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/* */ E,C,
/* */ c,r,
/* */ u,l,

e,s,
i=5,

d[5],Q[999 ]={0};main(n ){for
(;i--;e=scanf("%" "d",d+i));for(C =*d;

++i<C ;++Q[ i*i% C],c= i[Q]?
c:i); for(;i --;) for(u =C;u
--;n +=!u*Q [l%C ],e+= Q[(C
+l*l- c*s* s%C) %C]) for(

l=i,s=u,r=4;r;E= i*l+c*u*s,s=(u*l +i*s)
%C,l=E%C+r --[d]);printf ("%d"

"\n",
(e+n*

n)/2
/* cc caramba.c; echo f3 f2 f1 f0 p | ./a.out */ -C);}
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Cryptography

Alice Bob

EveMallory

I Alice and Bob want to communicate using a public channel (e.g., Internet)

• ... but Eve is listening (passive attack: eavesdropping)
• ... and Mallory is interfering (active attack: tampering, forgery, replay, etc.)

I Cryptography: how to prevent such attacks, and ensure

• confidentiality (Who can read the message?) → encryption
• integrity (Was the message modified?) → cryptographic hash functions
• authenticity (Who sent the message?) → message auth. code (MAC), signature
• ... and many others: non-repudiation, zero-knowledge proof, secret sharing, etc.
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Cryptographic layers

I A complete cryptosystem implementation relies on many layers:

• protocol (OpenPGP, TLS, SSH, etc.)
• cryptographic mechanisms (encryption, hashing, signature, etc.)
• cryptographic primitives (AES, RSA, ECDH, etc.)
• arithmetic and logic operations (CPU / ASIP instruction set)
• logic circuits (registers, multiplexers, adders, etc.)
• logic gates (NOT, NAND, etc.) and wires
• transistors

I When designing a cryptoprocessor, the hardware/software partitioning can be
tailored to the application’s requirements

I All top layers (esp. the blue and green ones) might lead to critical vulnerabilities if
poorly implemented!
⇒ a cryptosystem is no more secure than its weakest link

I In this lecture, we will mostly focus on the green layers
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Which target platforms?

I Cryptography should be available everywhere:

• on desktop PCs and laptops
→ 64-bit Intel or AMD CPUs with SIMD instructions (SSE / AVX)
• on smartphones
→ low-power 32- or 64-bit ARM CPUs, maybe with SIMD (NEON)
• on wireless sensors
→ tiny 8-bit microcontroller (such as Atmel AVRs)
• on smart cards and RFID chips
→ custom cryptoprocessor (ASIC or ASIP) with dedicated hardware for
cryptographic operations

I Other possible target platforms, mostly for cryptanalytic computations:

• clusters of CPUs
• GPUs (graphics processors)
• FPGAs (reconfigurable circuits)

⇒ In such cases, implementation security is usually less critical
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Efficient and secure implementation?

I Many possible meanings for efficiency:

• fast? → low latency or high throughput?
• small? → low memory / code / silicon usage?
• low power?... or low energy?

⇒ Identify constraints according to application and target platform

I Secure against which attacks?

• protocol attacks? (POODLE, FREAK, LogJam, etc.)
• cryptanalysis? (weak cipher, small keys, etc.)
• timing attacks?
• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]
• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application
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• power or electromagnetic analysis?
• fault attacks? [See A. Tisserand’s talk]

• cache attacks?
• branch-prediction attacks?
• etc.

⇒ Possible attack scenarios depend on the application
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Some references

Alfred Menezes, Paul van Oorschot, and Scott Vanstone,
Handbook of Applied Cryptography.
Chapman & Hall / CRC, 1996.
http://www.cacr.math.uwaterloo.ca/hac/

Francisco Rodŕıguez-Henŕıquez, Arturo D́ıaz Pérez, Nazar Abbas
Saqib, and Çetin Kaya Koç,
Cryptographic Algorithms on Reconfigurable Hardware.
Springer, 2006.

