conv 1x1

Time

MaxPool 3x3

WP504 (v1.0.1) October 14, 2018 www.xilinx.com 5

Accelerating DNNs with Xilinx Alveo Accelerator Cards

Hardware-Assisted Image Tiling
The xDNN processing engine has a built-in hardware-assisted image tiling feature to support
networks with large image/activation sizes. The xDNN processing engine allows input feature map
tiling across both width and height. This is illustrated in Figure 4.

Hardware-assisted image tiling takes a single non-data move instruction (Conv, Pool, EW) and
generates the correct sequence of micro-operations (Download, Operation, Upload). The
micro-operations are fully pipelined in hardware by logically partitioning activation memory into
two regions, like a double buffer.

Custom Network Support through Heterogeneous Execution
Even though the xDNN processing engine supports a wide range of CNN operations, new custom
networks are constantly being developed—and sometimes, select layers/instructions might not be
supported by the engine in the FPGA. Layers of networks that are not supported in the xDNN
processing engine are identified by the xfDNN compiler and can be executed on the CPU. These
unsupported layers can be in any part of the network—beginning, middle, end, or in a branch.

Figure 5 shows how the processing can be partitioned by the compiler onto various PEs within the
xDNN processing engine, or even the CPU.

X-Ref Target - Figure 4

Figure 4: Hardware-Assisted Image Tiling Feature
WP504_04_082118

Tile 1 Tile 2

Tile 3 Tile 4

Input Feature Map

Input W

Depth/
Channel

Input H

X-Ref Target - Figure 5

Figure 5: Processing Partitioned by the Compiler
WP504_05_082118

FPGA or CPU FPGAFPGA CPUCPU

Pre-processing Parallel SubgraphsSubgraph 1 Post-Processing

137

xfDNN Inference Toolbox

© Copyright 2018 Xilinx

xfDNN Inference Toolbox

Network Optimization Graph Compiler xfDNN Quantizer

� Python tools to quickly compile
networks from common
Frameworks ± Caffe, MxNet and
Tensorflow

� Automatic network optimizations for
lower latency by fusing layers and
buffering on-chip memory

� Quickly reduce precision of trained
models for deployment

� Maintains 32bit accuracy at 8 bit
within 2%

138

Mixed Low Precision

© Copyright 2018 Xilinx

Architecture perspective: Mixed Low-Precision
Accelerator(1)

8bit X bit Y bit 8 bitZ bit

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13

B
it

w
id

th

Layer Num

BW 2 3 4 5 6 7 8

wgt 0 0 0 15 84 38 13

act 0 0 0 0 6 84 99

BW 2 3 4 5 6 7 8

wgt 0 0 3 22 17 10 2

act 0 0 0 16 41 13 3

BW 2 3 4 5 6 7 8

wgt 0 3 4 6 0 0 3

act 0 0 0 2 5 10 5

0.0

2.0

4.0

6.0

8.0

10.0

12.0

R
el

at
iv

e
Im

pr
ov

em
en

t

Relative Performance

Fixed low-precision quantization already
showed competitive results.

Source:Weighted-Entropy-based Quantization, Eunhyeok, CVPR, 2017-

Next generation: Variable precision of
activation/weights among layers

Preliminary experiments on
popular networks.

(vgg-16,resNet-50,inception-
v4)

*accuracy drop less than 1%

INT8
INT6 INT5

INT4 INT3 INT2

139

VTA: Versatile Tensor Accelerator
• VTA: an open,

generic, and
customizable DL
accelerator
– Sequential

architecture model

• Complete TVM-
based compiler stack

140

TVM: Open Deep Learning Compiler Stack
• Apache TVM is an open source machine

learning (ML) compiler framework for CPUs,
GPUs, and accelerators
– optimize and run computations efficiently on any

hardware backend

141

FINN Matrix Vector Activate Unit
• Two versions: block and streaming

• Computation structure
– PEs based on SIMD units
– #PE and #SIMD/PE are configurable

