ARCHI 2017, Nancy, France — March 6-10, 2017

Hardware Implementation of Cryptography

Jérémie Detrey

CARAMBA team, LORIA INRIA Nancy - Grand Est, France Jeremie.Detrey@loria.fr

Hardware Implementation of (Elliptic Curve) Cryptography

Jérémie Detrey

CARAMBA team, LORIA INRIA Nancy - Grand Est, France Jeremie.Detrey@loria.fr

► Alice and Bob want to communicate using a public channel (e.g., Internet)

Alice and Bob want to communicate using a public channel (e.g., Internet)
 ... but Eve is listening (passive attack: eavesdropping)

▶ Alice and Bob want to communicate using a public channel (e.g., Internet)

- ... but Eve is listening (passive attack: eavesdropping)
- ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

▶ Alice and Bob want to communicate using a public channel (e.g., Internet)

- ... but Eve is listening (passive attack: eavesdropping)
- ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)
- Cryptography: how to prevent such attacks, and ensure

▶ Alice and Bob want to communicate using a public channel (e.g., Internet)

- ... but Eve is listening (passive attack: eavesdropping)
- ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)
- Cryptography: how to prevent such attacks, and ensure
 - confidentiality (Who can read the message?) \rightarrow encryption

▶ Alice and Bob want to communicate using a public channel (e.g., Internet)

- ... but Eve is listening (passive attack: eavesdropping)
- ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)
- Cryptography: how to prevent such attacks, and ensure
 - confidentiality (Who can read the message?)
 - integrity (Was the message modified?)

 \rightarrow encryption \rightarrow cryptographic hash functions

▶ Alice and Bob want to communicate using a public channel (e.g., Internet)

- ... but Eve is listening (passive attack: eavesdropping)
- ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

Cryptography: how to prevent such attacks, and ensure

- confidentiality (Who can read the message?) \rightarrow encryption
- integrity (Was the message modified?) \rightarrow cryptographic hash functions
- authenticity (Who sent the message?) \rightarrow message auth. code (MAC), signature

▶ Alice and Bob want to communicate using a public channel (e.g., Internet)

- ... but Eve is listening (passive attack: eavesdropping)
- ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

Cryptography: how to prevent such attacks, and ensure

- confidentiality (Who can read the message?) \rightarrow encryption
- integrity (Was the message modified?) \rightarrow cryptographic hash functions
- authenticity (Who sent the message?) → message auth. code (MAC), signature
- ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

► A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)
- logic circuits (registers, multiplexers, adders, etc.)

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)
- logic circuits (registers, multiplexers, adders, etc.)
- logic gates (NOT, NAND, etc.) and wires

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)
- logic circuits (registers, multiplexers, adders, etc.)
- logic gates (NOT, NAND, etc.) and wires
- transistors

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)
- logic circuits (registers, multiplexers, adders, etc.)
- logic gates (NOT, NAND, etc.) and wires
- transistors
- When designing a cryptoprocessor, the hardware/software partitioning can be tailored to the application's requirements

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)
- logic circuits (registers, multiplexers, adders, etc.)
- logic gates (NOT, NAND, etc.) and wires
- transistors
- When designing a cryptoprocessor, the hardware/software partitioning can be tailored to the application's requirements
- All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if poorly implemented!
 - \Rightarrow a cryptosystem is no more secure than its weakest link

- protocol (OpenPGP, TLS, SSH, etc.)
- cryptographic mechanisms (encryption, hashing, signature, etc.)
- cryptographic primitives (AES, RSA, ECDH, etc.)
- arithmetic and logic operations (CPU / ASIP instruction set)
- logic circuits (registers, multiplexers, adders, etc.)
- logic gates (NOT, NAND, etc.) and wires
- transistors
- When designing a cryptoprocessor, the hardware/software partitioning can be tailored to the application's requirements
- All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if poorly implemented!
 - \Rightarrow a cryptosystem is no more secure than its weakest link
- ▶ In this lecture, we will mostly focus on the green layers

- on desktop PCs and laptops
 - ightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)

- on desktop PCs and laptops
 - ightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)
- on smart cards and RFID chips
 - \rightarrow custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for cryptographic operations

Cryptography should be available everywhere:

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)
- on smart cards and RFID chips

 \rightarrow custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for cryptographic operations

- ▶ Other possible target platforms, mostly for cryptanalytic computations:
 - clusters of CPUs
 - GPUs (graphics processors)
 - FPGAs (reconfigurable circuits)

Cryptography should be available everywhere:

- on desktop PCs and laptops
 - \rightarrow 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
- on smartphones
 - \rightarrow low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
- on wireless sensors
 - \rightarrow tiny 8-bit microcontroller (such as Atmel AVRs)
- on smart cards and RFID chips

 \rightarrow custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for cryptographic operations

- ▶ Other possible target platforms, mostly for cryptanalytic computations:
 - clusters of CPUs
 - GPUs (graphics processors)
 - FPGAs (reconfigurable circuits)
 - \Rightarrow In such cases, implementation security is usually less critical

► Many possible meanings for efficiency:

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? → low memory / code / silicon usage?
 - low power?... or low energy?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?
 - protocol attacks? (POODLE, FREAK, LogJam, etc.)

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?
 - protocol attacks? (POODLE, FREAK, LogJam, etc.)
 - cryptanalysis? (weak cipher, small keys, etc.)

- ► Many possible meanings for efficiency:
 - fast? \rightarrow low latency or high throughput?
 - small? \rightarrow low memory / code / silicon usage?
 - low power?... or low energy?
 - \Rightarrow Identify constraints according to application and target platform
- Secure against which attacks?
 - protocol attacks? (POODLE, FREAK, LogJam, etc.)
 - cryptanalysis? (weak cipher, small keys, etc.)
 - timing attacks?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (POODLE, FREAK, LogJam, etc.)
- cryptanalysis? (weak cipher, small keys, etc.)
- timing attacks?
- power or electromagnetic analysis?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (POODLE, FREAK, LogJam, etc.)
- cryptanalysis? (weak cipher, small keys, etc.)
- timing attacks?
- power or electromagnetic analysis?
- fault attacks? [See A. Tisserand's talk]

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (POODLE, FREAK, LogJam, etc.)
- cryptanalysis? (weak cipher, small keys, etc.)
- timing attacks?
- power or electromagnetic analysis?
- fault attacks? [See A. Tisserand's talk]
- cache attacks?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (POODLE, FREAK, LogJam, etc.)
- cryptanalysis? (weak cipher, small keys, etc.)
- timing attacks?
- power or electromagnetic analysis?
- fault attacks? [See A. Tisserand's talk]
- cache attacks?
- branch-prediction attacks?

