
State-of-the-art	of	WCET	(Worst-Case	
Execu4on	Time)	Es4ma4on	methods	

Focus	on	architectural	analysis	

Université de Rennes I / IRISA (PACAP)

Ecole Archi 2017, Nancy

Isabelle	Puaut	(firstname.lastname@irisa.fr)	

Outline	
•  Context:	real-4me	systems	
•  Classes	of	WCET	es4ma4on	techniques	

–  Dynamic	(measurement-based)	methods	
–  Sta4c	methods	

•  Sta4c	WCET	es4ma4on	methods	
–  Flow	analysis	
–  Computa4on	
–  Hardware-level	analysis	

•  Current	research	direc4ons	

Real-4me	systems	

3

Real-4me	
Computer	
System	Environment	

Real-4me	systems	

•  Defini&on	
–  Systems	those	correct	behavior	depends	not	only	on	the	
logical	result	of	the	computa4on	but	also	on	the	4me	at	which	
the	result	is	produced	

•  Timing	constraints	on	opera&ons	
–  Ex:	Deadline	=	maximum	delay	between	task	arrival	and	task	
termina4on	

4

•  Note:	Real-&me	is	not	real-fast	

Classes	of	real-4me	systems	

•  So7	real-&me	
– Missing	a	deadline	decreases	the	quality	of	service	of	the	
system	

–  Ex:	mul4media	applica4ons	(VoD,	etc.)	

•  Hard	real-&me	
–  Timing	constraints	must	hold	under	all	circumstances	
– Missing	a	deadline	can	cause	catastrophic	consequences		
–  Ex:	nuclear	power	sta4on,	medical	equipment,	control	in	
transporta4on	systems,	etc.		

5

How	do	we	know	the	4ming	is	right?	

6

Real-4me	
Computer	
System	

Environment	 ?

R
esponse tim

e

Temporal	valida4on	of	real-4me	systems	

•  Tes&ng	
–  Input	data	+	execu4on	(target	architecture,	simulator)	
–  Necessary	but	not	sufficient	(coverage	of	scenarios)	
	

•  Schedulability	analysis	
–  Hard	real-4me:	need	for	guarantees	in	all	execu4on	scenarios,	
including	the	worst-case	scenario	

–  Task	models	and	schedulability	analysis	methods	(70s	_	today)		

7

Worst-Case	Response	Time	

8

Ri =Ci + Cj
Ri
Tj

!

"
"
"

#

$
$
$j∈hp(i)

∑ ≤ Di = Ti

Response time

Execution time = WCET

Interference

Deadline

Period

Execu4on	4me	

9

Execution Time

Fr
eq

ue
nc

y

Exact Worst-Case
Execution Time

Safe upper bound

10

WCET	(Worst-Case	Execu4on	Time)	

•  Defini&on	
–  Upper	bound	for	execu4ng	an	isolated	piece	of	code		

•  Code	considered	in	isola4on	
•  WCET	≠	response	4me	

– WCET	=	variable	Ci	in	schedulability	tests	

•  Different	uses	
–  Temporal	valida4on:	schedulability	tests	
–  System	dimensioning:	hardware	selec4on	
–  Op4miza4on	of	applica4on	code:	
early	in	applica4on	design	lifecycle	

	

11

WCET:	influencing	elements	
void	f(int	a)	{	
for	(int	i=0;i<10;i++)	{	
	if	(a==1)	X;	else	Y;	
}	

}	
	

•  Sequencing	of	ac4ons	
(execu4on	paths)		
–  Input	data	dependent	

•  Dura4on	of	every	ac4on	on	a	
given	processor	
–  Hardware	dependent	
	

WCET	Analysis	

Computes	upper	bounds	for	the	execu&on	&me		
of	isolated	pieces	of	code	

	

Challenges	in	WCET	es&ma&on	
• Safety	(WCET	≥	any	possible	execu4on	4me)	:	

–  confidence	in	schedulability	analysis	methods	

• Tightness	
–  Overes4ma4on	⇒	schedulability	test	may	fail,	or	too	much	
resources	might	be	used	

• The	analysis	cost	should	be	reasonable	
12

WCET	es4ma4on	methods	
Dynamic	methods	
•  Principle	

–  Input	data		
–  Execu4on	(hardware,	simulator)	
–  Timing	measurement	

•  Genera4on	of	input	data	
–  User-defined:	reserved	to	experts	
–  Exhaus4ve	

•  Risk	of	combinatory	explosion	

–  Automa4c	genera4on:	gene4c	algorithms,	etc.	