142

FINN Matrix Vector Activate Unit
Weight matrix

Input vector

HLS sources: MVAU, MAC

PE = 4
SIMD = 4

2 clock cycles

PE = 4
SIMD = 2

4 clock cycles

https://github.com/Xilinx/finn-hlslib/blob/master/mvau.hpp
https://github.com/Xilinx/finn-hlslib/blob/master/mac.hpp

143

HLS4ML
• hls4ml converts DNN models into a full HLS project
• Supports many kinds of models (MLP, CNN, RNN) and

different formats (Keras/Tensorflow, Pytorch, ONNX)

– Lacks good
optimization
(resource usage),
models needs to be
quantized
aggressively

– Limited board,
FPGA, recent HLS
compiler support

144

Integer Addition
• Ripple-Carry Adder

• Parallel prefix adders

9.2. The Primitives and Their Cost 275

AFAFAF

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.1: Carry-ripple adder.

4 4

4

44

4

4 4

4

ADADAD

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.2: Decimal addition. Each decimal digit is coded in BCD by 4 bits.

is simply the paper-and-pencil algorithm learned at school. A carry-ripple
adder has O(n) area and O(n) delay, where n is the size in digits of the num-
bers to be added.

The building block of the binary carry-ripple adder is the full adder (FA),
which outputs the sum of three input bits xi, yi, and zi (this sum is between
0 and 3) as a 2-bit binary number cisi. Formally, it implements the equation
2ci + si = xi + yi + zi. The full adder can be implemented in many ways with
a two-gate delay [126]. Typically, one wants to minimize the delay on the
carry propagation path (horizontal in Figure 9.1). Much research has been
dedicated to implementing full adders in transistors; see, for instance,
Zimmermann [443] for a review. A clean CMOS implementation requires 28
transistors, but many designs have been suggested with as few as 10 transis-
tors (see [440, 1, 376, 61] among others). These transistor counts are given for
illustration only: smaller designs have limitations, for instance they cannot be
used for building carry-ripple adders of arbitrary sizes. The best choice of a
full-adder implementation depends much on the context in which it is used.

Carry-ripple adders can be built in any radix � (take � = 10 for illustra-
tion). The basic block DA (for digit addition) now computes the sum of an
input carry (0 or 1) and two radix-� digits (between 0 and � � 1). This sum is
between 0 and 2� � 1 and can therefore be written in radix � as cisi, where ci

is an output carry (0 or 1) and si is a radix-� digit.
Useful radices for building hardware floating-point operators are 2,

small powers of 2 (in which case the DA block is simply a binary adder as
shown on Figure 9.4), 10, and small powers of 10. Figure 9.2 gives the example

delay: 𝒪(𝑁)
cost: 𝒪(𝑁)

delay: 𝒪(log𝑁)
cost: 𝒪(𝑁log𝑁)

145

Integer Multiplication
• Many implementation depending on

compression scheme and final adder

282 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

final adder

Booth recoding,
partial product generation

compression tree

Figure 9.8: Binary integer multiplication.

• A second step reduces this array to only two lines using several
carry-save adders, or more generally, compressors. For instance, the 3:2
compressor is the carry-save adder of Figure 9.5, a 4:2 compressor takes
4 binary numbers and writes their sum as two binary numbers (i.e., as
a carry-save number). A 4:2 compressor can be implemented as two
carry-save adders, but it may also be implemented more efficiently
(using fewer transistors). It has been argued that a good 4:2 compressor
implementation may perform the same function as Booth recoding in
less time using less resources [420].

This step can be performed in O(log n) time, using a tree of compres-
sors.

• Finally, the carry-save result of the previous step is summed using a fast
adder in O(log n) time.

This multiplier scheme is quite flexible. It easily accommodates signed
integers at no extra cost. More important for floating-point, rounding can be
performed at almost no cost by adding a few bits in the partial product array,
as detailed in Section 9.4. Finally, computing a multiply-and-add a⇥b+c adds
only one more line of bits (corresponding to c) to the initial partial product
array of a ⇥ b depicted in Figure 9.8. In practice, the requirement of correct
rounding of the FMA makes the overall data path much more complex; see
Section 9.5.

J.-M. Muller et al., Handbook of floating-point arithmetic, Springer, 2009.

delay: 𝒪(log𝑁)
cost: 𝒪(𝑁.)

