
ARCHI 2017, Nancy, France — March 6–10, 2017

Hardware Implementation of
Cryptography

Jérémie Detrey
CARAMBA team, LORIA

INRIA Nancy – Grand Est, France
Jeremie.Detrey@loria.fr

/* */ E,C,
/* */ c,r,
/* */ u,l,

e,s,
i=5,

d[5],Q[999]={0};main(n){for
(;i--;e=scanf("%" "d",d+i));for(C =*d;

++i<C ;++Q[i*i% C],c= i[Q]?
c:i); for(;i --;) for(u =C;u
--;n +=!u*Q [l%C],e+= Q[(C
+l*l- c*s* s%C) %C]) for(

l=i,s=u,r=4;r;E= i*l+c*u*s,s=(u*l +i*s)
%C,l=E%C+r --[d]);printf ("%d"

"\n",
(e+n*

n)/2
/* cc caramba.c; echo f3 f2 f1 f0 p | ./a.out */ -C);}

CARAMBA

ARCHI 2017, Nancy, France — March 6–10, 2017

Hardware Implementation of
(Elliptic Curve) Cryptography

Jérémie Detrey
CARAMBA team, LORIA

INRIA Nancy – Grand Est, France
Jeremie.Detrey@loria.fr

/* */ E,C,
/* */ c,r,
/* */ u,l,

e,s,
i=5,

d[5],Q[999]={0};main(n){for
(;i--;e=scanf("%" "d",d+i));for(C =*d;

++i<C ;++Q[i*i% C],c= i[Q]?
c:i); for(;i --;) for(u =C;u
--;n +=!u*Q [l%C],e+= Q[(C
+l*l- c*s* s%C) %C]) for(

l=i,s=u,r=4;r;E= i*l+c*u*s,s=(u*l +i*s)
%C,l=E%C+r --[d]);printf ("%d"

"\n",
(e+n*

n)/2
/* cc caramba.c; echo f3 f2 f1 f0 p | ./a.out */ -C);}

CARAMBA

Cryptography

Alice Bob

EveMallory

I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

Eve

Mallory

I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)

• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

EveMallory

I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

EveMallory

??
I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

EveMallory

??
I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption

• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

EveMallory

??
I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions

• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

EveMallory

??
I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature

• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptography

Alice Bob

EveMallory

??
I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 1 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)

• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)

• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)

• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)

• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)

• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires

• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 2 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)

• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)

• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)

• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 3 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?

• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?

• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)

• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)

• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?

• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?

• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]

• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?

• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?

• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 4 / 43

Some references

Alfred Menezes, Paul van Oorschot, and Scott Vanstone,
Handbook of Applied Cryptography.
Chapman & Hall / CRC, 1996.
http://www.cacr.math.uwaterloo.ca/hac/

Francisco Rodŕıguez-Henŕıquez, Arturo D́ıaz Pérez, Nazar Abbas
Saqib, and Çetin Kaya Koç,
Cryptographic Algorithms on Reconfigurable Hardware.
Springer, 2006.

Proceedings of the CHES workshop and of other crypto conferences.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 5 / 43

http://www.cacr.math.uwaterloo.ca/hac/

Some references

Elliptic Curves in Cryptography,
Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart.
London Mathematical Society 265,
Cambridge University Press, 1999.

Guide to Elliptic Curve Cryptography,
Darrel Hankerson, Alfred Menezes, and Scott Vanstone.
Springer, 2004.

Handbook of Elliptic and Hyperelliptic Curve Cryptography,
Henri Cohen and Gerhard Frey (editors).
Chapman & Hall / CRC, 2005.

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 6 / 43

Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 7 / 43

Symmetric encryption

Alice Bob

M

??K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 8 / 43

Symmetric encryption

Alice Bob

M??