	
13

Measurements	are	o7en	unsafe	

WCET	es4ma4on	methods	
Sta&c	analysis	methods	
•  Principle	

–  Analysis	of	program	structure	(no	execu4on)		
–  Computa4on	of	WCET	from	program	structure	

14

•  Components	
–  Flow	analysis:		

•  Determines	possible	flows	in	program	

–  Low-level	analysis	(hardware-level)		
•  Determines	the	execu4on	4me	of	a	sequence		
of	instruc4ons	(basic	block)	on	a	given	hardware	

–  Computa&on	from	results	of	other	components	
•  All	paths	need	to	be	considered	(safety)	

Sta4c	WCET	analysis	methods	

15

Source code

Object
code

Compiler

Low-level
analysis

Computation

Flow
representation

(Annotations)

or

WCET

Flow
analysis

Flow analysis	

16

Structurally feasible paths
(infinite)

Basic finiteness
(bounded loops)

Actually feasible
(infeasible paths,
mutually exclusive paths)

WCET estimation methods: terminating programs

Flow analysis: loop bounds	

Maximum number of iterations of loops

	
Tight estimation of loop bounds: improves tightness

17

for i := 1 to N do
 for j := 1 to i do
 begin
 if c1 then A
 else B
 if c2 then C
 else D
 end

(N+1)N
 2 executions

Loop bound: N
Loop bound: N

N2 executions

Flow analysis: Infeasible paths	

18

int baz (int x) {
 if (x<5) // A
 x = x+1; // B
 else x=x*2; // C
 if (x>10) // D
 x = sqrt(x); // E
 return x; // F
}

Flow analysis: Infeasible paths	

Identification of infeasible paths: improves tightness

19

int baz (int x) {
 if (x<5) // A
 x = x+1; // B
 else x=x*2; // C
 if (x>10) // D
 x = sqrt(x);// E
 return x; // F
}

Path ABDEF is infeasible

Determination of flow facts	
Automatic (static analysis)
•  Not decidable in general

(equivalent to halting problem)

Manual: annotations
•  Loop bounds: constants, or symbolic annotations
•  Annotations for infeasible / mutually exclusive

paths / relations between execution counts

20

Some	numbers	

Flow	analysis	using	abstract	execu3on	[Gus06]	

21

Pgm Time (s) WCETorig Time (s) WCETff #FF -%

Crc 4.9 834159 6.65 833730 56 0

Inssort 0.16 31163 0.17 18167 7 42

Ns 6.09 130733 6.81 130733 8 0

Nsichneu 36.88 119707 435.70 41303 65280 65

Sta4c	WCET	analysis	methods	

22

Source code

Object
code

Compiler

Flow
analysis

Low-level
analysis

Flow
representation

(Annotations)

or

WCET

Computation

✔

WCET	computa4on	

Assumptions
•  Simple architecture

–  Execution time of an instruction only depends on
instruction type and operand

–  No overlap between instructions, no memory hierarchy

WCET	computa&on	techniques	
•  Tree-Based	WCET	computa4on	
•  WCET	analysis	using	implicit	path	enumera4on	(IPET)	

23

Tree-based computation (1/3)

•  Data structures
–  Syntax tree

•  control structures

–  Basic block
•  Principle

–  Determination of execution time of basic block
(low-level analysis)

–  Computation based on a bottom-up traversal
of the syntax tree

Loop [4]

If

BB2

BB0

BB5

BB4 BB3

Seq1

BB6

Seq2 BB1

int x,p=0,i=0;
for(x=0;x<5;x++) {
 if(i%2) {
 p++;
 } else {
 i++;
}}
. . .

Tree-based computation (2/3)

WCET(SEQ) S1;…;Sn WCET(S1) + … + WCET(Sn)

WCET(IF) if(test) then else WCET(test) + max(WCET(then) , WCET(else))

WCET(LOOP) for(;tst;inc) {body} maxiter * (WCET(tst)+WCET(body+inc)) + WCET(tst)

Timing schema
WCET(If) = WCET_BB2 + max(WCET_BB3 , WCET_BB4)
WCET(Seq2) = WCET(If) + WCET_BB5
WCET(Loop) = 4 * (WCET_BB1 + WCET(Seq2)) + WCET_BB1
WCET(Seq1) = WCET_BB0 + WCET(Loop) +WCET_BB_6

Loop [4]

If

BB2

BB0

BB5

BB4 BB3

Seq1

BB6

Seq2 BB1

Tree-based computation (3/3)

•  Advantages
–  Low computational effort
–  Good scalability with respect to program size
–  Good user feedback (source-code level)

•  Drawbacks
–  Not compatible with aggressive compiler optimizations
–  Expression of complex flow facts difficult (inter-control-

structure flow facts)

 Integer Linear Programming (ILP)

–  Constant: Ti Variable: fi
–  Objective function: max: f1T1+f2T2+…+fnTn
–  Structural constraints

 ∀ bbi : fi = Σ aj = Σ ak

f1 = f7 = 1

–  Extra flow information
 ∀ bbi in loop, fi ≤ k (loop bound)
 fi + fj ≤ 1 (mutually exclusive paths – not in loop)
 fi ≤ 2 fj (relations between execution freqs.)