146

• Representation
(w,m,n)
w=m+n

• Examples
97 = 011000012 in (8,2,6)

1+1/2+1/64 = 1.515625

97 = 011000012 in (8,-2,10)
2-4+2-5+2-10

0.0947265625

Fixed-Point Representation

Integer Part
(range)

Fractional Part
(accuracy)

Arithmetic Rules (scaling)

x x x bm-1 b-6 b-7 b-nb-n+1

2-n

2-1 2-5 2-6
2m-1

S

2-2 2-3 2-4 2-7 2-8 2-9 2-10

m n
w

20

2-n2-121 202m-2

S bm-2 bm-1 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

147

Floating-Point Multiplication
Sx 1

X Sy 1

ex

ey

1.mx

1.my

1 1.mx, 1.my < 2

1 1.mx ⇥ 1.my < 4

RoundingNormalization
(shift mz, add 1 to ez)

Sz

1.mzez = ex + ey

148

Floating-Point Multiplication
• Representation (W,E,M)

– Exponent e on E bits
– Mantissa m on M bits

• Floating-point
hardware is doing the
job for you!
– FlP operators are

therefore more complex
than FxP

9.4. Binary Floating-Point Multiplication 297

1 0

0 1 incrementer

p p

p� 1

p� 1

2p
z�1

or

mz

inc

moderounding
logic

b� 1b

ez + b

ey + b 1.mx 1.myex + b

z�1 · · · z�p+1

z�1z0z1 · · · z2p�2

z
p

s

z0 · · · zp�2

e
x

+
e
y

+
b

e
x

+
e
y

+
b

+
1

z
p
�

1

zp+1 · · · z2p�2

c
ou

t
sticky

Figure 9.14: Basic architecture of a floating-point multiplier without subnormal
handling.

• Subnormal handling is not a strong requirement for applications
using FPGA floating-point accelerators. The floating-point format used
in these accelerators can be nonstandard, and in particular can have an
ad hoc exponent range.

• Significand multiplication can be performed efficiently using the small
integer multipliers embedded in the FPGA fabric of high-performance
FPGAs. These multipliers are typically able to perform 18⇥18-bit prod-
ucts, and recent FPGAs have increased this size to 25⇥18-bit to facilitate
the implementation of binary32 arithmetic. For larger significand sizes,
several of these multipliers have to be grouped together; for instance, a
36⇥ 36-bit product can be implemented using four 18⇥ 18-bit multipli-
ers and a few adders. In recent FPGAs, the embedded multipliers are
tightly coupled to specific adders. The main purpose of these blocks is
efficient multiply-and-accumulate operations for digital signal process-
ing (DSP), but they also allow for building larger multipliers [104].

• Embedded multipliers are not able to compute the sticky bit as a
by-product. However, a wide OR can be computed using the fast-carry
circuitry. As soon as more than one embedded multiplier is needed, the
higher part of the result comes from an addition, and the sticky compu-
tation can be overlapped with this addition.

[J.-M. Muller et al., Handbook of Floating-point arithmetic, 2009]

149

Floating-Point Addition

0/1 1

Sx 1

± Sy 1

ex

ey

1.mx

1.my

Rounding

ex – ey ≥ 2
(far path)

ex – ey < 2
(close path)

• swap to have ey ≤ ex
• determine if effective

subtraction
• calculate ex – ey
• shift mantissa my accordingly

• cancellation may occur only if
ex – ey < 2

• normalization (LZC/shift)
• rounding

1 0 0 0

0/10/10/1 1

1

1

0 0 0 0 1

150

Floating-Point Addition
• Representation (W,E,M)

– Exponent e on E bits
– Mantissa m on M bits

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.

240 Chapter 7. Algorithms for the Basic Operations

not a NaN). As the difference between ◦(y) and y is condensed in the round
digit and the sticky bit, the inexact exception will be signaled unless both the
round digit and the sticky bit are equal to 0.

7.2.5 Rounding for actual operations

Actual rounding of the result of an operation involves two additional diffi-
culties.

