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Outline	
•  Context:	real-4me	systems	
•  Classes	of	WCET	es4ma4on	techniques	

–  Dynamic	(measurement-based)	methods	
–  Sta4c	methods	

•  Sta4c	WCET	es4ma4on	methods	
–  Flow	analysis	
–  Computa4on	
–  Hardware-level	analysis	

•  Current	research	direc4ons	



Real-4me	systems	
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Real-4me	systems	

•  Defini&on	
–  Systems	those	correct	behavior	depends	not	only	on	the	
logical	result	of	the	computa4on	but	also	on	the	4me	at	which	
the	result	is	produced	

•  Timing	constraints	on	opera&ons	
–  Ex:	Deadline	=	maximum	delay	between	task	arrival	and	task	
termina4on	
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•  Note:	Real-&me	is	not	real-fast	



Classes	of	real-4me	systems	

•  So7	real-&me	
– Missing	a	deadline	decreases	the	quality	of	service	of	the	
system	

–  Ex:	mul4media	applica4ons	(VoD,	etc.)	

•  Hard	real-&me	
–  Timing	constraints	must	hold	under	all	circumstances	
– Missing	a	deadline	can	cause	catastrophic	consequences		
–  Ex:	nuclear	power	sta4on,	medical	equipment,	control	in	
transporta4on	systems,	etc.		
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How	do	we	know	the	4ming	is	right?	
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Temporal	valida4on	of	real-4me	systems	

•  Tes&ng	
–  Input	data	+	execu4on	(target	architecture,	simulator)	
–  Necessary	but	not	sufficient	(coverage	of	scenarios)	
	

•  Schedulability	analysis	
–  Hard	real-4me:	need	for	guarantees	in	all	execu4on	scenarios,	
including	the	worst-case	scenario	

–  Task	models	and	schedulability	analysis	methods	(70s	_	today)		

7 



Worst-Case	Response	Time	
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Execu4on	4me	
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WCET	(Worst-Case	Execu4on	Time)	

•  Defini&on	
–  Upper	bound	for	execu4ng	an	isolated	piece	of	code		

•  Code	considered	in	isola4on	
•  WCET	≠	response	4me	

– WCET	=	variable	Ci	in	schedulability	tests	

•  Different	uses	
–  Temporal	valida4on:	schedulability	tests	
–  System	dimensioning:	hardware	selec4on	
–  Op4miza4on	of	applica4on	code:	
early	in	applica4on	design	lifecycle	
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WCET:	influencing	elements	
void	f(int	a)	{	
for	(int	i=0;i<10;i++)	{	
	if	(a==1)	X;	else	Y;	
}	

}	
	

•  Sequencing	of	ac4ons	
(execu4on	paths)		
–  Input	data	dependent	

•  Dura4on	of	every	ac4on	on	a	
given	processor	
–  Hardware	dependent	
	



WCET	Analysis	

Computes	upper	bounds	for	the	execu&on	&me		
of	isolated	pieces	of	code	

	

Challenges	in	WCET	es&ma&on	
• Safety	(WCET	≥	any	possible	execu4on	4me)	:	

–  confidence	in	schedulability	analysis	methods	

• Tightness	
–  Overes4ma4on	⇒	schedulability	test	may	fail,	or	too	much	
resources	might	be	used	

• The	analysis	cost	should	be	reasonable	
12 



WCET	es4ma4on	methods	
Dynamic	methods	
•  Principle	

–  Input	data		
–  Execu4on	(hardware,	simulator)	
–  Timing	measurement	

•  Genera4on	of	input	data	
–  User-defined:	reserved	to	experts	
–  Exhaus4ve	

•  Risk	of	combinatory	explosion	

–  Automa4c	genera4on:	gene4c	algorithms,	etc.	
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Measurements	are	o7en	unsafe	



WCET	es4ma4on	methods	
Sta&c	analysis	methods	
•  Principle	

–  Analysis	of	program	structure	(no	execu4on)		
–  Computa4on	of	WCET	from	program	structure	
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•  Components	
–  Flow	analysis:		

•  Determines	possible	flows	in	program	

–  Low-level	analysis	(hardware-level)		
•  Determines	the	execu4on	4me	of	a	sequence		
of	instruc4ons	(basic	block)	on	a	given	hardware	

–  Computa&on	from	results	of	other	components	
•  All	paths	need	to	be	considered	(safety)	