K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 8 / 43

Symmetric encryption

Alice Bob

M??K K

C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)

• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 8 / 43

Symmetric encryption

Alice Bob

M??K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)
• encrypt message using shared key: C = EncK (M)

• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 8 / 43

Symmetric encryption

Alice Bob

M??K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 8 / 43

Symmetric encryption

Alice Bob

M??K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 8 / 43

AES [Daemen & Rijmen, 2001]

C

M K

Key schedule
...

k0

k1

k9

k10

S S SSSubBytes

ShiftRows

S S SSSubBytes

ShiftRows

MixColumns

I Advanced Encryption Standard

I Key sizes: 128, 192 or 256 bits

I Block size: 128 bits

I Substitution–permutation network

• SubBytes: nonlinear subst. on bytes
• ShiftRows & MixColumns: mainly

wires, plus a few XORs

I 10, 12, or 14 rounds
(depending on key size)

I Low-area version (1 S-box):
20 cycles / round, 2.5 to 5 kGE

I Parallel version (20 S-boxes):
1 cycle / round, 20 to 35 kGE

I Fully unrolled version (200 S-boxes):
1 cycle / block, at least 200 kGE

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 9 / 43

AES [Daemen & Rijmen, 2001]

C

M K

Key schedule
...

k0

k1

k9

k10

S S SSSubBytes

ShiftRows

S S SSSubBytes

ShiftRows

MixColumns

I Advanced Encryption Standard

I Key sizes: 128, 192 or 256 bits

I Block size: 128 bits

I Substitution–permutation network

• SubBytes: nonlinear subst. on bytes
• ShiftRows & MixColumns: mainly

wires, plus a few XORs

I 10, 12, or 14 rounds
(depending on key size)

I Low-area version (1 S-box):
20 cycles / round, 2.5 to 5 kGE

I Parallel version (20 S-boxes):
1 cycle / round, 20 to 35 kGE

I Fully unrolled version (200 S-boxes):
1 cycle / block, at least 200 kGE

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 9 / 43

Symmetric encryption

Alice Bob

M??K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• decide upon a shared secret key K
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

I Stream cipher:

• generate a pseudorandom keystream Z using a PRNG initialized by the key K
and a random initialization vector (IV)
• use Z to mask the message: C = M ⊕ Z and M = C ⊕ Z (⊕ is XOR)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 10 / 43

Symmetric encryption

Alice Bob

M??K K
C = Enc ()MK

I Alice wants to send a confidential message M to Bob

• decide upon a shared secret key K
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C)

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

I Stream cipher:

• generate a pseudorandom keystream Z using a PRNG initialized by the key K
and a random initialization vector (IV)
• use Z to mask the message: C = M ⊕ Z and M = C ⊕ Z (⊕ is XOR)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 10 / 43

Trivium [De Cannière & Preneel, 2005]

zi

1

66

69

91
92
93

94

162

171

175
176

177

178

24
3

26
4

28
6

28
7

28
8

I Part of the eSTREAM portfolio
(low-area hardware ciphers)

I Key size: 80 bits

I IV size: 80 bits

I 288-bit circular shift register,
plus a few XOR and AND gates

I Serial version:

• 1 keystream bit / clock cycle
• 2.6 kGE

I Parallel version:

• up to 64 bits / clock cycle
• 4.9 kGE

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 11 / 43

Trivium [De Cannière & Preneel, 2005]

zi

1

66

69

91
92
93

94

162

171

175
176

177

178

24
3

26
4

28
6

28
7

28
8

I Part of the eSTREAM portfolio
(low-area hardware ciphers)

I Key size: 80 bits

I IV size: 80 bits

I 288-bit circular shift register,
plus a few XOR and AND gates

I Serial version:

• 1 keystream bit / clock cycle
• 2.6 kGE

I Parallel version:

• up to 64 bits / clock cycle
• 4.9 kGE

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 11 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK

?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ??

SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKB

C = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)

• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKB

C = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult
⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult
⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)

• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult
⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)

• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult
⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult
⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)
→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Public-key encryption

MKC = Enc ()

Alice Bob

KK ?? ?? SKB
PKBC = Enc ()MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C)

I Security: computing SKB from PKB should be difficult
⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)
→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 12 / 43

Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 13 / 43

A primer on elliptic curves

I Let us consider a field K (e.g., Q, R, Fp, etc.)

I An elliptic curve E defined over K is given by an equation of the form

E : y 2 = x3 + Ax + B , with parameters A, B ∈ K

I The set of K -rational points of E is defined as

E (K) = {(x , y) ∈ K × K | (x , y) satisfy E}

∪ {O}

O is called the “point at infinity”

I Additive group law: E (K) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 14 / 43

A primer on elliptic curves

I Let us consider a field K (e.g., Q, R, Fp, etc.)