IPET (Implicit Path Enumeration
Technique)

aj∈In(bbi) ak∈Out(bbi)

T1

T2

T3

T4 T5

T6

T7

IPET
•  Advantages

–  Supports all unstructured flows (gotos, etc.)
–  Supports all compiler optimizations, including the most

aggressive ones
•  Drawbacks

–  More time-consuming than tree-based methods
–  Low-level user feedbacks (works at binary level)
–  Annotations are hard to provide (need to know compiler

optimizations)

Mostly used in commercial/academic tools

Sta4c	WCET	analysis	methods	

29

Source code

Object
code

Compiler

Flow
analysis

Computation

Flow
representation

(Annotations)

or

WCET

✔

✔
Low-level
analysis

Low-level analysis

•  Simple	architecture	
–  Execu4on	4me	of	an	instruc4on	only	depends	on	instruc4on	
type	and	operands		

–  No	overlap	between	instruc4ons,	no	memory	hierarchy		

•  “Complex”	architecture	
–  Local	4ming	effects	

•  Overlap	between	instruc4ons	(pipelines)	
–  Global	4ming	effects	

•  Caches	(data,	instruc4ons),	branch	predictors	
•  Requires	a	knowledge	of	the	en4re	code	

30

Low-level	analysis:	Pipeline	

Principle	:	parallelism	between	instruc4ons	
•  Intra	basic-block	

	

•  Inter	basic-block	

31

Time

Time

Fetch
Decode
Execute
Memory
Write Back

Time

IF
ID
EX
ME
WB

Time

32

Pipelining	(simple-scalar)	

•  Intra	basic	block	
–  Reserva4on	tables	describing	the	usage	of	pipeline	stages	
–  Obtained	by	WCET	analysis	tool	or	external	tool	(simulator)	

•  Inter	basic-block:	modifica4on	of	computa4on	step	
–  Tree-based:	specific	addi4on	operator	
–  IPET:	extra	constraints	in	ILP	problem	(nega4ve	costs	on	edges)	

33

Low-level	analysis:	caches	(1/2)	
Cache	takes	benefit	of	temporal	and	spa&al	locality	

2k memory elements per cache line

…
… … …

2l cache lines

n-way

main	
memory	

l bits k bits
address

n-way set associative cache

34

Low-level	analysis:	caches	(2/2)	

•  Cache:	Good	average-case	performance,		
							but	predictability	issues		

•  How	to	obtain	safe	and	4ght	es4mates?	
–  Simple	solu4on	(all	miss):	overly	pessimis4c	
–  Objec4ve:	predict	if	an	instruc4on	will	(certainly)	cause	a	hit	
or	might	(conserva4vely)	cause	a	miss.	

•  Analyses	based	on	abstract	interpreta4on	

Instruction cache analysis

•  Computa4on	of	Abstract	Cache	States	(ACS)	
–  Contains	all	possible	cache	contents	considering	“all”	possible	
execu4on	paths		

•  3	Analyses	(Fixpoint	computa4on)	
– Must,	May	and	Persistence	
– Modifica4on	of	ACS	

•  Update:	at	every	reference	
•  Join:	at	every	path	merging	point	

•  Instruc4on	categoriza4on	from	ACS	
–  Always	hit,	Always	miss,	First	miss,	Not-classified		

Must analysis

Age +

Join
Intersection
+ max age

a b c d b e d a

{} b {} d,a

Update
Apply replacement
policy (ex: LRU)

a b c d

e a b c

[e]

ACS	contain	all	program	lines	guaranteed	
to	be	in	the	cache	at	a	given	point	

May analysis

Join

Update

Union
+ min age

Apply replacement
policy

a b c d b e d a

a,b e c,d {}

Age +

a b c d

e a b c

[e]

ACS	contain	all	program	lines	that	may	be	in		
the	cache	at	a	given	point	

Instruction cache analysis
•  From	ACS	to	classifica4on	

–  If	in	ACS_must:	Always	Hit	
–  Else,	if	in	ACS_Persistence:	First	Miss	
–  Else,	if	not	in	ACS_May:	Always	Miss	
–  Else	Not	Classified	