• Obtaining the intermediate result in normalized formmay require some
work, all the more as some of the inputs, or the result, may belong to the
subnormal range. In addition, decimal inputs may not be normalized
(see the definition of cohorts in Section 3.1.1.2).

• For decimal numbers, the result should not always be normalized (see
the definition of preferred exponents in Section 3.1.3).

These two problems will be addressed on a per-operation basis.

7.2.5.1 Decimal rounding using the binary encoding

The entire discussion in Section 7.2 assumes that the digits of the infinitely
precise significand are available in the radix in which it needs to be rounded.
This is not the case for the binary encoding of the decimal formats (see Sec-
tion 3.1.1.2). In this case, one first needs to convert the binary encoding to
decimal digits, at least for the digits needed for rounding (the round digit
and the digits to its right). Such a conversion is typically done by performing
a division by some 10k (with k > 0) with remainder. Cornea et al. [116, 117]
have provided several efficient algorithms for this purpose, replacing the di-
vision by 10k with a multiplication by a suitable precomputed approximation
to 10−k. They also provide techniques to determine to which precision 10−k

should be precomputed.

7.3 Floating-Point Addition and Subtraction

When x or y is nonzero, the addition of x = (−1)sx · |x| and y = (−1)sy · |y| is
based on the identity

x+ y = (−1)sx ·
(
|x|+ (−1)sz · |y|

)
, sz = sx XOR sy ∈ {0, 1}. (7.4)

For subtraction, a similar identity obviously holds since x − y = x + (−y).
Hence, in what follows we shall consider addition only.

The IEEE 754-2008 specification for |x| ± |y| is summarized in Tables 7.2
and 7.3. Combinedwith (7.2) and (7.4), it defines floating-point addition com-
pletely provided x or y is nonzero. When both x and y are zero, the standard

240 Chapter 7. Algorithms for the Basic Operations

not a NaN). As the difference between ◦(y) and y is condensed in the round
digit and the sticky bit, the inexact exception will be signaled unless both the
round digit and the sticky bit are equal to 0.

7.2.5 Rounding for actual operations

Actual rounding of the result of an operation involves two additional diffi-
culties.

• Obtaining the intermediate result in normalized formmay require some
work, all the more as some of the inputs, or the result, may belong to the
subnormal range. In addition, decimal inputs may not be normalized
(see the definition of cohorts in Section 3.1.1.2).

• For decimal numbers, the result should not always be normalized (see
the definition of preferred exponents in Section 3.1.3).

These two problems will be addressed on a per-operation basis.

7.2.5.1 Decimal rounding using the binary encoding

The entire discussion in Section 7.2 assumes that the digits of the infinitely
precise significand are available in the radix in which it needs to be rounded.
This is not the case for the binary encoding of the decimal formats (see Sec-
tion 3.1.1.2). In this case, one first needs to convert the binary encoding to
decimal digits, at least for the digits needed for rounding (the round digit
and the digits to its right). Such a conversion is typically done by performing
a division by some 10k (with k > 0) with remainder. Cornea et al. [116, 117]
have provided several efficient algorithms for this purpose, replacing the di-
vision by 10k with a multiplication by a suitable precomputed approximation
to 10−k. They also provide techniques to determine to which precision 10−k

should be precomputed.

7.3 Floating-Point Addition and Subtraction

When x or y is nonzero, the addition of x = (−1)sx · |x| and y = (−1)sy · |y| is
based on the identity

x+ y = (−1)sx ·
(
|x|+ (−1)sz · |y|

)
, sz = sx XOR sy ∈ {0, 1}. (7.4)

For subtraction, a similar identity obviously holds since x − y = x + (−y).
Hence, in what follows we shall consider addition only.

The IEEE 754-2008 specification for |x| ± |y| is summarized in Tables 7.2
and 7.3. Combinedwith (7.2) and (7.4), it defines floating-point addition com-
pletely provided x or y is nonzero. When both x and y are zero, the standard

[J.-M. Muller et al., Handbook of Floating-point arithmetic, 2009]

151

Arithmetic Support in Latest Chips?
• Hopper GH100 GPU from Nvidia
– FP8 support in tensor cores provides up to 4x speedup