Proceedings of the CHES workshop and of other crypto conferences.
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Some references

Elliptic Curves in Cryptography,
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Springer, 2004.
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Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic
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Symmetric encryption

Alice Bob

M

??K K
C = Enc ( )MK

I Alice wants to send a confidential message M to Bob

• they decide upon a shared secret key K (might be tricky!)
• encrypt message using shared key: C = EncK (M)
• decrypt ciphertext using shared key: M = DecK (C )

I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : iterated keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks
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AES [Daemen & Rijmen, 2001]

C

M K

Key schedule
...

k0

k1

k9

k10

S S SSSubBytes

ShiftRows

S S SSSubBytes

ShiftRows

MixColumns

I Advanced Encryption Standard

I Key sizes: 128, 192 or 256 bits

I Block size: 128 bits

I Substitution–permutation network

• SubBytes: nonlinear subst. on bytes
• ShiftRows & MixColumns: mainly

wires, plus a few XORs

I 10, 12, or 14 rounds
(depending on key size)

I Low-area version (1 S-box):
20 cycles / round, 2.5 to 5 kGE

I Parallel version (20 S-boxes):
1 cycle / round, 20 to 35 kGE

I Fully unrolled version (200 S-boxes):
1 cycle / block, at least 200 kGE
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C = Enc ( )MK

I Alice wants to send a confidential message M to Bob
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I Block cipher:

• split message M into n-bit blocks (e.g., n = 128 bits)
• encryption/decryption primitive : keyed permutation {0, 1}n → {0, 1}n
• requires a mode of operation to combine the blocks

I Stream cipher:

• generate a pseudorandom keystream Z using a PRNG initialized by the key K
and a random initialization vector (IV)
• use Z to mask the message: C = M ⊕ Z and M = C ⊕ Z (⊕ is XOR)
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Trivium [De Cannière & Preneel, 2005]
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I Part of the eSTREAM portfolio
(low-area hardware ciphers)

I Key size: 80 bits

I IV size: 80 bits

I 288-bit circular shift register,
plus a few XOR and AND gates

I Serial version:

• 1 keystream bit / clock cycle
• 2.6 kGE

I Parallel version:

• up to 64 bits / clock cycle
• 4.9 kGE
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Public-key encryption

MKC = Enc ( )

Alice Bob

KK

?? ?? SKB
PKBC = Enc ( )MPKB

I Agreeing on a shared secret key K over a public channel is difficult

I Use public-key cryptography:

• Bob generates a public/secret key-pair (PKB , SKB)
• Alice retrieves Bob’s public key PKB

• encryption only uses the public key: C = EncPKB
(M)

• but decryption requires the secret key: M = DecSKB
(C )

I Security: computing SKB from PKB should be difficult

⇒ rely on (supposedly) “hard” number-theoretic problems

• integer factorization (RSA)
• discrete logarithm problem in finite fields (ElGamal, DSA, etc.)
• discrete logarithm problem in elliptic curves (elliptic curve cryptography)

→ harder problem, and thus requires smaller keys (256 vs. 3072 bits)
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A primer on elliptic curves

I Let us consider a field K (e.g., Q, R, Fp, etc.)

I An elliptic curve E defined over K is given by an equation of the form

E : y 2 = x3 + Ax + B , with parameters A, B ∈ K

I The set of K -rational points of E is defined as

E (K ) = {(x , y) ∈ K × K | (x , y) satisfy E}

∪ {O}

O is called the “point at infinity”

I Additive group law: E (K ) is an abelian group

• addition via the “chord and tangent” method
• O is the neutral element
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Elliptic curves and group law
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Scalar multiplication and discrete logarithm
E/K : y 2 = x3 + Ax + B

I If K is a finite field Fq, then E (K ) is a finite abelian group

• let P ∈ E (Fq), with P 6= O
• consider 2P = P + P , then 3P = P + P + P , etc.
• since E (Fq) is finite, take the smallest ` > 0 such that `P = O
• define G as