I An elliptic curve E defined over K is given by an equation of the form

E : y 2 = x3 + Ax + B , with parameters A, B ∈ K

I The set of K -rational points of E is defined as

E (K) = {(x , y) ∈ K × K | (x , y) satisfy E}

∪ {O}

O is called the “point at infinity”

I Additive group law: E (K) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 14 / 43

A primer on elliptic curves

I Let us consider a field K (e.g., Q, R, Fp, etc.)

I An elliptic curve E defined over K is given by an equation of the form

E : y 2 = x3 + Ax + B , with parameters A, B ∈ K

I The set of K -rational points of E is defined as

E (K) = {(x , y) ∈ K × K | (x , y) satisfy E}

∪ {O}

O is called the “point at infinity”

I Additive group law: E (K) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 14 / 43

A primer on elliptic curves

I Let us consider a field K (e.g., Q, R, Fp, etc.)

I An elliptic curve E defined over K is given by an equation of the form

E : y 2 = x3 + Ax + B , with parameters A, B ∈ K

I The set of K -rational points of E is defined as

E (K) = {(x , y) ∈ K × K | (x , y) satisfy E}∪ {O}

O is called the “point at infinity”

I Additive group law: E (K) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 14 / 43

A primer on elliptic curves

I Let us consider a field K (e.g., Q, R, Fp, etc.)

I An elliptic curve E defined over K is given by an equation of the form

E : y 2 = x3 + Ax + B , with parameters A, B ∈ K

I The set of K -rational points of E is defined as

E (K) = {(x , y) ∈ K × K | (x , y) satisfy E}∪ {O}

O is called the “point at infinity”

I Additive group law: E (K) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 14 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

E/R : y2 = x3 − 3x + 1

−4 −3 −2 −1 1 2 3 4

O

0

−5

−4

−3

−2

2

5

10

20

50

∞

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

E/R : y2 = x3 − 3x + 1

−4 −3 −2 −1 1 2 3 4

O

0

−5

−4

−3

−2

2

5

10

20

50

∞

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

E/R : y2 = x3 − 3x + 1

−4 −3 −2 −1 1 2 3 4

O

0

−5

−4

−3

−2

2

5

10

20

50

∞

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

E/R : y2 = x3 − 3x + 1

−4 −3 −2 −1 1 2 3 4

O

0

−5

−4

−3

−2

2

5

10

20

50

∞

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

P + Q

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

P + Q

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

P + Q

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

−6

−4

−2

2

4

6

−4 −3 −2 −1 0 1 2 3 4

E/R : y2 = x3 − 3x + 1

O

P

Q

P + Q

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

P + Q

O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

P + Q

O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

P + Q

O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Elliptic curves and group law

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

O

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E/F17 : y
2 = x3 + x + 7

P

Q

P + Q

O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 15 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O

• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.

• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O

• define G as
G = {O,P , 2P , 3P , . . . , (`− 1)P}

• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}

• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 16 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function

⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function

⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function

⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function

⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function

⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function ⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function ⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 17 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?

P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?

P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb

Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 18 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication

• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)

• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 19 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.

• at the cryptographic primitive level:
RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.

• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)

• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]

• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and
arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 20 / 43

Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 21 / 43

Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: from 250 to 500 bits

I Repeated addition, in O(k) complexity, is out of the question!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 22 / 43

Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: from 250 to 500 bits

I Repeated addition, in O(k) complexity, is out of the question!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 22 / 43

Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: from 250 to 500 bits

I Repeated addition, in O(k) complexity, is out of the question!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 22 / 43

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 23 / 43

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 23 / 43

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1

• same principle as binary exponentiation

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 23 / 43

Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 23 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431

= (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431

= (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= O

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((

P

· 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((

P · 2

+ P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 2P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((((

P · 2 + P

) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 3P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((((

(P · 2 + P) · 2

2 + P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 6P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((((

(P · 2 + P) · 22

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 12P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((((

