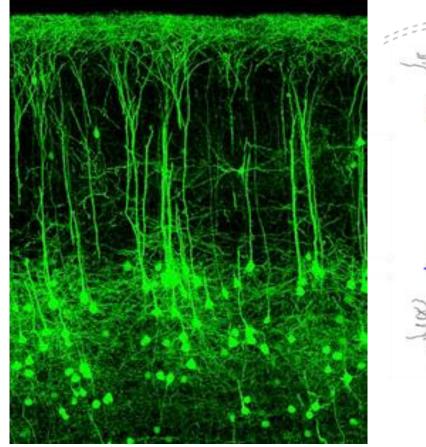


ARCHI 2017

Laurent.Bougrain@loria.fr

Nancy

Brain-Computer Interfaces



OpenViBE (ARCHI 2017) - 2

ZN

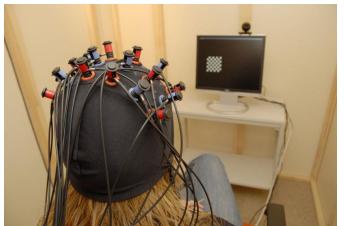
Neurophysiology: electromagnetic field

Electric dipole **Electric circuits**

Nunez and Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG (2006)

Pyramidal neurons

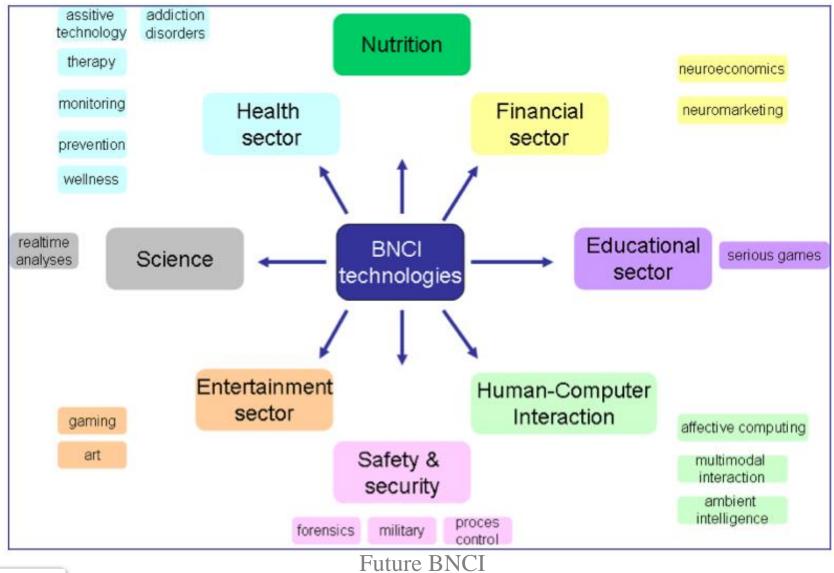
OpenViBE (ARCHI 2017) - 3

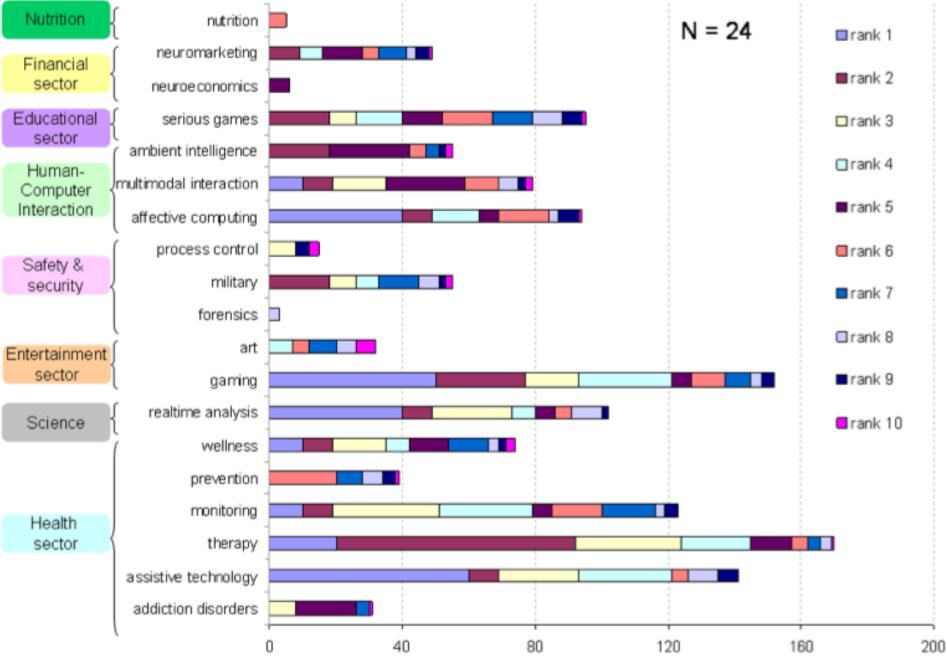

Brain imaging

Metabolic

NIRS

electromagnetic




OpenViBE (ARCHI 2017) - 4

MEG

BCI applications

OpenViBE (ARCHI 2017) - 6

Types of BCI applications

BCIs can **replace** natural CNS output that has been lost as a result of injury or disease. Examples include communication (through a spelling system and voice synthesis) and motorized wheelchair control.

BCIs can **restore** lost natural CNS output. Examples include functional electrical stimulation of muscles in a paralyzed person and stimulation of peripheral nerves to restore bladder function.

BCIs can enhance natural CNS output. Examples include monitoring brain activity during prolonged demanding tasks such as driving a car and detecting lapses of attention, which alerts the person and restores attention.

Types of BCI applications

BCIs can supplement natural CNS output. Examples include providing a third (robotic) arm to a person and providing a selection function for people using a joystick.

BCIs can **improve** natural CNS output. Examples include using a BCI in stroke rehabilitation that detects and enhances signals from a damaged cortical area and stimulate arm muscles or an orthosis to improve arm movements.

BCIs can be used as a **research tool** to investigate CNS functions in clinical and non-clinical research studies.

For further information

COLLECTION SCIENCES COGNITIVES

Les interfaces cerveau-ordinateur 1

fondements et méthodes

sous la direction de Maureen Clerc, Laurent Bougrain et Fabien Lotte

COLLECTION SCIENCES COGNITIVES

Les interfaces cerveau-ordinateur 2

technologie et applications

sous la direction de Maureen Clerc, Laurent Bougrain et Fabien Lotte

An open source software platform for Brain-Computer Interfaces and real-time neurosciences

http://openvibe.inria.fr

Enjoyed by research labs, clinicians, teachers, game developers and hobbyists worldwide

ANR project OpenVIBE

"Open-ViBE : an Open-Source Software Platform for Brain-Computer Interfaces and Virtual Reality"

The first French National Project on BCI! Funding: French National Agency of Research (ANR) December 2005 – May 2009

Objective: develop open-source software components with innovative techniques for more efficient braincomputer interfaces Applications : Multimedia, Disabled people