► Many possible meanings for efficiency:

- fast? \rightarrow low latency or high throughput?
- small? \rightarrow low memory / code / silicon usage?
- low power?... or low energy?
- \Rightarrow Identify constraints according to application and target platform

- protocol attacks? (POODLE, FREAK, LogJam, etc.)
- cryptanalysis? (weak cipher, small keys, etc.)
- timing attacks?
- power or electromagnetic analysis?
- fault attacks? [See A. Tisserand's talk]
- cache attacks?
- branch-prediction attacks?
- etc.
- \Rightarrow Possible attack scenarios depend on the application

Some references

Alfred Menezes, Paul van Oorschot, and Scott Vanstone, Handbook of Applied Cryptography. Chapman & Hall / CRC, 1996. http://www.cacr.math.uwaterloo.ca/hac/

Hernense Reineren Hennen Anten ver Prer Crite Verse Ker Algorithms on Radorithms on Radorithms de Bardware

Francisco Rodríguez-Henríquez, Arturo Díaz Pérez, Nazar Abbas Saqib, and Çetin Kaya Koç, *Cryptographic Algorithms on Reconfigurable Hardware*. Springer, 2006.

Proceedings of the CHES workshop and of other crypto conferences.

Some references

Elliptic Curves in Cryptography,

Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. London Mathematical Society 265, Cambridge University Press, 1999.

Guide to Elliptic Curve Cryptography,

Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Springer, 2004.

Handbook of Elliptic and Hyperelliptic Curve Cryptography, Henri Cohen and Gerhard Frey (editors). Chapman & Hall / CRC, 2005.

Outline

Some encryption mechanisms

- Elliptic curve cryptography
- Scalar multiplication
- ► Elliptic curve arithmetic
- ► Finite field arithmetic

► Alice wants to send a confidential message *M* to Bob

► Alice wants to send a confidential message *M* to Bob

► Alice wants to send a confidential message *M* to Bob

• they decide upon a shared secret key K (might be tricky!)

► Alice wants to send a confidential message *M* to Bob

- they decide upon a shared secret key K (might be tricky!)
- encrypt message using shared key: $C = Enc_{\kappa}(M)$

► Alice wants to send a confidential message *M* to Bob

- they decide upon a shared secret key K (might be tricky!)
- encrypt message using shared key: $C = Enc_{\kappa}(M)$
- decrypt ciphertext using shared key: $M = \text{Dec}_{\kappa}(C)$

► Alice wants to send a confidential message *M* to Bob

- they decide upon a shared secret key K (might be tricky!)
- encrypt message using shared key: $C = Enc_{\kappa}(M)$
- decrypt ciphertext using shared key: $M = \text{Dec}_{\kappa}(C)$

► Block cipher:

- split message M into *n*-bit blocks (e.g., n = 128 bits)
- encryption/decryption primitive : iterated keyed permutation $\{0,1\}^n o \{0,1\}^n$
- requires a mode of operation to combine the blocks

AES [Daemen & Rijmen, 2001]

- Advanced Encryption Standard
- ▶ Key sizes: 128, 192 or 256 bits
- ► Block size: 128 bits
- Substitution-permutation network
 - SubBytes: nonlinear subst. on bytes
 - ShiftRows & MixColumns: mainly wires, plus a few XORs

10, 12, or 14 rounds (depending on key size)

AES [Daemen & Rijmen, 2001]

- ► Advanced Encryption Standard
- ▶ Key sizes: 128, 192 or 256 bits
- ► Block size: 128 bits
- Substitution-permutation network
 - SubBytes: nonlinear subst. on bytes
 - ShiftRows & MixColumns: mainly wires, plus a few XORs
- 10, 12, or 14 rounds (depending on key size)
- Low-area version (1 S-box): 20 cycles / round, 2.5 to 5 kGE
- Parallel version (20 S-boxes): 1 cycle / round, 20 to 35 kGE
- Fully unrolled version (200 S-boxes): 1 cycle / block, at least 200 kGE

► Alice wants to send a confidential message *M* to Bob

- decide upon a shared secret key K
- encrypt message using shared key: $C = Enc_{\kappa}(M)$
- decrypt ciphertext using shared key: $M = \text{Dec}_{\kappa}(C)$

► Block cipher:

- split message M into *n*-bit blocks (e.g., n = 128 bits)
- encryption/decryption primitive : keyed permutation $\{0,1\}^n
 ightarrow \{0,1\}^n$
- requires a mode of operation to combine the blocks

► Alice wants to send a confidential message *M* to Bob

- decide upon a shared secret key K
- encrypt message using shared key: $C = Enc_{\kappa}(M)$
- decrypt ciphertext using shared key: $M = \text{Dec}_{\kappa}(C)$
- Block cipher:
 - split message M into *n*-bit blocks (e.g., n = 128 bits)
 - encryption/decryption primitive : keyed permutation $\{0,1\}^n \to \{0,1\}^n$
 - requires a mode of operation to combine the blocks
- Stream cipher:
 - generate a pseudorandom keystream Z using a PRNG initialized by the key K and a random initialization vector (IV)
 - use Z to mask the message: $C = M \oplus Z$ and $M = C \oplus Z$ (\oplus is XOR)

Trivium [De Cannière & Preneel, 2005]

- Part of the eSTREAM portfolio (low-area hardware ciphers)
- ► Key size: 80 bits
- ► IV size: 80 bits
- 288-bit circular shift register, plus a few XOR and AND gates

Trivium [De Cannière & Preneel, 2005]

- Part of the eSTREAM portfolio (low-area hardware ciphers)
- ► Key size: 80 bits
- IV size: 80 bits
- 288-bit circular shift register, plus a few XOR and AND gates
- Serial version:
 - 1 keystream bit / clock cycle 2.6 kGE
- Parallel version:
 - up to 64 bits / clock cycle
 - 4.9 kGE

 \blacktriangleright Agreeing on a shared secret key K over a public channel is difficult

 \blacktriangleright Agreeing on a shared secret key K over a public channel is difficult

- ► Use public-key cryptography:
 - Bob generates a public/secret key-pair (*PK*_B, *SK*_B)

 \blacktriangleright Agreeing on a shared secret key K over a public channel is difficult

- ► Use public-key cryptography:
 - Bob generates a public/secret key-pair (*PK*_B, *SK*_B)
 - Alice retrieves Bob's public key *PK*_B

- ► Use public-key cryptography:
 - Bob generates a public/secret key-pair (PK_B, SK_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$

- ► Use public-key cryptography:
 - Bob generates a public/secret key-pair (*PK*_B, *SK*_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: $M = \text{Dec}_{SK_B}(C)$

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (PK_B, SK_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: $M = \text{Dec}_{SK_B}(C)$
- Security: computing SK_B from PK_B should be difficult

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (PK_B, SK_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: $M = \text{Dec}_{SK_B}(C)$
- Security: computing SK_B from PK_B should be difficult \Rightarrow rely on (supposedly) "hard" number-theoretic problems

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (PK_B, SK_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: $M = \text{Dec}_{SK_B}(C)$
- Security: computing SK_B from PK_B should be difficult \Rightarrow rely on (supposedly) "hard" number-theoretic problems
 - integer factorization (RSA)

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (PK_B, SK_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: $M = \text{Dec}_{SK_B}(C)$
- Security: computing SK_B from PK_B should be difficult \Rightarrow rely on (supposedly) "hard" number-theoretic problems
 - integer factorization (RSA)
 - discrete logarithm problem in finite fields (ElGamal, DSA, etc.)