Sta4c	WCET	analysis	methods	
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Flow analysis	
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Structurally feasible paths  
(infinite) 

Basic finiteness  
(bounded loops) 

Actually feasible  
(infeasible paths,  
mutually exclusive paths) 

WCET estimation methods: terminating programs  



Flow analysis: loop bounds	

Maximum number of iterations of loops 

	
Tight estimation of loop bounds: improves tightness 
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for i := 1 to N do  
    for j := 1 to i do 
    begin 
        if c1 then  A 
                else  B 
        if c2 then  C 
                else  D 
    end 

(N+1)N 
     2 executions 

Loop bound: N 
Loop bound: N 

N2 executions 



Flow analysis: Infeasible paths	
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int baz (int x) { 
    if (x<5)  // A 
        x = x+1;  // B 
    else x=x*2;  // C 
    if (x>10)  // D 
        x = sqrt(x); // E 
    return x;  // F 
} 



Flow analysis: Infeasible paths	

Identification of infeasible paths: improves tightness 
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int baz (int x) { 
    if (x<5)  // A 
        x = x+1;  // B 
    else x=x*2;  // C 
    if (x>10)  // D 
        x = sqrt(x);// E 
    return x;  // F 
} 

Path ABDEF is infeasible 



Determination of flow facts	
Automatic (static analysis) 
•  Not decidable in general  

(equivalent to halting problem) 

Manual: annotations 
•  Loop bounds: constants, or symbolic annotations 
•  Annotations for infeasible / mutually exclusive 

paths / relations between execution counts 
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Some	numbers	

Flow	analysis	using	abstract	execu3on	[Gus06]	
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Pgm Time (s) WCETorig Time (s) WCETff #FF -% 

Crc 4.9 834159 6.65 833730 56 0 

Inssort 0.16 31163 0.17 18167 7 42 

Ns 6.09 130733 6.81 130733 8 0 

Nsichneu 36.88 119707 435.70 41303 65280 65 



Sta4c	WCET	analysis	methods	
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WCET	computa4on	

Assumptions 
•  Simple architecture 

–  Execution time of an instruction only depends on 
instruction type and operand  

–  No overlap between instructions, no memory hierarchy 

WCET	computa&on	techniques	
•  Tree-Based	WCET	computa4on	
•  WCET	analysis	using	implicit	path	enumera4on	(IPET)	
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Tree-based computation (1/3) 

•  Data structures 
–  Syntax tree 

•  control structures 

–  Basic block 
•  Principle 

–  Determination of execution time of basic block  
(low-level analysis)  

–  Computation based on a bottom-up traversal  
of the syntax tree 

Loop [4] 

If 

BB2 

BB0 

BB5 

BB4 BB3 

Seq1 

BB6 

Seq2 BB1 

int x,p=0,i=0; 
for(x=0;x<5;x++) { 
  if(i%2) { 
    p++; 
  } else { 
    i++;  
}} 
. . . 



Tree-based computation (2/3) 

WCET(SEQ)  S1;…;Sn  WCET(S1) + … + WCET(Sn) 
 
WCET(IF)  if(test) then  else  WCET(test) + max( WCET(then) , WCET(else))  
 
WCET(LOOP)  for(;tst;inc) {body}  maxiter * (WCET(tst)+WCET(body+inc)) + WCET(tst) 

Timing schema 
WCET(If)  = WCET_BB2 + max( WCET_BB3 , WCET_BB4 ) 
WCET(Seq2)  = WCET(If) + WCET_BB5 
WCET(Loop)  = 4 * (WCET_BB1 + WCET(Seq2)) + WCET_BB1 
WCET(Seq1)  = WCET_BB0 + WCET(Loop) +WCET_BB_6 

Loop [4] 

If 

BB2 

BB0 

BB5 

BB4 BB3 

Seq1 

BB6 

Seq2 BB1 



Tree-based computation (3/3) 

•  Advantages 
–  Low computational effort 
–  Good scalability with respect to program size 
–  Good user feedback (source-code level) 

•  Drawbacks 
–  Not compatible with aggressive compiler optimizations 
–  Expression of complex flow facts difficult (inter-control-

structure flow facts)  



   Integer Linear Programming (ILP) 
 

–  Constant: Ti  Variable: fi 
–  Objective function: max: f1T1+f2T2+…+fnTn 
–  Structural constraints 

 ∀ bbi : fi     =    Σ aj = Σ  ak  

f1 = f7 = 1 

–  Extra flow information 
 ∀ bbi in loop, fi ≤ k (loop bound)  
 fi + fj ≤ 1  (mutually exclusive paths – not in loop) 
 fi ≤ 2 fj (relations between execution freqs.) 