G = {O,P , 2P , 3P , . . . , (`− 1)P}
• G is a cyclic subgroup of E (Fq), of order `, and P is a generator of G

I The scalar multiplication in base P gives an isomorphism between Z/`Z and G:

expP : Z/`Z −→ G

k 7−→ kP = P + P + . . . + P︸ ︷︷ ︸
k times

I The inverse map is the so-called discrete logarithm (in base P):

dlogP = exp−1P : G −→ Z/`Z

Q 7−→ k such that Q = kP
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Towards elliptic curve cryptography

I Scalar multiplication can be computed in polynomial time:

P

k

Pk

I Under a few conditions, the discrete logarithm can only be computed in
exponential time (as far as we know):

Q = Pk

k

I That’s a one-way function

⇒ public-key cryptography!

• secret key: an integer k in Z/`Z
• public key: the point kP in G ⊆ E (Fq)
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Example protocol: EC Diffie–Hellman key exchange

I Alice and Bob want to establish a secure communication channel

I How can they decide upon a shared secret key over a public channel?

Alice Bob

? ?? ?P P

ba

Pa Pb
Pa

Pb

a Pb abP
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Central operation: the scalar multiplication

I Elliptic curve Diffie–Hellman (ECDH):

• Alice: QA ← aP and K ← aQB (2 scalar mults)
• Bob: QB ← bP and K ← bQA (2 scalar mults)

I Elliptic curve Digital Signature Algorithm (ECDSA):

• Alice (KeyGen): QA ← aP (1 scalar mult)
• Alice (Sign): R ← kP (1 scalar mult)
• Bob (Verify): R ′ ← uP + vQA (2 scalar mults)

I etc.

I Other important operations might be required, such as pairings

I Several algorithmic and arithmetic layers:

• scalar multiplication
• elliptic curve arithmetic (point addition, point doubling, etc.)
• finite field arithmetic (addition, multiplication, inversion, etc.)
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Available implementations

I There already exist several free-software, open-source implementations of ECC
(or of useful layers thereof):

• at the protocol level:
GnuPG, OpenSSL, GnuTLS, OpenSSH, cryptlib, etc.
• at the cryptographic primitive level:

RELIC, NaCl (Ed25519), crypto++, etc.
• at the curve arithmetic level: PARI, Sage (not for crypto!)
• at the field arithmetic level: MPFQ, GF2X, NTL, GMP, etc.

I Available open-source hardware implementations of ECC:

• implementation of NaCl’s crypto box (Ed25519 + Salsa20 + Poly1305)
in 29.3 to 32.6 kGE [Hutter et al., 2015]
• PAVOIS project: ECC cryptoprocessor designed to evaluate algorithmic and

arithmetic protections against side-channel attacks [See A. Tisserand’s talk]
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Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic
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Scalar multiplication

I Given k in Z/`Z and P in G ⊆ E (Fq), we want to compute

kP = P + P + . . . + P︸ ︷︷ ︸
k times

I Size of ` (and k) for crypto applications: from 250 to 500 bits

I Repeated addition, in O(k) complexity, is out of the question!
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Double-and-add algorithm

I Available operations on E (Fq):

• point addition: (Q,R) 7→ Q + R
• point doubling: Q 7→ 2Q = Q + Q

I Idea: iterative algorithm based on the binary expansion of k

• start from the most significant bit of k
• double current result at each step
• add P if the corresponding bit of k is 1
• same principle as binary exponentiation
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Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431

= (110101111)2

T =

(((((P · 2 + P) · 2

2

+ P) · 2

2

+ P) · 2 + P) · 2 + P) · 2 + P

=

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((

(((P · 2 + P) · 22 + P) · 22 + P) · 2

+ P) · 2 + P) · 2 + P

= 106P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

((

(((P · 2 + P) · 22 + P) · 22 + P) · 2 + P

) · 2 + P) · 2 + P

= 107P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(

((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2

+ P) · 2 + P

= 214P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T =

(

((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P

) · 2 + P

= 215P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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Double-and-add algorithm