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (*PK*_B, *SK*_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: $M = \text{Dec}_{SK_B}(C)$
- Security: computing SK_B from PK_B should be difficult \Rightarrow rely on (supposedly) "hard" number-theoretic problems
 - integer factorization (RSA)
 - discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
 - discrete logarithm problem in elliptic curves (elliptic curve cryptography)

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (*PK*_B, *SK*_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: M = Dec_{SKB}(C)
- Security: computing SK_B from PK_B should be difficult \Rightarrow rely on (supposedly) "hard" number-theoretic problems
 - integer factorization (RSA)
 - discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
 - discrete logarithm problem in elliptic curves (elliptic curve cryptography)
 → harder problem, and thus requires smaller keys (256 vs. 3072 bits)

- Use public-key cryptography:
 - Bob generates a public/secret key-pair (*PK*_B, *SK*_B)
 - Alice retrieves Bob's public key *PK*_B
 - encryption only uses the public key: $C = Enc_{PK_B}(M)$
 - but decryption requires the secret key: M = Dec_{SKB}(C)
- Security: computing SK_B from PK_B should be difficult \Rightarrow rely on (supposedly) "hard" number-theoretic problems
 - integer factorization (RSA)
 - discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
 - discrete logarithm problem in elliptic curves (elliptic curve cryptography)
 → harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Outline

Some encryption mechanisms

- Elliptic curve cryptography
- Scalar multiplication
- ► Elliptic curve arithmetic
- ► Finite field arithmetic

A primer on elliptic curves

▶ Let us consider a field K (e.g., \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , etc.)

▶ Let us consider a field K (e.g., \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , etc.)

> An elliptic curve E defined over K is given by an equation of the form

 $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in K$

▶ Let us consider a field K (e.g., \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , etc.)

> An elliptic curve E defined over K is given by an equation of the form

 $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in K$

► The set of *K*-rational points of *E* is defined as

 $E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfy } E\}$

▶ Let us consider a field K (e.g., \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , etc.)

> An elliptic curve E defined over K is given by an equation of the form

 $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in K$

▶ The set of *K*-rational points of *E* is defined as

 $E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfy } E\} \cup \{\mathcal{O}\}$

 $\ensuremath{\mathcal{O}}$ is called the "point at infinity"

▶ Let us consider a field K (e.g., \mathbb{Q} , \mathbb{R} , \mathbb{F}_p , etc.)

> An elliptic curve E defined over K is given by an equation of the form

 $E: y^2 = x^3 + Ax + B$, with parameters $A, B \in K$

▶ The set of *K*-rational points of *E* is defined as

 $E(K) = \{(x, y) \in K \times K \mid (x, y) \text{ satisfy } E\} \cup \{\mathcal{O}\}$

 ${\cal O}$ is called the "point at infinity"

• Additive group law: E(K) is an abelian group

- addition via the "chord and tangent" method
- \mathcal{O} is the neutral element

▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$
 - consider 2P = P + P, then 3P = P + P + P, etc.

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$
 - consider 2P = P + P, then 3P = P + P + P, etc.
 - since $E(\mathbb{F}_q)$ is finite, take the smallest $\ell > 0$ such that $\ell P = \mathcal{O}$

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$
 - consider 2P = P + P, then 3P = P + P + P, etc.
 - since $E(\mathbb{F}_q)$ is finite, take the smallest $\ell > 0$ such that $\ell P = \mathcal{O}$
 - define G as

 $\mathbb{G} = \{\mathcal{O}, P, 2P, 3P, \dots, (\ell-1)P\}$

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$
 - consider 2P = P + P, then 3P = P + P + P, etc.
 - since $E(\mathbb{F}_q)$ is finite, take the smallest $\ell > 0$ such that $\ell P = \mathcal{O}$
 - define G as

 $\mathbb{G} = \{\mathcal{O}, \mathcal{P}, 2\mathcal{P}, 3\mathcal{P}, \dots, (\ell-1)\mathcal{P}\}$

• G is a cyclic subgroup of $E(\mathbb{F}_q)$, of order ℓ , and P is a generator of G

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$
 - consider 2P = P + P, then 3P = P + P + P, etc.
 - since $E(\mathbb{F}_q)$ is finite, take the smallest $\ell > 0$ such that $\ell P = \mathcal{O}$
 - define G as

 $\mathbb{G} = \{\mathcal{O}, \mathcal{P}, 2\mathcal{P}, 3\mathcal{P}, \dots, (\ell-1)\mathcal{P}\}$

• G is a cyclic subgroup of $E(\mathbb{F}_q)$, of order ℓ , and P is a generator of G

▶ The scalar multiplication in base P gives an isomorphism between $\mathbb{Z}/\ell\mathbb{Z}$ and G:

$$\exp_P : \mathbb{Z}/\ell\mathbb{Z} \longrightarrow \mathbb{G}$$

$$k \longmapsto kP = \underbrace{P+P+\ldots+P}_{k \text{ times}}$$

- ▶ If K is a finite field \mathbb{F}_q , then E(K) is a finite abelian group
 - let $P \in E(\mathbb{F}_q)$, with $P \neq \mathcal{O}$
 - consider 2P = P + P, then 3P = P + P + P, etc.
 - since $E(\mathbb{F}_q)$ is finite, take the smallest $\ell > 0$ such that $\ell P = \mathcal{O}$
 - define G as

 $\mathbb{G} = \{\mathcal{O}, \mathcal{P}, 2\mathcal{P}, 3\mathcal{P}, \dots, (\ell-1)\mathcal{P}\}$

• G is a cyclic subgroup of $E(\mathbb{F}_q)$, of order ℓ , and P is a generator of G

▶ The scalar multiplication in base P gives an isomorphism between $\mathbb{Z}/\ell\mathbb{Z}$ and G:

$$\exp_P : \mathbb{Z}/\ell\mathbb{Z} \longrightarrow \mathbb{G}$$

$$k \longmapsto kP = \underbrace{P+P+\ldots+P}_{k \text{ times}}$$

The inverse map is the so-called discrete logarithm (in base P):

$$dlog_P = \exp_P^{-1} : \mathbb{G} \longrightarrow \mathbb{Z}/\ell\mathbb{Z}$$
$$Q \longmapsto k \qquad \text{such that } Q = kP$$

Scalar multiplication can be computed in polynomial time:

Scalar multiplication can be computed in polynomial time:

Scalar multiplication can be computed in polynomial time:

Under a few conditions, the discrete logarithm can only be computed in exponential time (as far as we know):

Scalar multiplication can be computed in polynomial time:

Under a few conditions, the discrete logarithm can only be computed in exponential time (as far as we know):

Scalar multiplication can be computed in polynomial time:

Under a few conditions, the discrete logarithm can only be computed in exponential time (as far as we know):

► That's a one-way function

Scalar multiplication can be computed in polynomial time:

Under a few conditions, the discrete logarithm can only be computed in exponential time (as far as we know):

► That's a one-way function ⇒ public-key cryptography!