IPET (Implicit Path Enumeration 
Technique) 

aj∈In(bbi) ak∈Out(bbi) 

T1 

T2 

T3 

T4 T5 

T6 

T7 



IPET 
•  Advantages 

–  Supports all unstructured flows (gotos, etc.) 
–  Supports all compiler optimizations, including the most 

aggressive ones 
•  Drawbacks 

–  More time-consuming than tree-based methods 
–  Low-level user feedbacks (works at binary level) 
–  Annotations are hard to provide (need to know compiler 

optimizations) 

Mostly used in commercial/academic tools 



Sta4c	WCET	analysis	methods	
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Low-level analysis 

•  Simple	architecture	
–  Execu4on	4me	of	an	instruc4on	only	depends	on	instruc4on	
type	and	operands		

–  No	overlap	between	instruc4ons,	no	memory	hierarchy		

•  “Complex”	architecture	
–  Local	4ming	effects	

•  Overlap	between	instruc4ons	(pipelines)	
–  Global	4ming	effects	

•  Caches	(data,	instruc4ons),	branch	predictors	
•  Requires	a	knowledge	of	the	en4re	code	
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Low-level	analysis:	Pipeline	

Principle	:	parallelism	between	instruc4ons	
•  Intra	basic-block	

	

•  Inter	basic-block	
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Pipelining	(simple-scalar)	

•  Intra	basic	block	
–  Reserva4on	tables	describing	the	usage	of	pipeline	stages	
–  Obtained	by	WCET	analysis	tool	or	external	tool	(simulator)	

•  Inter	basic-block:	modifica4on	of	computa4on	step	
–  Tree-based:	specific	addi4on	operator	
–  IPET:	extra	constraints	in	ILP	problem	(nega4ve	costs	on	edges)	
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Low-level	analysis:	caches	(1/2)	
Cache	takes	benefit	of	temporal	and	spa&al	locality	

2k memory elements per cache line 

… 
… … … 

2l cache lines 

n-way 

main	
memory	

l bits k bits 
address 

n-way set associative cache 
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Low-level	analysis:	caches	(2/2)	

•  Cache:	Good	average-case	performance,		
							but	predictability	issues		

•  How	to	obtain	safe	and	4ght	es4mates?	
–  Simple	solu4on	(all	miss):	overly	pessimis4c	
–  Objec4ve:	predict	if	an	instruc4on	will	(certainly)	cause	a	hit	
or	might	(conserva4vely)	cause	a	miss.	

•  Analyses	based	on	abstract	interpreta4on	



Instruction cache analysis 

•  Computa4on	of	Abstract	Cache	States	(ACS)	
–  Contains	all	possible	cache	contents	considering	“all”	possible	
execu4on	paths		

•  3	Analyses	(Fixpoint	computa4on)	
– Must,	May	and	Persistence	
– Modifica4on	of	ACS	

•  Update:	at	every	reference	
•  Join:	at	every	path	merging	point	

•  Instruc4on	categoriza4on	from	ACS	
–  Always	hit,	Always	miss,	First	miss,	Not-classified		



Must analysis 

Age + 

Join 
Intersection  
+ max age 

a    b    c    d b    e    d    a 

{}     b    {}   d,a  

Update 
Apply replacement 
policy (ex: LRU) 

a    b    c    d 

e    a    b    c 

[e] 

ACS	contain	all	program	lines	guaranteed	
to	be	in	the	cache	at	a	given	point	



May analysis 

  

Join 

Update 

Union  
+ min age 

Apply replacement 
policy 

a    b    c    d b    e    d    a 

a,b   e   c,d    {} 

Age + 

a    b    c    d 

e    a    b    c 

[e] 

ACS	contain	all	program	lines	that	may	be	in		
the	cache	at	a	given	point	



Instruction cache analysis 
•  From	ACS	to	classifica4on	

–  If	in	ACS_must:	Always	Hit	
–  Else,	if	in	ACS_Persistence:	First	Miss	
–  Else,	if	not	in	ACS_May:	Always	Miss	
–  Else	Not	Classified	