I Denoting by (kn−1 . . . k1k0)2, with n = dlog2 `e, the binary expansion of k :

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

I Example: k = 431 = (110101111)2

T = (((((P · 2 + P) · 22 + P) · 22 + P) · 2 + P) · 2 + P) · 2

+ P

= 430P

I Complexity in O(n) = O(log2 `) operations over E (Fq):

• n − 1 doublings, and
• n/2 additions on average
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T ← 2T
if ki = 1:
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Windowed method

I Consider 2w -ary expansion of k : i.e., split k into w -bit chunks

I Precompute 2P , 3P , . . . , (2w − 1)P :

• 2w−1 − 1 doublings, and
• 2w−1 − 1 additions

I Example with w = 3: k = 431

= (110 101 111)2 = (657)23

T =

(6P · 23 + 5P) · 23 + 7P

=

I Complexity:

• n − w doublings, and
• (1− 2−w)n/w additions on average

I Select w carefully so that precomputation cost does not become predominant

I Sliding window variant: half as many precomputations
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T =

(

6P
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= 6P
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Windowed method
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• 2w−1 − 1 doublings, and
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I Example with w = 3: k = 431 = (110 101 111)2 = (657)23
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I Complexity:
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Security issues
I Back to the double-and-add algorithm:

function scalar-mult(k ,P):
T ← O
for i ← n − 1 downto 0:

T ← 2T
if ki = 1:

T ← T + P
return T

Z ← T + P
return T

I At step i , point addition T ← T + P is computed if and only if ki = 1

• careful timing analysis will reveal Hamming weight of secret k
• simple power analysis (SPA) will leak bits of k

P
ow

er

Time

1 0 0 1 1 0 1 0 0 1

P
ow

er

Time

I Use double-and-add-always algorithm?

• the result of the point addition is used if and only if ki = 1

⇒ vulnerable to fault attacks [See A. Tisserand’s lecture]
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The Montgomery ladder
I Algorithm proposed by Montgomery in 1987:

function scalar-mult(k ,P):
T0 ← O
T1 ← P
for i ← n − 1 downto 0:

if ki = 1:
T0 ← T0 + T1

T1 ← 2T1

else:
T1 ← T0 + T1

T0 ← 2T0

return T0

I Properties:

• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=
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I Properties:
• perform one addition and one doubling at each step
• ensure that both results are used in the next step
• loop invariant: T1 = T0 + P

I Example: k = 19

= (10011)2

T0 =

P · 2

2

+ 5P + 10P

=

T1 =

(

P

· 2 + P + 2P) · 2

2

=
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Outline

I Some encryption mechanisms

I Elliptic curve cryptography

I Scalar multiplication

I Elliptic curve arithmetic

I Finite field arithmetic
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Addition and doubling formulae

E/Fq : y 2 = x3 + Ax + B

I Let P = (xP , yP) and Q = (xQ , yQ) ∈ E (Fq)\{O} (affine coordinates)

I The opposite of P is −P = (xP ,−yP)

I If P 6= −Q, then P + Q = R = (xR , yR) with

xR = λ2 − xP − xQ and yR = λ(xP − xR)− yP

where

λ =


yQ − yP
xQ − xP

if P 6= Q (addition), or

3x2P + A

2yP
if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!
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if P = Q (doubling)

I Cost (number of multiplications, squarings, and inversions in Fq):

• addition: 2M + 1S + 1I
• doubling: 2M + 2S + 1I

⇒ field inversion is expensive!
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Other coordinate systems

E/Fq : y 2 = x3 + Ax + B

I One can use other coordinate systems which provide more efficient formulae

I Projective coordinates: points (X : Y : Z ) with (x , y) = (X/Z ,Y /Z )

E/Fq : Y 2Z = X 3 + AXZ 2 + BZ 3

• idea: get rid of the inversion over Fq by using Z as the denominator
• addition: 12M + 2S
• doubling: 7M + 5S

I Jacobian coordinates: points (X : Y : Z ) with (x , y) = (X/Z 2,Y /Z 3)

E/Fq : Y 2 = X 3 + AXZ 4 + BZ 6

• addition: 12M + 4S
• doubling: 4M + 6S

I And many others: modified jacobian coordinates, López–Dahab (over F2n), etc.