Inserm cer List

gipsa-lab

INRIA (leader), Rennes – Virtual Reality, Software engineering

INSERM U821, Lyon - Neurophysiology

INPG Gipsa-Lab, Grenoble – Signal processing

CEA LIST, Saclay - Signal processing

FRANCE TELECOM / ORANGE Labs, Grenoble – Telecom. applications

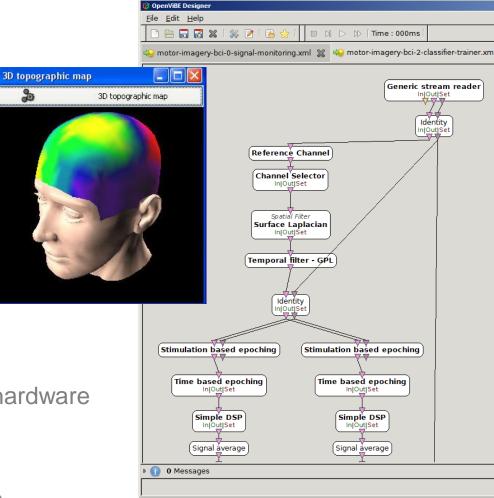
france telecom

AFM, Evry - Assistance to disabled people

Main funded projects using OpenViBE

- 2005-2009 : ANR OpenViBE (free software for BCI)
- 2009-2012 : ANR OpenViBE2 (BCI and videogames)
- 2009-2012 : ANR CoAdapt (Dynamic BCI)
- 2009-2011 : ADT Immersive BCI (BCI with immersive displays)
- 2009-2012 : ANR RoBIK (Speller used in hospital)
- 2009-2012 : ANR GAZE&EEG (BCI and eye-tracking)
- 2010-2012 : FP7-ICT MINDWALKER (exoskeleton)
- 2011 : Google Science fair
- 2012-present : LIRA (Stress & Relaxation)
- 2013-2015 : ARSLA P300-speller
- 2013-2016 : Labex cominlabs hemisfer
- 2013-2017 : IPL BCI LIFT (Plug&Play BCI)
- 2014-2017 : Labex cominlabs SABRE
- 2015-2017 : H2020 ADHD@Home

Key features


A high level framework to design, test and use BCI

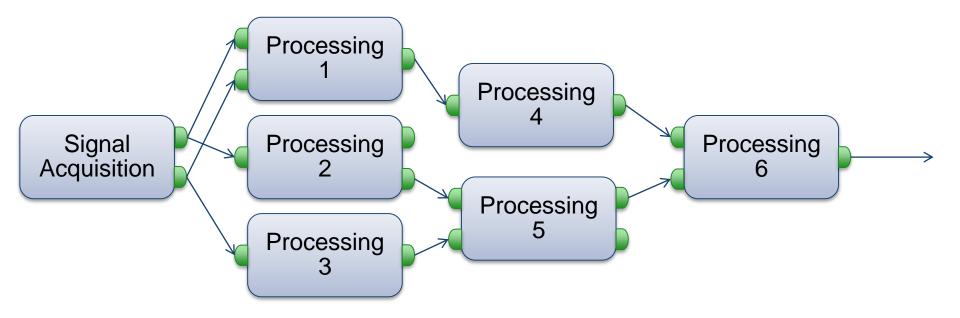
Modularity and reusability

Different types of users

- Programmers
- Non programmers
- Clinicians

Free and Open-source software

Portability


- Independant of acquisition hardware
- Works on Linux / Windows

Connection with Virtual Reality (VR)

Concepts: modularity and reusability

 quickly and efficiently arrange small processing components into a high level / complex composition