•  From	classifica4on	to	WCET	(IPET)	
–  For	every	BBi:	T_firsti,	T_nexti	
–  For	every	reference	

•  Hit	->	cache	latency	
•  Miss	->	cache	latency	+	memory	latency	

–  Objec4ve	func4on:	max	Σ	(f_firsti	*	T_firsti	+	f_nexti	*	T_nexti)	
–  New	constraints:	

•  fi=	f_firsti	+	f_nexti 	f_firsti	≤	1	(for	a	non	nested	loop)	

Sta4c	WCET	analysis	methods	

39

Source code

Object
code

Compiler

Flow
analysis

Computation

Flow
representation

(Annotations)

or

WCET

✔

✔
Low-level
analysis ✔

The	bad	news…	
Timing	anomalies	

 Example:	out-of-order	execu4on
Disp.
Cycle

Instruction

A 1 LD r4,0(r3)

B 2 ADD r5, r4, r4

C 3 ADD r11, r10, r10

D 4 MUL r11, r11, r11

E 5 MUL r13, r12, r12

LSU

IU

MCIU

12

LSU

IU

MCIU

11

Hit

Miss

Low-level analysis
Other hardware elements

•  Data caches
–  Extra issue: determination of addresses of data

•  Cache hierarchies
–  Management policies

•  Branch predictors
–  Most complex predictors out of reach !

42

A	method	for	every	usage	
•  Sta&c	WCET	es&ma&on	

–  Safety	J	
–  Pessimism	L	
–  Need	for	a	hardware	model	L	
–  Trade-off	between	es4ma4on	4me	and	4ghtness	
(tree-based	/	IPET)	J	

•  Measurement-based	methods	
–  Safety	?	Probabilis4c	methods	
–  Pessimism	J	
–  No	need	for	hardware	models	J	But	need	to	know	
the	hardware	L	

43

WCET	es4ma4on	tools	

•  Academic	
–  Chronos	
–  Vienna	
–  Heptane	
–  Otawa	
–  Sweet	

•  Industrial	
–  Bound-T	
–  aiT	
–  Rapi4me	

Open	issues	

•  Low-level	analysis	
–  Increase	of	hardware	complexity	/	incomplete	documenta4on	
–  Timing	anomalies,	integra4on	of	sub-analyses	
–  Analysis	tools	may	be	released	a	long	4me	arer	the	hardware	
is	available	

44

Research	direc4ons	

•  Mul4core	architectures	
–  Shared	hardware	resources	(busses,	last-level	caches)	⇒	
es4ma4on	of	resource	conten4on	

–  Complexity	

•  Parallel	applica4ons	
–  Not	only	execu4on	4me:	synchroniza4on/communica4on	

•  Design	of	efficient	predictable	hardware	

45

Research	direc4ons	

•  Sorware-controlled	hardware	
–  Cache	locking	
–  Cache	par44oning	
–  Sorware-controlled	branch	predic4on	

•  Worst-case	oriented	compila4on	
•  Scalability	of	analyses	
•  Probabilis4c	analysis	

46

47

Some	pointers	

•  Bibliography	
–  Survey	paper	in	TECS,	2008	
–  Survey	of	cache	analysis	for	WCET,	LITES	2017	
– Workshop	on	worst-case	execu4on	4me	analysis		
(2001..2017),	in	conjunc4on	with	ECRTS	

•  Working	group		
–  Timing	Analysis	on	Code-Level	(TACLe)	
htp://www.tacle.eu	

Ques4ons?	

48

Backup	slides	

49

Low-level analysis
Data caches

•  Extra issue: determination of addresses of data
•  Means: abstract interpretation / DF analysis

–  Value analysis
–  Pointer analysis

•  Results:
–  Superset of referenced addresses per instruction

•  Example:
–  for (int i=0;i<N;i++) tab[i+j/z] = x;
–  Any address inside tab may be referenced per loop

iteration (but only one)
–  Hard-to-predict reference (input-dependent)

Low-level analysis
Data caches

•  Solutions (with some limitations)
–  Compiler-controlled methods: don’t cache input-

dependent data structures
–  Assume every potentially referenced address is actually

referenced (2*N misses in example)
–  Cache Miss Equations (CME): for affine data-

independent loop indices

Execu4on	4me	

52

Execution Time

Fr
eq

ue
nc

y

Best-Case
Execution Time Exact Worst-Case

Execution Time

Measurements Safe upper bound