I Explicit-Formula Database (by Bernstein and Lange):

http://hyperelliptic.org/EFD/
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Implementing finite field arithmetic

I Group law over E (Fq) requires:

• additions / subtractions over Fq

• multiplications / squarings over Fq

• a few inversions over Fq

I Typical finite fields Fq:

• prime field Fp, with p an n-bit prime and n between 250 and 500 bits
• binary field F2n, with n prime and between 250 and 500

(... still secure?)

I What we have at our disposal:

• basic integer arithmetic (addition, multiplication)
• left and right shifts
• bitwise logic operations (bitwise NOT, AND, etc.)

I ... on w -bit words:

• w = 32 or 64 on CPUs
• w = 8 or 16 bits on microcontrollers
• a bit more flexibility in hardware

(but integer arithmetic with w > 64 bits is hard!)

⇒ elements of Fq represented using several words
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Multiprecision representation

I Consider A ∈ FP , with P an n-bit prime

• represent A as an integer modulo P
• split A into k = dn/we w -bit words (or limbs), ak−1, ..., a1, a0:

A = ak−12(k−1)w + · · ·+ a12w + a0

I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry
• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n

a0a1a2

a3

a3

wwww

a0

b0

a1

b1

a2

b2

a3

b3+

ccc

r0r1r2r3c

p0p1p2p3≥
?

−

r ′0r ′1r ′2r ′3
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I Addition of A and B ∈ FP :

• right-to-left word-wise addition
• need to propagate carry

• might need reduction modulo P : compare then subtract (in constant time!)
• lazy reduction: if kw > n, do not reduce after each addition

A

n
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MP multiplication

I Multiplication of A and B ∈ FP :

• schoolbook method: k2 w -by-w -bit products
• subquadratic algorithms (e.g., Karatsuba) when k is large
• final product fits into 2k words → requires reduction modulo P (see later)
• should run in constant time (for fixed P)!
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b0b1b2b3×
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a3b3+
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+

+

+

+

+

r0r1r2r3r4r5r6r7
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MP modular reduction
I Given an integer A < P2 (on 2k words), compute R = A mod P

I Easy case: P is a pseudo-Mersenne prime P = 2n − c with c “small” (e.g., < 2w)

• then 2n ≡ c (mod P)
• split A wrt. 2n: A = AH2n + AL

• compute A′ ← c · AH + AL (one 1× k-word multiplication)
• rinse & repeat (one 1× 1-word multiplication)
• final subtraction might be necessary

I Examples: P = 2255− 19 (Curve25519) or P = 2448− 2224− 1 (Ed448-Goldilocks)

A

2n

P

ALAH

nn

AHc · AH+

A′LA′H
≤ w

c · A′H+

A′′

≤ 1
P−

A mod P
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MP modular reduction: general case
I Idea: find quotient Q = bA/Pc, then take remainder as A− QP

• Euclidean division is way too expensive!
• since P is fixed, precompute 1/P with enough precision

I Barrett reduction:

• precompute P ′ = b22kw/Pc (k + 1 words)
• given A < P2, get the k + 1 most significant words AH ← bA/2(k−1)wc
• compute Q̃ ← bAH · P ′/2(k+1)wc (one (k + 1)× (k + 1)-word multiplication)
• compute Ã←

(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã

) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3 p′0p′1p′2p′3p′40000.