Concepts: different users

Author's view

Operator's view

Subject's view

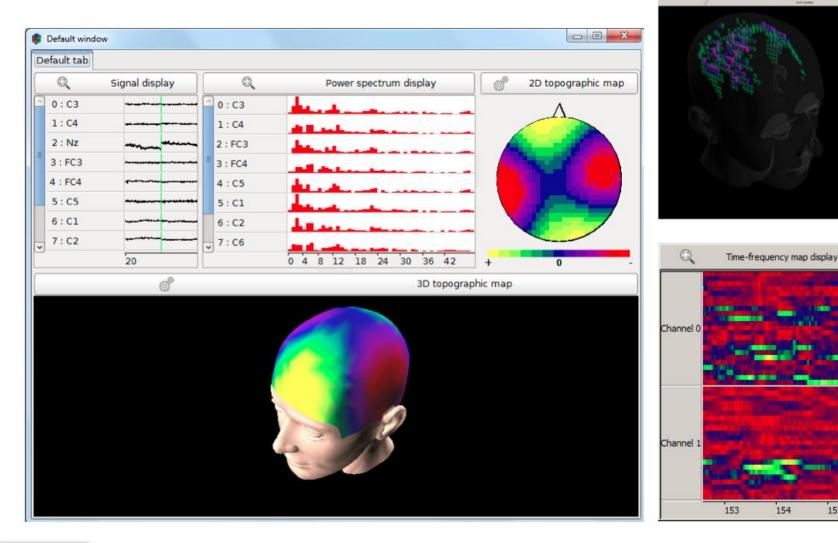
Make your own DSP chains Signal display 0 : F3 Interactive Application OpenViBE Designer ___ O __X <u>File Edit H</u>elp 1 : F4 🗋 🔚 🜄 🐹 💥 🖻 🔥 🏠 🗒 📖 🛛 🗁 🔅 Time: 000ms 💫 motor-imagery-bci-2-train-CSP.xml 🛣 🍄 🛃 😵 🚱 2 : C3 Show unstable 3 : Cz Descripti You can browse each box' documentation by selecting the box and pressing F1 e 🛅 4 : C4 E Classification 🗉 🛅 Data generation eric stream reade 5 : P3 Overview E E Feature extraction E File reading and writing This scenario trains the Common Spatial A 6 : P4 that will be used in the further 🗉 🗎 Scripting xel visualize 🗉 🛅 Signal processing The EEG signal is filtered in a large frequer 7:01 2 Voxel visualize Temporal filter 🗉 📄 Averaging Then the Stimulation based epoc 🗉 🚞 Basic provide examples for the CSP Spatial 8 : 02 class 1: LEFT trials 🗷 🚞 Epoching class 2: RIGHT trials 😑 🚞 Filtering Neurofeedback At the end of the training pro ----- CSP Spatial Filter Trainer Comput Identity the CSP trainer outputs the stin ---- 🗋 Common Average Reference Re-refer OVTK_StimulationId_TrainComplete telling the Player Controller to pause - 🗋 Spatial Filter Maps M 0 Default Temporal filter Applies 1 Q n xDAWN Spatial Filter Trainer Comput lay 🗄 🚞 Spectral analysis **Right trials** Left trials 🗉 🗎 Statistics 0 : Cha 🗉 📄 Windowing 🗉 🛅 Stimulation 1 : Cha 🗉 🚞 Streaming 🗉 🛅 Tests and examples CSP Spatial Filter Trainer Tools 2 : Channel : Channel (E Visualisation 2 Messages 3 : Channe System load 0 0 5 10 16 22 28 34

- No programming skills required
- A scenario designer
- Graphical User Interface
- WYSIWYG (What You See Is What You Get)

Functionalities: An acquisition device abstraction

- Allows any device to be integrated, through the development of a C++ driver
- Already supported :
 - All Brain Products devices (VAmp, Brainamp series, Quickamp)
 - Brainmaster (Atlantis, Discovery)
 - EGI (Netamps 300)
 - Emotiv (EPOC)
 - g.Tec (g.USBam, g.Mobilab+)
 - All Micromed devices (through SystemPlus Evolution s/w)
 - OpenEEG (modularEEG, monolithEEG)
 - Neurosky (Mindset, MindWave)
 - Most TMSi devices (including Porti, Refa, and derived Mindmedia NeXus, ANT Neuro ASALAB...)

+ many others (check the full list on http://openvibe.inria.fr/supported-hardware)

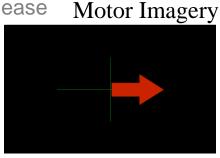


GDF file writer/reader	Temporal filtering	Spectral analysis	Signal and spectral visualisation	Matlab scripting
EDF file writer	Spatial filtering xDAWN, CSP	Classification LDA/SVM	2D and 3D topography map	Python scripting
CSV file writer/reader	Universal DSP	Auto-Regressive coefficients	Voxel display	Lua scripting
Generic network acquisition	Signal epoching	Windowing	Time/frequency mapping	VRPN input/output

+ many more such as LSL, multiclass classifiers...