Scalar multiplication can be computed in polynomial time:

Under a few conditions, the discrete logarithm can only be computed in exponential time (as far as we know):

- ▶ That's a one-way function ⇒ public-key cryptography!
 - secret key: an integer k in $\mathbb{Z}/\ell\mathbb{Z}$
 - public key: the point kP in $\mathbb{G} \subseteq E(\mathbb{F}_q)$

Alice and Bob want to establish a secure communication channel

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

- Alice and Bob want to establish a secure communication channel
- ▶ How can they decide upon a shared secret key over a public channel?

Elliptic curve Diffie–Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

▶ etc.

Other important operations might be required, such as pairings

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

- Other important operations might be required, such as pairings
- Several algorithmic and arithmetic layers:

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

- Other important operations might be required, such as pairings
- Several algorithmic and arithmetic layers:
 - scalar multiplication

Elliptic curve Diffie–Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

► Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

- Other important operations might be required, such as pairings
- Several algorithmic and arithmetic layers:
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)

► Elliptic curve Diffie-Hellman (ECDH):

- Alice: $Q_A \leftarrow aP$ and $K \leftarrow aQ_B$ (2 scalar mults)
- Bob: $Q_B \leftarrow bP$ and $K \leftarrow bQ_A$ (2 scalar mults)

Elliptic curve Digital Signature Algorithm (ECDSA):

- Alice (KeyGen): $Q_A \leftarrow aP$ (1 scalar mult)
- Alice (Sign): $R \leftarrow kP$ (1 scalar mult)
- Bob (Verify): $R' \leftarrow uP + vQ_A$ (2 scalar mults)

▶ etc.

Other important operations might be required, such as pairings

- Several algorithmic and arithmetic layers:
 - scalar multiplication
 - elliptic curve arithmetic (point addition, point doubling, etc.)
 - finite field arithmetic (addition, multiplication, inversion, etc.)

There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
 - at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
 - at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
 - at the curve arithmetic level: PARI, Sage (not for crypto!)

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
 - at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
 - at the curve arithmetic level: PARI, Sage (not for crypto!)
 - at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
 - at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
 - at the curve arithmetic level: PARI, Sage (not for crypto!)
 - at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.
- Available open-source hardware implementations of ECC:

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
 - at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
 - at the curve arithmetic level: PARI, Sage (not for crypto!)
 - at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.
- ► Available open-source hardware implementations of ECC:
 - implementation of NaCl's crypto_box (Ed25519 + Salsa20 + Poly1305) in 29.3 to 32.6 kGE [Hutter et al., 2015]

- There already exist several free-software, open-source implementations of ECC (or of useful layers thereof):
 - at the protocol level: GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
 - at the cryptographic primitive level: RELIC, NaCl (Ed25519), crypto++, etc.
 - at the curve arithmetic level: PARI, Sage (not for crypto!)
 - at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.
- ► Available open-source hardware implementations of ECC:
 - implementation of NaCl's crypto_box (Ed25519 + Salsa20 + Poly1305) in 29.3 to 32.6 kGE [Hutter et al., 2015]
 - PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and arithmetic protections against side-channel attacks [See A. Tisserand's talk]

Outline

- Some encryption mechanisms
- Elliptic curve cryptography
- Scalar multiplication
- ► Elliptic curve arithmetic
- ► Finite field arithmetic

Scalar multiplication

▶ Given k in $\mathbb{Z}/\ell\mathbb{Z}$ and P in $\mathbb{G} \subseteq E(\mathbb{F}_q)$, we want to compute

$$kP = \underbrace{P + P + \ldots + P}_{\mu \text{ times}}$$

k times

Scalar multiplication

▶ Given k in $\mathbb{Z}/\ell\mathbb{Z}$ and P in $\mathbb{G} \subseteq E(\mathbb{F}_q)$, we want to compute

$$kP = \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

Size of ℓ (and k) for crypto applications: from 250 to 500 bits

Scalar multiplication

▶ Given k in $\mathbb{Z}/\ell\mathbb{Z}$ and P in $\mathbb{G} \subseteq E(\mathbb{F}_q)$, we want to compute

$$kP = \underbrace{P + P + \ldots + P}_{k \text{ times}}$$

Size of ℓ (and k) for crypto applications: from 250 to 500 bits

▶ Repeated addition, in O(k) complexity, is out of the question!

• Available operations on $E(\mathbb{F}_q)$:

- point addition: $(Q, R) \mapsto Q + R$
- point doubling: $Q \mapsto 2Q = Q + Q$

- Available operations on $E(\mathbb{F}_q)$:
 - point addition: $(Q, R) \mapsto Q + R$
 - point doubling: $Q \mapsto 2Q = Q + Q$
- \blacktriangleright Idea: iterative algorithm based on the binary expansion of k

- Available operations on $E(\mathbb{F}_q)$:
 - point addition: $(Q, R) \mapsto Q + R$
 - point doubling: $Q \mapsto 2Q = Q + Q$
- \blacktriangleright Idea: iterative algorithm based on the binary expansion of k
 - start from the most significant bit of k
 - double current result at each step
 - add P if the corresponding bit of k is 1

- Available operations on $E(\mathbb{F}_q)$:
 - point addition: $(Q, R) \mapsto Q + R$
 - point doubling: $Q \mapsto 2Q = Q + Q$
- \blacktriangleright Idea: iterative algorithm based on the binary expansion of k
 - start from the most significant bit of k
 - double current result at each step
 - add P if the corresponding bit of k is 1
 - same principle as binary exponentiation

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

Example: k = 431

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

T =

 $= \mathcal{O}$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (\underline{1}10101111)_2$

T = P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography

P

_

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = P \cdot 2 = 2P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = P \cdot 2 + P = 3P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = (P \cdot 2 + P) \cdot 2 = 6P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = (P \cdot 2 + P) \cdot 2^2 = 12P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (11010111)_2$

 $T = (P \cdot 2 + P) \cdot 2^2 + P = 13P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = ((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2 = 26P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = ((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 = 52P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$

return T

• Example: $k = 431 = (110101111)_2$

 $T = ((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P = 53P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101\underline{1}11)_2$

 $T = (((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 = 106P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101 \underline{1} 11)_2$

 $T = (((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P) \cdot 2 + P = 107P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

$$T = ((((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P) \cdot 2 + P) \cdot 2 = 214P$$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

 $T = ((((P \cdot 2 + P) \cdot 2^{2} + P) \cdot 2^{2} + P) \cdot 2 + P) \cdot 2 + P) = 215P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (11010111\underline{1})_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 = 430P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (11010111\underline{1})_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 + P = 431P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 + P = 431P$

▶ Denoting by $(k_{n-1} \dots k_1 k_0)_2$, with $n = \lceil \log_2 \ell \rceil$, the binary expansion of k:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ return T

• Example: $k = 431 = (110101111)_2$

 $T = (((((P \cdot 2 + P) \cdot 2^2 + P) \cdot 2^2 + P) \cdot 2 + P) \cdot 2 + P) \cdot 2 + P = 431P$

• Complexity in $O(n) = O(\log_2 \ell)$ operations over $E(\mathbb{F}_q)$:

- n-1 doublings, and
- n/2 additions on average

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: k = 431

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = \mathcal{O}$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (\underline{110} \ 101 \ 111)_2 = (\underline{6}57)_{2^3}$

$$T = 6P = 6P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110 \underline{101} 111)_2 = (6\underline{57})_{2^3}$

$$T = 6P \cdot 2^3 = 48P$$

▶ Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions

• Example with w = 3: $k = 431 = (110 \ \underline{101} \ 111)_2 = (6 \ \underline{57})_{2^3}$

$$T = 6P \cdot 2^3 + 5P = 53P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ \underline{111})_2 = (65\underline{7})_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 = 424P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ \underline{111})_2 = (65\underline{7})_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

▶ Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

► Complexity:

- *n w* doublings, and
- $(1-2^{-w})n/w$ additions on average

• Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

Complexity:

- *n w* doublings, and
- $(1-2^{-w})n/w$ additions on average

Select w carefully so that precomputation cost does not become predominant

• Consider 2^{w} -ary expansion of k: i.e., split k into w-bit chunks

- Precompute 2*P*, 3*P*, ..., $(2^w 1)P$:
 - $2^{w-1} 1$ doublings, and
 - $2^{w-1} 1$ additions
- Example with w = 3: $k = 431 = (110\ 101\ 111)_2 = (657)_{2^3}$

$$T = (6P \cdot 2^3 + 5P) \cdot 2^3 + 7P = 431P$$

Complexity:

- *n w* doublings, and
- $(1-2^{-w})n/w$ additions on average

Select w carefully so that precomputation cost does not become predominant

Sliding window variant: half as many precomputations

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

• simple power analysis (SPA) will leak bits of k

▶ Back to the double-and-add algorithm:

```
function scalar-mult(k, P):

T \leftarrow O

for i \leftarrow n-1 downto 0:

T \leftarrow 2T

if k_i = 1:

T \leftarrow T + P

return T
```

• simple power analysis (SPA) will leak bits of k

▶ Back to the double-and-add algorithm:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ else: $Z \leftarrow T + P$

return T

- ▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$
 - careful timing analysis will reveal Hamming weight of secret k
 - simple power analysis (SPA) will leak bits of k

Use double-and-add-always algorithm?

Back to the double-and-add algorithm:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ else: $Z \leftarrow T + P$

return T

- ▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$
 - careful timing analysis will reveal Hamming weight of secret k
 - simple power analysis (SPA) will leak bits of k

- ► Use double-and-add-always algorithm?
 - the result of the point addition is used if and only if $k_i = 1$

Back to the double-and-add algorithm:

function scalar-mult(k, P): $T \leftarrow O$ for $i \leftarrow n-1$ downto 0: $T \leftarrow 2T$ if $k_i = 1$: $T \leftarrow T + P$ else: $Z \leftarrow T + P$

return T

- ▶ At step *i*, point addition $T \leftarrow T + P$ is computed if and only if $k_i = 1$
 - careful timing analysis will reveal Hamming weight of secret k
 - simple power analysis (SPA) will leak bits of k

- Use double-and-add-always algorithm?
 - the result of the point addition is used if and only if $k_i = 1$
 - \Rightarrow vulnerable to fault attacks [See A. Tisserand's lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

• perform one addition and one doubling at each step

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$

Example: k = 19

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = \qquad \qquad = \mathcal{O}$$
$$T_1 = P \qquad \qquad = P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (\underline{1}0011)_2$

$$T_0 = \qquad \qquad = \mathcal{O}$$
$$T_1 = P \qquad \qquad = P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (\underline{1}0011)_2$

$$T_0 = P = P$$
$$T_1 = P = P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (\underline{1}0011)_2$

$$T_0 = P = P$$
$$T_1 = P \cdot 2 = 2P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P = P$$
$$T_1 = P \cdot 2 = 2P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P = P$$
$$T_1 = P \cdot 2 + P = 3P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2 \qquad = 2P$$

 $T_1 = P \cdot 2 + P = 3P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2 \qquad = 2P$$

 $T_1 = P \cdot 2 + P = 3P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2 = 2P$$

$$T_1 = P \cdot 2 + P + 2P = 5P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2^2 = 4P$$

$$T_1 = P \cdot 2 + P + 2P = 5P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (100\underline{1}1)_2$

$$T_0 = P \cdot 2^2 = 4P$$

$$T_1 = P \cdot 2 + P + 2P = 5P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

► Properties:

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (100\underline{1}1)_2$

$$T_0 = P \cdot 2^2 + 5P \qquad = 9P$$

 $T_1 = P \cdot 2 + P + 2P = 5P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (100\underline{1}1)_2$

$$T_0 = P \cdot 2^2 + 5P = 9P$$

 $T_1 = (P \cdot 2 + P + 2P) \cdot 2 = 10P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (1001\underline{1})_2$

$$T_0 = P \cdot 2^2 + 5P = 9P$$

 $T_1 = (P \cdot 2 + P + 2P) \cdot 2 = 10P$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (1001\underline{1})_2$

$$T_0 = P \cdot 2^2 + 5P + 10P = 19P$$

$$T_1 = (P \cdot 2 + P + 2P) \cdot 2 = 10P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n - 1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (1001\underline{1})_2$

$$T_0 = P \cdot 2^2 + 5P + 10P = 19P$$

$$T_1 = (P \cdot 2 + P + 2P) \cdot 2^2 = 20P$$

► Algorithm proposed by Montgomery in 1987:

function scalar-mult(k, P): $T_{0} \leftarrow \mathcal{O}$ $T_{1} \leftarrow P$ for $i \leftarrow n-1$ downto 0: if $k_{i} = 1$: $T_{0} \leftarrow T_{0} + T_{1}$ $T_{1} \leftarrow 2T_{1}$ else: $T_{1} \leftarrow T_{0} + T_{1}$ $T_{0} \leftarrow 2T_{0}$ return T_{0}

- perform one addition and one doubling at each step
- ensure that both results are used in the next step
- loop invariant: $T_1 = T_0 + P$
- Example: $k = 19 = (10011)_2$

$$T_0 = P \cdot 2^2 + 5P + 10P = 19P$$

$$T_1 = (P \cdot 2 + P + 2P) \cdot 2^2 = 20P$$

Outline

- Some encryption mechanisms
- Elliptic curve cryptography
- Scalar multiplication
- ► Elliptic curve arithmetic
- ► Finite field arithmetic

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is $-P = (x_P, -y_P)$

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q \text{ (addition), or} \\ \frac{3x_P^2 + A}{2y_P} & \text{if } P = Q \text{ (doubling)} \end{cases}$$

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of *P* is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q \text{ (addition), or} \\ \frac{3x_P^2 + A}{2y_P} & \text{if } P = Q \text{ (doubling)} \end{cases}$$

▶ Cost (number of multiplications, squarings, and inversions in \mathbb{F}_q):

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q \text{ (addition), or} \\ \frac{3x_P^2 + A}{2y_P} & \text{if } P = Q \text{ (doubling)} \end{cases}$$

Cost (number of multiplications, squarings, and inversions in F_q):
 addition: 2M + 1S + 1I

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q \text{ (addition), or} \\ \frac{3x_P^2 + A}{2y_P} & \text{if } P = Q \text{ (doubling)} \end{cases}$$

▶ Cost (number of multiplications, squarings, and inversions in \mathbb{F}_q):

- addition: 2M + 1S + 1I
- doubling: 2M + 2S + 1I

 $E/\mathbb{F}_q: y^2 = x^3 + Ax + B$

▶ Let $P = (x_P, y_P)$ and $Q = (x_Q, y_Q) \in E(\mathbb{F}_q) \setminus \{\mathcal{O}\}$ (affine coordinates)

• The opposite of P is
$$-P = (x_P, -y_P)$$

▶ If $P \neq -Q$, then $P + Q = R = (x_R, y_R)$ with

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = \lambda(x_P - x_R) - y_P$

where

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q \text{ (addition), or} \\ \frac{3x_P^2 + A}{2y_P} & \text{if } P = Q \text{ (doubling)} \end{cases}$$

▶ Cost (number of multiplications, squarings, and inversions in \mathbb{F}_q):

- addition: 2M + 1S + 1I
- doubling: 2M + 2S + 1I
- \Rightarrow field inversion is expensive!