a0a1a2a3a4a5a6a7 a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8 q̃5q̃6q̃8q̃9

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7

−

+

r0r1r2r3r4
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(

Q̃ · P

) mod 2(k+1)w

(one k × k-word multiplication)
• compute remainder R ←

(

A− Ã
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) mod 2(k+1)w

• since Q − 2 ≤ Q̃ ≤ Q, at most two final subtractions

p0p1p2p3

p′0p′1p′2p′3p′4

0000.

a0a1a2a3a4a5a6a7

a3a4a5a6a7×

q̃0q̃1q̃2q̃3q̃4q̃5q̃6q̃7q̃8

q̃5q̃6q̃8q̃9

p0p1p2p3×
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MP modular reduction: general case

I Montgomery reduction (REDC): like Barrett, but on the least significant words

• requires P odd (on k words) and A < 2kwP
• precompute P ′ ← (−P−1) mod 2kw (on k words)
• given A, compute K ← (A · P ′) mod 2kw (one k × k-word short multiplication)
• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ←

(

A + Ã

)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y ) mod P , then

REDC(X̂ · Ŷ ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ

p0p1p2p3 p′0p′1p′2p′3

a0a1a2a3a4a5a6a7×

k0k1k2k3k4k5k6k7

p0p1p2p3×

ã0ã1ã2ã3ã4ã5ã6ã7

a0a1a2a3a4a5a6a7+

r0r1r2r3r4r5r6r7r8 0000 r4r5r6r7r8
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• compute remainder R ←

(

A + Ã

)/2kw
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I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y ) mod P , then

REDC(X̂ · Ŷ ) = (X · Y · 2kw) mod P = Ẑ

→ that’s the so-called Montgomery multiplication
• conversions:

X̂ = REDC(X , 22kw mod P) and X = REDC(X̂ , 1)

• Montgomery representation is compatible with addition / subtraction in FP

⇒ do all computations in Montgomery repr. instead of converting back and forth

I REDC can be computed iteratively (one word at a time) and

interleaved with the computation of X̂ · Ŷ
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REDC(X̂ · Ŷ ) = (X · Y · 2kw) mod P = Ẑ
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)/2kw

• at most one extra subtraction

I REDC(A) returns R = (A · 2−kw) mod P , not A mod P!

• represent X ∈ FP in Montgomery representation: X̂ = (X · 2kw) mod P
• if Z = (X · Y ) mod P , then
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• compute Ã← K · P (one k × k-word multiplication)
• compute remainder R ← (A + Ã)/2kw
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MP field inversion
I Given A ∈ F∗P , compute A−1 mod P

I Extended Euclidean algorithm:

• compute Bézout’s coefficients: U and V such that UA + VP = gcd(A,P) = 1
• then UA ≡ 1 (mod P) and A−1 ≡ U (mod P)

• fast, but running time depends on A

⇒ requires randomization of A to protect against timing attacks

I Fermat’s little theorem:

• we know that AP−1 ≡ 1 (mod P), whence AP−2 ≡ A−1 (mod P)

• precompute short sequence of squarings and multiplications for fast
exponentiation of A
• example: P = 2255 − 19 in 11M and 254S [Bernstein, 2006]

A A2
S

A4
S

A8
S2

A9
S2

A11 A25−1S
A210−1S5

A220−1S10

A240−1

S20

A250−1 S10

A2100−1 S50

A2100−1 S100

A2250−1 S50

A2255−21 S5
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The Residue Number System (RNS)

I Let B = (m1, . . . ,mk) a tuple of k pairwise coprime integers

• typically, the mi ’s are chosen to fit in a machine word (w bits)
• pseudo-Mersenne primes allow for easy reduction modulo mi :

mi = 2w − ci , with small ci

• write M =
k∏

i=1

mi and, for all i , Mi = M/mi

I Let A < M be an integer

• represent A as the tuple
−→
A = (a1, . . . , ak) with ai = A mod mi = |A|mi

, for all i
→ that is the RNS representation of A in base B
• given

−→
A = (a1, . . . , ak), retrieve the unique corresponding integer A ∈ Z/MZ

using the Chinese remaindering theorem (CRT):