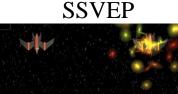
Functionalities: Various real-time displays

OpenViBE (ARCHI 2017) - 18


155

154

Functionalities: stimuli


Visual Stimulus:

Included in the release

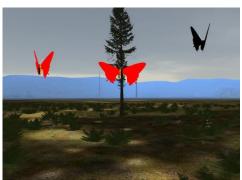
done by users

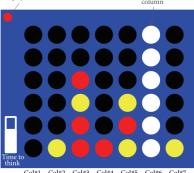
P300

SSVEP

А	В	С	D		
	Н				
Μ			Р	Q	R
C	Ŧ		\/	\ \ /	\mathbf{v}
S	Т	U	V	W	X
5 Y	Z	U 1		VV 3	

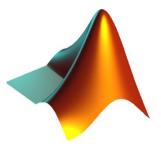
P300


Red players turn



- Audio Stimulus:
 - Sound Player box •

Col#1 Col#2 Col#3 Col#4 Col#5 Col#6


Keyboard Stimulus

Functionalities

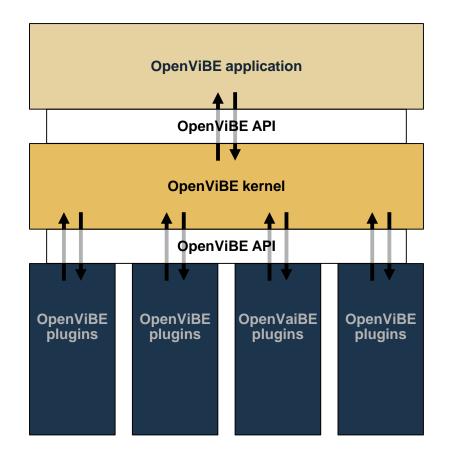
- Interaction with other software :
 - VRPN plug-in
 - OpenViBE can be considered as an external peripheral
 - Immediate compatibility with most VR software / tools
 - Matlab plug-in
 - OpenViBE can call Matlab code
 - Lua plug-in
 - Experiment protocol can be implemented with Lua scripts
 - Python plug-in
 - OpenViBE can call Python code for signal processing as well a implementing experiment protocols
 - File reader / writer plug-in
 - The signals can be imported / exported with different formats (gdf, edf, csv, ...)
 - External configuration files
 - Each box configuration can be defined in a file