▶ One can use other coordinate systems which provide more efficient formulae

▶ One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

$$E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$$

• idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

 $E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

$$E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$$

- addition: 12M + 4S
- doubling: 4M + 6S

One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

$$E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$$

- addition: 12M + 4S
- doubling: 4M + 6S

▶ And many others: modified jacobian coordinates, López–Dahab (over \mathbb{F}_{2^n}), etc.

▶ One can use other coordinate systems which provide more efficient formulae

▶ Projective coordinates: points (X : Y : Z) with (x, y) = (X/Z, Y/Z)

 $E/\mathbb{F}_q: Y^2Z = X^3 + AXZ^2 + BZ^3$

- idea: get rid of the inversion over \mathbb{F}_q by using Z as the denominator
- addition: 12M + 2S
- doubling: 7M + 5S

▶ Jacobian coordinates: points (X : Y : Z) with $(x, y) = (X/Z^2, Y/Z^3)$

$$E/\mathbb{F}_q: Y^2 = X^3 + AXZ^4 + BZ^6$$

- addition: 12M + 4S
- doubling: 4M + 6S

▶ And many others: modified jacobian coordinates, López–Dahab (over \mathbb{F}_{2^n}), etc.

Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Outline

- Some encryption mechanisms
- Elliptic curve cryptography
- Scalar multiplication
- ► Elliptic curve arithmetic
- ► Finite field arithmetic

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ▶ Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with p an *n*-bit prime and n between 250 and 500 bits
 - binary field \mathbb{F}_{2^n} , with *n* prime and between 250 and 500

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ▶ Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with p an *n*-bit prime and n between 250 and 500 bits
 - binary field \mathbb{F}_{2^n} , with *n* prime and between 250 and 500 (... still secure?)

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ▶ Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with p an n-bit prime and n between 250 and 500 bits
 - binary field \mathbb{F}_{2^n} , with *n* prime and between 250 and 500 (... still secure?)
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication)
 - Ieft and right shifts
 - bitwise logic operations (bitwise NOT, AND, etc.)

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ▶ Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with p an n-bit prime and n between 250 and 500 bits
 - binary field \mathbb{F}_{2^n} , with *n* prime and between 250 and 500 (... still secure?)
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication)
 - left and right shifts
 - bitwise logic operations (bitwise NOT, AND, etc.)
- ▶ ... on *w*-bit words:
 - *w* = 32 or 64 on CPUs
 - w = 8 or 16 bits on microcontrollers
 - a bit more flexibility in hardware (but integer arithmetic with w > 64 bits is hard!)

- Group law over $E(\mathbb{F}_q)$ requires:
 - additions / subtractions over \mathbb{F}_q
 - multiplications / squarings over \mathbb{F}_q
 - a few inversions over \mathbb{F}_q
- ▶ Typical finite fields \mathbb{F}_q :
 - prime field \mathbb{F}_p , with p an n-bit prime and n between 250 and 500 bits
 - binary field \mathbb{F}_{2^n} , with *n* prime and between 250 and 500 (... still secure?)
- ▶ What we have at our disposal:
 - basic integer arithmetic (addition, multiplication)
 - left and right shifts
 - bitwise logic operations (bitwise NOT, AND, etc.)
- ▶ ... on *w*-bit words:
 - *w* = 32 or 64 on CPUs
 - w = 8 or 16 bits on microcontrollers
 - a bit more flexibility in hardware (but integer arithmetic with w > 64 bits is hard!)
 - \Rightarrow elements of \mathbb{F}_q represented using several words

▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

▶ Addition of *A* and $B \in \mathbb{F}_P$:

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lceil n/w \rceil$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- ▶ Addition of *A* and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)

- ▶ Consider $A \in \mathbb{F}_P$, with *P* an *n*-bit prime
 - represent A as an integer modulo P
 - split A into $k = \lfloor n/w \rfloor$ w-bit words (or limbs), $a_{k-1}, ..., a_1, a_0$:

$$A = a_{k-1}2^{(k-1)w} + \dots + a_12^w + a_0$$

- Addition of A and $B \in \mathbb{F}_P$:
 - right-to-left word-wise addition
 - need to propagate carry
 - might need reduction modulo *P*: compare then subtract (in constant time!)
 - lazy reduction: if kw > n, do not reduce after each addition

▶ Multiplication of *A* and $B \in \mathbb{F}_P$:

- Multiplication of A and $B \in \mathbb{F}_P$:
 - schoolbook method: k^2 w-by-w-bit products

- Multiplication of A and $B \in \mathbb{F}_P$:
 - schoolbook method: k^2 w-by-w-bit products

- Multiplication of A and $B \in \mathbb{F}_P$:
 - schoolbook method: k² w-by-w-bit products
 - subquadratic algorithms (e.g., Karatsuba) when k is large

- Multiplication of A and $B \in \mathbb{F}_P$:
 - schoolbook method: k^2 w-by-w-bit products
 - subquadratic algorithms (e.g., Karatsuba) when k is large
 - final product fits into 2k words \rightarrow requires reduction modulo P (see later)

- Multiplication of A and $B \in \mathbb{F}_P$:
 - schoolbook method: k^2 w-by-w-bit products
 - subquadratic algorithms (e.g., Karatsuba) when k is large
 - final product fits into 2k words \rightarrow requires reduction modulo P (see later)
 - should run in constant time (for fixed P)!

• Given an integer $A < P^2$ (on 2k words), compute $R = A \mod P$

► Easy case: P is a pseudo-Mersenne prime $P = 2^n - c$ with c "small" (e.g., $< 2^w$)

• Given an integer $A < P^2$ (on 2k words), compute $R = A \mod P$

Easy case: P is a pseudo-Mersenne prime P = 2ⁿ − c with c "small" (e.g., < 2^w)
 then 2ⁿ ≡ c (mod P)

- ▶ Easy case: *P* is a pseudo-Mersenne prime $P = 2^n c$ with *c* "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)
 - final subtraction might be necessary

• Given an integer $A < P^2$ (on 2k words), compute $R = A \mod P$

- Easy case: P is a pseudo-Mersenne prime $P = 2^n c$ with c "small" (e.g., $< 2^w$)
 - then $2^n \equiv c \pmod{P}$
 - split A wrt. 2^n : $A = A_H 2^n + A_L$
 - compute $A' \leftarrow c \cdot A_H + A_L$ (one $1 \times k$ -word multiplication)
 - rinse & repeat (one 1 × 1-word multiplication)
 - final subtraction might be necessary

• Examples: $P = 2^{255} - 19$ (Curve25519) or $P = 2^{448} - 2^{224} - 1$ (Ed448-Goldilocks)

▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A - QP

- ▶ Idea: find quotient $Q = \lfloor A/P \rfloor$, then take remainder as A QP
 - Euclidean division is way too expensive!