(P · 2 + P) · 22 + P

) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

= 13P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((

((P · 2 + P) · 22 + P) · 2

2 + P) · 2 + P) · 2 + P) · 2 + P

= 26P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((

((P · 2 + P) · 22 + P) · 22

+ P) · 2 + P) · 2 + P) · 2 + P

= 52P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(((

((P · 2 + P) · 22 + P) · 22 + P

) · 2 + P) · 2 + P) · 2 + P

= 53P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((

(((P · 2 + P) · 22 + P) · 22 + P) · 2

+ P) · 2 + P) · 2 + P

= 106P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((

(((P · 2 + P) · 22 + P) · 22 + P) · 2 + P

) · 2 + P) · 2 + P

= 107P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(

((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2

+ P) · 2 + P

= 214P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(

((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P

) · 2 + P

= 215P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2

+ P

= 430P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2 + P = 431P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2 + P = 431P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2 + P = 431P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 24 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2

= (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

= O

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(

6P

· 23 + 5P) · 23 + 7P

= 6P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(

6P · 23

+ 5P) · 23 + 7P

= 48P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T =

(

6P · 23 + 5P

) · 23 + 7P

= 53P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23

+ 7P

= 424P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431 = (110 101 111)2 = (657)23

T = (6P · 23 + 5P) · 23 + 7P = 431P

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 25 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1

• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1

• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k

• simple power analysis (SPA) will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
else:

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
else:

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?
• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
else:

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1
• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?
• the result of the point addition is used if and only if ki = 1
⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 26 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:

• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:

• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step

• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step

• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 =

P · 2

2

+ 5P + 10P

= O
T1 =

(

P

· 2 + P + 2P) · 2

2

= P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 =

P · 2

2

+ 5P + 10P

= O
T1 =

(

P

· 2 + P + 2P) · 2

2

= P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P

· 2 + P + 2P) · 2

2

= P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P · 2

+ P + 2P) · 2

2

= 2P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P · 2

+ P + 2P) · 2

2

= 2P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P

· 2

2

+ 5P + 10P

= P

T1 =

(

P · 2 + P

+ 2P) · 2

2

= 3P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 2

2 + 5P + 10P

= 2P

T1 =

(

P · 2 + P

+ 2P) · 2

2

= 3P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 2

2 + 5P + 10P

= 2P

T1 =

(

P · 2 + P

+ 2P) · 2

2

= 3P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 2

2 + 5P + 10P

= 2P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22

+ 5P + 10P

= 4P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22

+ 5P + 10P

= 4P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P

+ 10P

= 9P

T1 =

(

P · 2 + P + 2P

) · 2

2

= 5P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P

+ 10P

= 9P

T1 = (P · 2 + P + 2P) · 2

2

= 10P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P

+ 10P

= 9P

T1 = (P · 2 + P + 2P) · 2

2

= 10P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P + 10P = 19P

T1 = (P · 2 + P + 2P) · 2

2

= 10P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P + 10P = 19P

T1 = (P · 2 + P + 2P) · 22 = 20P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19 = (10011)2

T0 = P · 22 + 5P + 10P = 19P

T1 = (P · 2 + P + 2P) · 22 = 20P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 27 / 43

Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 28 / 43

Addition and doubling

EO

EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO

EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O

EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O

EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O

EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O

EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O

EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling

EO EO

P

Q

EO

P

Q

LP,Q

EO

P

Q

R ′

LP,Q

EO

P

Q

R ′

LP,Q

LR′,O EO

P

Q

R ′

R = P + Q

LP,Q

LR′,O EO

P

EO

P

LP,P

EO

P

R ′

LP,P

EO

P

R ′

LP,P

LR′,O

EO

P

R ′

R = 2P

LP,P

LR′,O

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 29 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I

• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =

yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 30 / 43

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator

• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z) with (x , y) = (X/Z ,Y /Z)

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 31 / 43

http://hyperelliptic.org/EFD/

Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 32 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500

(... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500

(... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500

(... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500 (... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500 (... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500 (... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500 (... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 33 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P

• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition

• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

c

cc

r0

r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

c

cc

r0

r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

c

c

c

r0r1

r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

cc

c

r0r1r2

r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)

• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

P≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)

• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)

• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3

≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3

≥
?