For example, write your own spatial filter in Matlab and use it in OpenViBE

OpenViBE Software

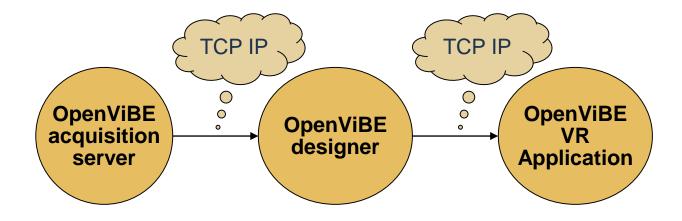
Internals

OpenViBE (ARCHI 2017) - 21

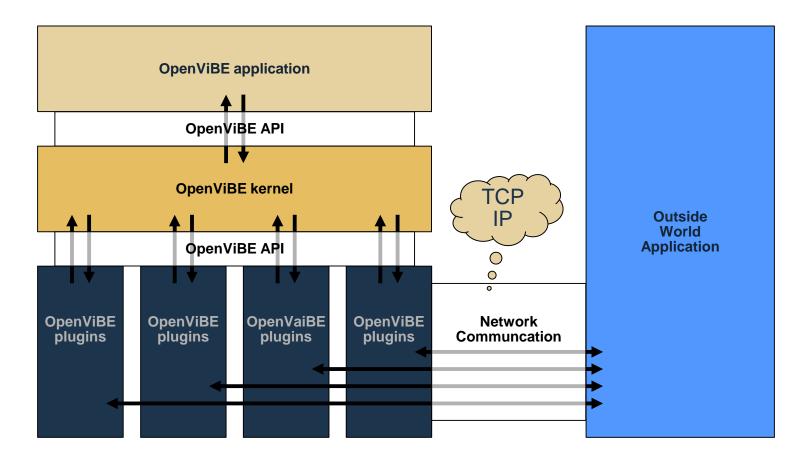

OpenViBE software: internals

- General software architecture
- The designer
- The acquisition server
- Dependencies

General Software Architecture


- An OpenViBE application is based on a kernel which proposes services
- The kernel relies on plugins to achieve its services

General Software Architecture


- There are usually three applications involved, communicating through network
 - OpenViBE acquisition server
 - OpenViBE designer
 - OpenViBE virtual reality application

General Software Architecture

• Structure of an OpenViBE based application and communication with outside world

OpenViBE software: internals

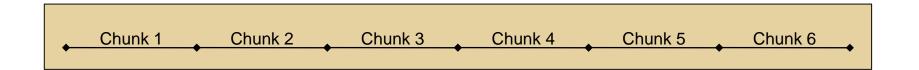
- General software architecture
- The designer
- The acquisition server
- Dependencies

OpenViBE software: internals

- General software architecture
- The designer
 - Facts about the designer
 - Understanding the scheduling
 - Understanding the data flows
- The acquisition server
- Dependencies

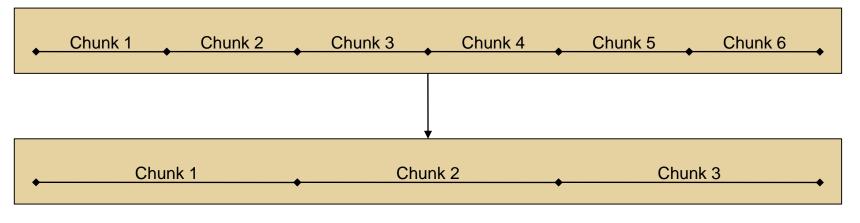
Facts about the designer

- The designer
 - is an authoring tool
 - handles a collection of scenarios / boxes / links
 - includes a « *player* » for online use of the scenarios
- It knows almost nothing about « what » each box should do
- It just knows « how » each box should do it :
 - how it communicates with other boxes (inputs / outputs)
 - the parameters the user can modify to adapt the box' behavior (settings)
 - ...