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- ► Barrett reduction:

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision

Barrett reduction:

- precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
- given A < P², get the k + 1 most significant words A_H ← [A/2^{(k-1)w}]
 compute Q̃ ← |A_H · P'/2^{(k+1)w}| (one (k + 1) × (k + 1)-word multiplication)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)

 - given A < P², get the k + 1 most significant words A_H ← [A/2^{(k-1)w}]
 compute Q̃ ← |A_H · P'/2^{(k+1)w}| (one (k + 1) × (k + 1)-word multiplication)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw} / P \rfloor$ (k + 1 words)

 - given A < P², get the k + 1 most significant words A_H ← [A/2^{(k-1)w}]
 compute Q̃ ← |A_H · P'/2^{(k+1)w}| (one (k + 1) × (k + 1)-word multiplication)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
 - compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times (k+1)$ -word multiplication)
 - compute $\tilde{A} \leftarrow \tilde{Q} \cdot P$ (one $k \times k$ -word multiplication)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
 - compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times (k+1)$ -word multiplication)
 - compute $\tilde{A} \leftarrow \tilde{Q} \cdot P$ (one $k \times k$ -word multiplication)

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
 - compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times (k+1)$ -word multiplication)
 - compute $\tilde{A} \leftarrow \tilde{Q} \cdot P$ (one $k \times k$ -word multiplication)
 - compute remainder $R \leftarrow A \tilde{A}$

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k + 1 most significant words $A_H \leftarrow \lfloor A/2^{(k-1)w} \rfloor$
 - compute $\tilde{Q} \leftarrow [A_H \cdot P'/2^{(k+1)w}]$ (one $(k+1) \times (k+1)$ -word multiplication)
 - compute $\tilde{A} \leftarrow (\tilde{Q} \cdot P) \mod 2^{(k+1)w}$ (one $k \times k$ -word short multiplication)
 - compute remainder $R \leftarrow (A \tilde{A}) \mod 2^{(k+1)w}$

- ▶ Idea: find quotient Q = |A/P|, then take remainder as A QP
 - Euclidean division is way too expensive!
 - since P is fixed, precompute 1/P with enough precision
- Barrett reduction:
 - precompute $P' = \lfloor 2^{2kw}/P \rfloor$ (k + 1 words)
 - given $A < P^2$, get the k+1 most significant words $A_H \leftarrow |A/2^{(k-1)w}|$
 - compute Q̃ ← [A_H · P'/2^{(k+1)w}] (one (k + 1) × (k + 1)-word multiplication)
 compute Ã ← (Q̃ · P) mod 2^{(k+1)w} (one k × k-word short multiplication)

 - compute remainder $\vec{R} \leftarrow (A \tilde{A}) \mod 2^{(k+1)w}$
 - since $Q 2 < \tilde{Q} < Q$, at most two final subtractions

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography

Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and $A < 2^{kw}P$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)

- requires *P* odd (on *k* words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)

- requires *P* odd (on *k* words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)

- requires *P* odd (on *k* words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\tilde{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \hat{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow A + \tilde{A}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute A ← K · P (one k × k-word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $A \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent $X \in \mathbb{F}_P$ in Montgomery representation: $\hat{X} = (X \cdot 2^{kw}) \mod P$

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $A \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X ⋅ 2^{kw}) mod P
 if Z = (X ⋅ Y) mod P, then

$$\operatorname{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $A \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X ⋅ 2^{kw}) mod P
 if Z = (X ⋅ Y) mod P, then

$$\operatorname{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

$$\hat{X} = \operatorname{\mathsf{REDC}}(X, 2^{2^{kw}} \mod P)$$
 and $X = \operatorname{\mathsf{REDC}}(\hat{X}, 1)$

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute A ← K · P (one k × k-word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X · 2^{kw}) mod P
 if Z = (X · Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

 $\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$ and $X = \operatorname{REDC}(\hat{X}, 1)$

• Montgomery representation is compatible with addition / subtraction in \mathbb{F}_{P}

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X · 2^{kw}) mod P
 if Z = (X · Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

 $\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$ and $X = \operatorname{REDC}(\hat{X}, 1)$

• Montgomery representation is compatible with addition / subtraction in \mathbb{F}_{P}

 \Rightarrow do all computations in Montgomery repr. instead of converting back and forth

▶ Montgomery reduction (REDC): like Barrett, but on the least significant words

- requires P odd (on k words) and $A < 2^{kw}P$
- precompute $P' \leftarrow (-P^{-1}) \mod 2^{kw}$ (on k words)
- given A, compute $K \leftarrow (A \cdot P') \mod 2^{kw}$ (one $k \times k$ -word short multiplication)
- compute $\hat{A} \leftarrow K \cdot P$ (one $k \times k$ -word multiplication)
- compute remainder $R \leftarrow (A + \tilde{A})/2^{kw}$
- at most one extra subtraction
- ▶ REDC(A) returns $R = (A \cdot 2^{-kw}) \mod P$, not A mod P!
 - represent X ∈ F_P in Montgomery representation: X̂ = (X ⋅ 2^{kw}) mod P
 if Z = (X ⋅ Y) mod P, then

$$\mathsf{REDC}(\hat{X} \cdot \hat{Y}) = (X \cdot Y \cdot 2^{kw}) \mod P = \hat{Z}$$

 \rightarrow that's the so-called Montgomery multiplication

• conversions:

 $\hat{X} = \operatorname{REDC}(X, 2^{2kw} \mod P)$ and $X = \operatorname{REDC}(\hat{X}, 1)$

- Montgomery representation is compatible with addition / subtraction in $\mathbb{F}_{\mathcal{P}}$
- \Rightarrow do all computations in Montgomery repr. instead of converting back and forth
- ▶ REDC can be computed iteratively (one word at a time) and interleaved with the computation of $\hat{X} \cdot \hat{Y}$

▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{\mathsf{S}} A^2$$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{\mathsf{S}} A^2 \xrightarrow{\mathsf{S}} A^4$$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{\mathsf{S}} A^2 \xrightarrow{\mathsf{S}^2} A^8$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of *A*
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9$$

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- ► Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9 \longrightarrow A^{11}$$

- ▶ Given $A \in \mathbb{F}_P^*$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

$$A \xrightarrow{S} A^2 \xrightarrow{S^2} A^9 \longrightarrow A^{11} \xrightarrow{S} A^{2^5-1}$$