−

r ′0r ′1r ′2r ′3

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 34 / 43

MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products
• subquadratic algorithms (e.g., Karatsuba) when k is large
• final product fits into 2k words → requires reduction modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 35 / 43

MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products

• subquadratic algorithms (e.g., Karatsuba) when k is large
• final product fits into 2k words → requires reduction modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3

+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 35 / 43

MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products

• subquadratic algorithms (e.g., Karatsuba) when k is large
• final product fits into 2k words → requires reduction modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 35 / 43

MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products
• subquadratic algorithms (e.g., Karatsuba) when k is large

• final product fits into 2k words → requires reduction modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 35 / 43

MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products
• subquadratic algorithms (e.g., Karatsuba) when k is large
• final product fits into 2k words → requires reduction modulo P (see later)

• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 35 / 43

MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products
• subquadratic algorithms (e.g., Karatsuba) when k is large
• final product fits into 2k words → requires reduction modulo P (see later)
• should run in constant time (for fixed P)!

a0a1a2a3

b0b1b2b3×

a0b0

a1b0

a2b0

a3b0

a0b1

a1b1

a2b1

a3b1

a0b2

a1b2

a2b2

a3b2

a0b3

a1b3

a2b3

a3b3+

+

+

+

+

+

+

r0r1r2r3r4r5r6r7

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 35 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)

• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)

• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)

• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH

+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)

• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)

• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H

+

A′′

≤ 1
P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)

• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H+

A′′

≤ 1

P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H+

A′′

≤ 1

P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

AL

AH

nn

AH

c · AH+

A′L

A′H
≤ w

c · A′H+

A′′

≤ 1

P−

A mod P

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 36 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3 p′0p′1p′2p′3p′40000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!

• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3 p′0p′1p′2p′3p′40000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3 p′0p′1p′2p′3p′40000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′40000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)

• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′40000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)

• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc

• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc

• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc

• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7

×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)

• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)

• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)

• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)

• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)

• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã← (Q̃ · P) mod 2(k+1)w (one k × k-word short multiplication)
• compute remainder R ← (A− Ã) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP
• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:
• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã← (Q̃ · P) mod 2(k+1)w (one k × k-word short multiplication)
• compute remainder R ← (A− Ã) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 37 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP

• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)

• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)

• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)

• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7

×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)

• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)

• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8

0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3

r4r5r6r7r8 0000

r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3

r4r5r6r7r8 0000

r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000

r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3

p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000

r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P

• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication

• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y) mod P , then

REDC(X̂ · Ŷ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 38 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)

• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)

• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A

• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A

A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11

A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S

A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)
• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)
• precompute short sequence of squarings and multiplications for fast

exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 39 / 43

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 40 / 43

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 40 / 43

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 40 / 43

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B

• given
−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 40 / 43

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 40 / 43

The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 40 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)

• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

a5 a6 a7 a8

b5 b6 b7 b8

r5 r6 r7 r8

× × × ×

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)

• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

a5 a6 a7 a8

b5 b6 b7 b8

r5 r6 r7 r8

× × × ×

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43

RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that Mα > P , Mβ > P , and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 42 / 43

RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that Mα > P , Mβ > P , and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 42 / 43

RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that Mα > P , Mβ > P , and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 42 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ

aα,4aα,3aα,2aα,1−→
Aα

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα

kβ,1 kβ,2 kβ,3 kβ,4
−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβ

rα,1rα,2rα,3rα,4−→
Rα

BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ
aα,4aα,3aα,2aα,1−→

Aα
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×

pβ,4pβ,3pβ,2pβ,1
−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα)

tβ,4tβ,3tβ,2tβ,1
−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α)β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 43 / 43

Un peu de publicité éhontée...

Journées Codage & Cryptographie 2017
du 23 au 28 avril à La Bresse (Vosges)

Soumission de résumés: jusqu’au 8 mars

Inscriptions: jusqu’au 3 avril

https://jc2-2017.inria.fr/

À très bientôt dans les Vosges !

https://jc2-2017.inria.fr/

	Some encryption mechanisms
	Elliptic curve cryptography
	Scalar multiplication
	Elliptic curve arithmetic
	Finite field arithmetic