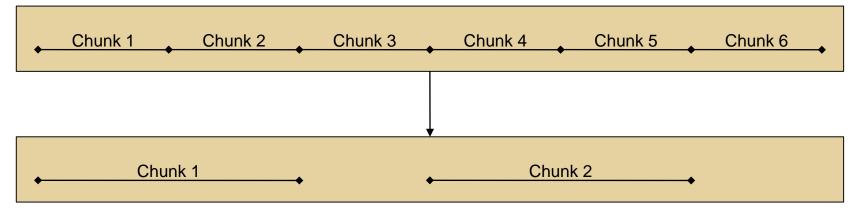


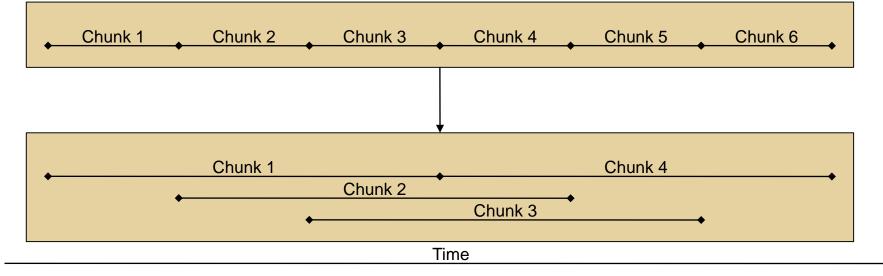
Understanding the scheduling

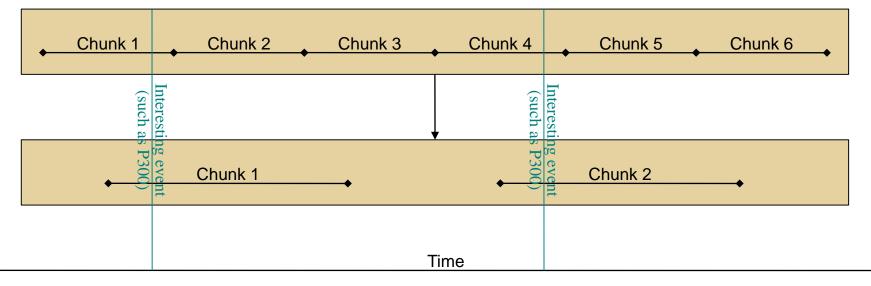
- The graphical representation suggests that boxes are running in parallel
- This is *not true* !
- Each box' processing :
 - is scheduled by the player
 - is executed for as short as possible by the box
- In fact, the player is repeatedly requesting for boxes to process
- Generally, the first box (e.g. « Acquisition Client ») causes the other boxes to be scheduled by the player



- The data streams are divided in blocks or « chunks »
 - Each chunk is dated with a « start time » and an « end time »
 - Those dates are used by the boxes to synchronise the streams altogether


- The data streams are divided in blocks or « chunks »
 - Each chunk is dated with a « start time » and an « end time »
 - Those dates are used by the boxes to synchronise the streams altogether
 - The stream structure can be modified using epochers, e.g :
 - Chunk resize


- The data streams are divided in blocks or « chunks »
 - Each chunk is dated with a « start time » and an « end time »
 - Those dates are used by the boxes to synchronise the streams altogether
 - The stream structure can be modified using epochers, e.g :
 - Regular chunk selection



- The data streams are divided in blocks or « chunks »
 - Each chunk is dated with a « start time » and an « end time »
 - Those dates are used by the boxes to synchronise the streams altogether
 - The stream structure can be modified using epochers, e.g :
 - Overlapping chunks (for moving averages etc...)

- The data streams are divided in blocks or « chunks »
 - Each chunk is dated with a « start time » and an « end time »
 - Those dates are used by the boxes to synchronise the streams altogether
 - The stream structure can be modified using epochers, e.g :
 - Signal selection around events

- The data streams are divided in blocks or « chunks »
 - Each chunk is dated with a « start time » and an « end time »
 - Those dates are used by the boxes to synchronise the streams altogether
 - The stream structure can be modified using epochers
- In any circumstances, each stream can be « spied » thanks to the « EBML Stream Spy » box
- Demonstration
 - Use case 1 : resizing chunks
 - Use case 2 : moving average
 - Use case 3 : signal selection near an interesting event
 - Use case 4 : EBML stream spy

OpenViBE software: internals

- General software architecture
- The designer
 - Facts about the designer
 - Understanding the scheduling
 - Understanding the data flows
- The acquisition server
- Dependencies

OpenViBE software: internals

- General software architecture
- The designer
- The acquisition server
 - Facts about the acquisition server
 - Different driver families
- Dependencies

Facts about the acquisition server

- The OpenViBE Acquisition Server proposes a device
 abstraction
- New devices can be added with new « drivers », developped in C++
- Each driver :
 - gets the signal samples from the device
 - sends them to the acquisition server
- The acquisition server :
 - sends those samples to connected application
 - (e.g. the OpenViBE designer)
 - transforms the samples in a standard way
- There are several ways to implement a new driver