A =

∣∣∣∣∣
k∑

i=1

|ai ·M−1i |mi
·Mi

∣∣∣∣∣
M

I If M > P , we can represent elements of FP in RNS
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RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)

• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

a5 a6 a7 a8

b5 b6 b7 b8

r5 r6 r7 r8

× × × ×

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)

• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS arithmetic

I Let
−→
A = (a1, . . . , ak) and

−→
B = (b1, . . . , bk)

• add., sub. and mult. can be performed in parallel on all “channels”:
−→
A ±

−→
B = (|a1 ± b1|m1

, . . . , |ak ± bk |mk
)

−→
A ×

−→
B = (|a1 × b1|m1

, . . . , |ak × bk |mk
)

• native parallelism: suited to SIMD instructions and hardware implementation

−→
A

−→
B

a4a3a2a1

b4b3b2b1

× × × ×

r4r3r2r1

a5 a6 a7 a8

b5 b6 b7 b8

r5 r6 r7 r8

× × × ×

I Limitations:

• operations are computed in Z/MZ: beware of overflows! (we need M > P2)
• RNS modular reduction has quadratic complexity O(k2)

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 41 / 43



RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that Mα > P , Mβ > P , and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 42 / 43



RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that Mα > P , Mβ > P , and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 42 / 43



RNS Montgomery reduction

I Requires two RNS bases Bα = (mα,1, . . . ,mα,k) and Bβ = (mβ,1, . . . ,mβ,k) such
that Mα > P , Mβ > P , and gcd(Mα,Mβ) = 1

I RNS base extension algorithm (BE) [Kawamura et al., 2000]

• given
−→
Xα in base Bα, BE(

−→
Xα,Bα,Bβ) computes

−→
Xβ, the repr. of X in base Bβ

• similarly, BE(
−→
Xβ,Bβ,Bα) computes

−→
Xα in base Bα

• similar to RNS modular reduction → O(k2) complexity

Jérémie Detrey — Hardware Implementation of (Elliptic Curve) Cryptography 42 / 43



RNS Montgomery reduction

−→
Aα

−→
Aβ

Bα Bβ

aα,4aα,3aα,2aα,1−→
Aα

aβ,4aβ,3aβ,2aβ,1
−→
Aβ

p′α,4p′α,3p′α,2p′α,1
−−−−−→
(−P−1)α

× × × ×

kα,4kα,3kα,2kα,1
−→
Kα kβ,1 kβ,2 kβ,3 kβ,4

−→
Kβ

BE

pα,4pα,3pα,2pα,1−→
Pα

× × × ×
pβ,4pβ,3pβ,2pβ,1

−→
Pβ

× × × ×

aα,4aα,3aα,2aα,1−→
Aα

+ + + +
aβ,4aβ,3aβ,2aβ,1

−→
Aβ

+ + + +

0000
−→
Tα ≡ 0 (mod Mα) tβ,4tβ,3tβ,2tβ,1

−→
Tβ

m′β,4m′β,3m′β,2m′β,1
−−−−→
(M−1α )β

× × × ×

rβ,4rβ,3rβ,2rβ,1
−→
Rβrα,1rα,2rα,3rα,4−→

Rα
BE

I Result is (
−→
Rα,
−→
Rβ) ≡ (A ·M−1α ) (mod P)

I See also the hybrid position–residues number system [Bigou & Tisserand, 2016]
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Un peu de publicité éhontée...

Journées Codage & Cryptographie 2017
du 23 au 28 avril à La Bresse (Vosges)

Soumission de résumés: jusqu’au 8 mars

Inscriptions: jusqu’au 3 avril

https://jc2-2017.inria.fr/

À très bientôt dans les Vosges !

https://jc2-2017.inria.fr/
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