MP field inversion

- ▶ Given $A \in \mathbb{F}_{P}^{*}$, compute $A^{-1} \mod P$
- Extended Euclidean algorithm:
 - compute Bézout's coefficients: U and V such that UA + VP = gcd(A, P) = 1
 - then $UA \equiv 1 \pmod{P}$ and $A^{-1} \equiv U \pmod{P}$
 - fast, but running time depends on A
 - \Rightarrow requires randomization of A to protect against timing attacks
- Fermat's little theorem:
 - we know that $A^{P-1} \equiv 1 \pmod{P}$, whence $A^{P-2} \equiv A^{-1} \pmod{P}$
 - precompute short sequence of squarings and multiplications for fast exponentiation of A
 - example: $P = 2^{255} 19$ in 11M and 254S [Bernstein, 2006]

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

 $m_i = 2^w - c_i$, with small c_i

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

• typically, the m_i 's are chosen to fit in a machine word (w bits)

• pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

• write $M = \prod_{i=1}^{k} m_i$ and, for all i, $M_i = M/m_i$

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

• typically, the m_i 's are chosen to fit in a machine word (w bits)

• pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

• write $M = \prod_{i=1}^{k} m_i$ and, for all i, $M_i = M/m_i$

• Let A < M be an integer

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

• write $M = \prod_{i=1}^{k} m_i$ and, for all i, $M_i = M/m_i$

- Let A < M be an integer
 - represent A as the tuple $\overrightarrow{A} = (a_1, \dots, a_k)$ with $a_i = A \mod m_i = |A|_{m_i}$, for all $i \rightarrow$ that is the RNS representation of A in base \mathcal{B}

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

 $m_i = 2^w - c_i$, with small c_i

- write $M = \prod_{i=1}^{i} m_i$ and, for all i, $M_i = M/m_i$
- Let A < M be an integer

k

- represent A as the tuple $\overrightarrow{A} = (a_1, \dots, a_k)$ with $a_i = A \mod m_i = |A|_{m_i}$, for all $i \rightarrow$ that is the RNS representation of A in base \mathcal{B}
- given A = (a₁,..., a_k), retrieve the unique corresponding integer A ∈ Z/MZ using the Chinese remaindering theorem (CRT):

$$A = \left| \sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i \right|_{M_i}$$

• Let $\mathcal{B} = (m_1, \ldots, m_k)$ a tuple of k pairwise coprime integers

- typically, the m_i 's are chosen to fit in a machine word (w bits)
- pseudo-Mersenne primes allow for easy reduction modulo *m_i*:

 $m_i = 2^w - c_i$, with small c_i

- write $M = \prod_{i=1}^{i} m_i$ and, for all i, $M_i = M/m_i$
- Let A < M be an integer

k

- represent A as the tuple $\overrightarrow{A} = (a_1, \dots, a_k)$ with $a_i = A \mod m_i = |A|_{m_i}$, for all $i \rightarrow$ that is the RNS representation of A in base \mathcal{B}
- given A = (a₁,..., a_k), retrieve the unique corresponding integer A ∈ Z/MZ using the Chinese remaindering theorem (CRT):

$$A = \left| \sum_{i=1}^{k} |a_i \cdot M_i^{-1}|_{m_i} \cdot M_i \right|_{M_i}$$

▶ If M > P, we can represent elements of \mathbb{F}_P in RNS

• Let
$$\overrightarrow{A} = (a_1, \dots, a_k)$$
 and $\overrightarrow{B} = (b_1, \dots, b_k)$

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m1},..., |a_k ± b_k|_{mk}) A × B = (|a₁ × b₁|_{m1},..., |a_k × b_k|_{mk})

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

<i>a</i> ₁	a ₂	a 3	a ₄
×	×	×	×
b_1	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> 4

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Limitations:

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Limitations:

• operations are computed in $\mathbb{Z}/M\mathbb{Z}$: beware of overflows! (we need $M > P^2$)

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Limitations:

• operations are computed in $\mathbb{Z}/M\mathbb{Z}$: beware of overflows! (we need $M > P^2$)

Let A = (a₁,..., a_k) and B = (b₁,..., b_k)
add., sub. and mult. can be performed in parallel on all "channels":
A ± B = (|a₁ ± b₁|_{m₁},..., |a_k ± b_k|_{m_k}) A × B = (|a₁ × b₁|_{m₁},..., |a_k × b_k|_{m_k})

• native parallelism: suited to SIMD instructions and hardware implementation

Limitations:

- operations are computed in $\mathbb{Z}/M\mathbb{Z}$: beware of overflows! (we need $M > P^2$)
- RNS modular reduction has quadratic complexity $O(k^2)$

▶ Requires two RNS bases $\mathcal{B}_{\alpha} = (m_{\alpha,1}, \dots, m_{\alpha,k})$ and $\mathcal{B}_{\beta} = (m_{\beta,1}, \dots, m_{\beta,k})$ such that $M_{\alpha} > P$, $M_{\beta} > P$, and $gcd(M_{\alpha}, M_{\beta}) = 1$

- ▶ Requires two RNS bases $\mathcal{B}_{\alpha} = (m_{\alpha,1}, \dots, m_{\alpha,k})$ and $\mathcal{B}_{\beta} = (m_{\beta,1}, \dots, m_{\beta,k})$ such that $M_{\alpha} > P$, $M_{\beta} > P$, and $gcd(M_{\alpha}, M_{\beta}) = 1$
- RNS base extension algorithm (BE) [Kawamura *et al.*, 2000]
 given X_α in base B_α, BE(X_α, B_α, B_β) computes X_β, the repr. of X in base B_β
 - similarly, $\mathsf{BE}(\overrightarrow{X_{\beta}}, \mathcal{B}_{\beta}, \mathcal{B}_{\alpha})$ computes $\overrightarrow{X_{\alpha}}$ in base \mathcal{B}_{α}

- ▶ Requires two RNS bases $\mathcal{B}_{\alpha} = (m_{\alpha,1}, \dots, m_{\alpha,k})$ and $\mathcal{B}_{\beta} = (m_{\beta,1}, \dots, m_{\beta,k})$ such that $M_{\alpha} > P$, $M_{\beta} > P$, and $gcd(M_{\alpha}, M_{\beta}) = 1$
- ► RNS base extension algorithm (BE) [Kawamura *et al.*, 2000]
 given X_α in base B_α, BE(X_α, B_α, B_β) computes X_β, the repr. of X in base B_β
 similarly, BE(X_β, B_β, B_α) computes X_α in base B_α
 - similar to RNS modular reduction $\rightarrow O(k^2)$ complexity

▶ Result is
$$(\overrightarrow{R_{\alpha}}, \overrightarrow{R_{\beta}}) \equiv (A \cdot M_{\alpha}^{-1}) \pmod{P}$$

▶ Result is $(\overrightarrow{R_{\alpha}}, \overrightarrow{R_{\beta}}) \equiv (A \cdot M_{\alpha}^{-1}) \pmod{P}$

See also the hybrid position-residues number system [Bigou & Tisserand, 2016]

Un peu de publicité éhontée...

Journées Codage & Cryptographie 2017

du 23 au 28 avril à La Bresse (Vosges)

Soumission de résumés: jusqu'au 8 mars Inscriptions: jusqu'au 3 avril

https://jc2-2017.inria.fr/

À très bientôt dans les Vosges !