•  From	classifica4on	to	WCET	(IPET)	
–  For	every	BBi:	T_firsti,	T_nexti	
–  For	every	reference	

•  Hit	->	cache	latency	
•  Miss	->	cache	latency	+	memory	latency	

–  Objec4ve	func4on:	max	Σ	(f_firsti	*	T_firsti	+	f_nexti	*	T_nexti)	
–  New	constraints:	

•  fi=	f_firsti	+	f_nexti 	f_firsti	≤	1	(for	a	non	nested	loop)	



Sta4c	WCET	analysis	methods	
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The	bad	news…	
Timing	anomalies	

 Example:	out-of-order	execu4on 
Disp. 
Cycle 

Instruction 

A 1 LD r4,0(r3) 

B 2 ADD r5, r4, r4 

C 3 ADD r11, r10, r10 

D 4 MUL r11, r11, r11 

E 5 MUL r13, r12, r12 

LSU 
 
IU 
 
MCIU 

12 

LSU 
 
IU 
 
MCIU 

11 

Hit 

Miss 



Low-level analysis 
Other hardware elements 

•  Data caches 
–  Extra issue: determination of addresses of data 

•  Cache hierarchies 
–  Management policies 

•  Branch predictors 
–  Most complex predictors out of reach ! 
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A	method	for	every	usage	
•  Sta&c	WCET	es&ma&on	

–  Safety	J	
–  Pessimism	L	
–  Need	for	a	hardware	model	L	
–  Trade-off	between	es4ma4on	4me	and	4ghtness	
(tree-based	/	IPET)	J	

•  Measurement-based	methods	
–  Safety	?	Probabilis4c	methods	
–  Pessimism	J	
–  No	need	for	hardware	models	J	But	need	to	know	
the	hardware	L	
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WCET	es4ma4on	tools	

•  Academic	
–  Chronos	
–  Vienna	
–  Heptane	
–  Otawa	
–  Sweet	

•  Industrial	
–  Bound-T	
–  aiT	
–  Rapi4me	



Open	issues	

•  Low-level	analysis	
–  Increase	of	hardware	complexity	/	incomplete	documenta4on	
–  Timing	anomalies,	integra4on	of	sub-analyses	
–  Analysis	tools	may	be	released	a	long	4me	arer	the	hardware	
is	available	
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Research	direc4ons	

•  Mul4core	architectures	
–  Shared	hardware	resources	(busses,	last-level	caches)	⇒	
es4ma4on	of	resource	conten4on	

–  Complexity	

•  Parallel	applica4ons	
–  Not	only	execu4on	4me:	synchroniza4on/communica4on	

•  Design	of	efficient	predictable	hardware	
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Research	direc4ons	

•  Sorware-controlled	hardware	
–  Cache	locking	
–  Cache	par44oning	
–  Sorware-controlled	branch	predic4on	

•  Worst-case	oriented	compila4on	
•  Scalability	of	analyses	
•  Probabilis4c	analysis	
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Some	pointers	

•  Bibliography	
–  Survey	paper	in	TECS,	2008	
–  Survey	of	cache	analysis	for	WCET,	LITES	2017	
– Workshop	on	worst-case	execu4on	4me	analysis		
(2001..2017),	in	conjunc4on	with	ECRTS	

•  Working	group		
–  Timing	Analysis	on	Code-Level	(TACLe)	
htp://www.tacle.eu	



Ques4ons?	
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Backup	slides	
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Low-level analysis 
Data caches 

•  Extra issue: determination of addresses of data 
•  Means: abstract interpretation / DF analysis 

–  Value analysis 
–  Pointer analysis 

•  Results: 
–  Superset of referenced addresses per instruction 

•  Example:  
–  for (int i=0;i<N;i++) tab[i+j/z] = x; 
–  Any address inside tab may be referenced per loop 

iteration (but only one) 
–  Hard-to-predict reference (input-dependent) 



Low-level analysis 
Data caches 

•  Solutions (with some limitations) 
–  Compiler-controlled methods: don’t cache input-

dependent data structures 
–  Assume every potentially referenced address is actually 

referenced (2*N misses in example) 
–  Cache Miss Equations (CME): for affine data-

independent loop indices 



Execu4on	4me	
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