It mostly depends on what the manufacturer provides

Different driver families

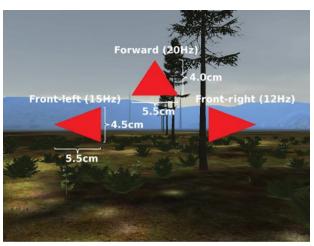
- Direct hardware communication
 - trough an API (great !)
 - trough a low level hardware interface (serial port, parallel port, USB, TCP/IP...)
- Communication with a proprietary acquisition software
 - through network
 - through a file (very bad !)
 - through a COM component or other proprietary technologies (bad !)
- Pros / cons to consider :
 - performances (latency, jittering...)
 - code quantity
 - code maintainability
 - code portability
- We have many contributions on this part of the software

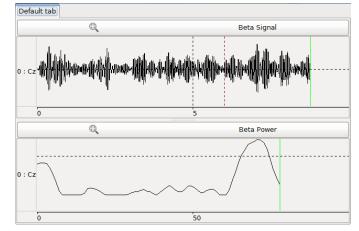
OpenViBE software: internals

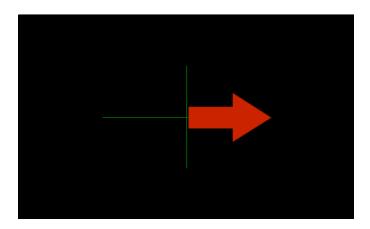
- General software architecture
- The designer
- The acquisition server
 - Facts about the acquisition server
 - Different driver families
- Dependencies

OpenViBE software: internals

- General software architecture
- The designer
- The acquisition server
- Dependencies

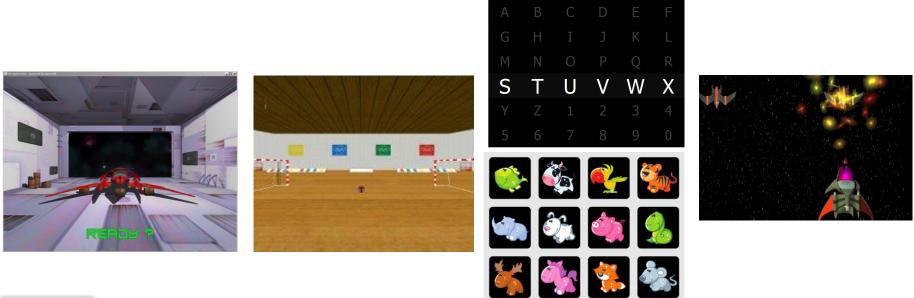

- Interested developers should know that OpenViBE currently relies on the following open-source technologies :
 - Cmake (for building)
 - Boost (General purpose library, e.g. threading)
 - GTK (Graphical User Interface Toolkit)
 - IT++ (for signal processing only in plugins)
 - Ogre3D / CEGUI (3D library)
 - Lua (Scripting language)
 - Expat (XML parsing)


Functionalities: Paradigms


P300

SSVEP

Neurofeedback



Motor Imagery

Functionalities: Applications

- Several predefined and ready to use scenarios:
 - 1. Neurofeedback with the *Tie Fighter* VR game
 - 2. BCI based on motor activity (Graz-BCI, handball)
 - 3. BCI based on P300 (Speller, Magic Card)
 - 4. BCI based on SSVEP (Spaceship Shooter)
 - Lots of *box tutorials* scenarios to showcase specific features (read EEG from a file, compute a topographic map, filter signal, etc.)

A-GPL v3 license : anyone can use, study and modify the software. Commercial usage is restricted (modifications must be open-source as well).

Releases :

- Every 6 months for 5 platforms
 - Windows 7
 - 2 Fedora versions
 - Latest Ubuntu and latest LTS Ubuntu

Statistics :

- 3000 single visitors per month on the project website
- 10000+ downloads of the Windows installer since the first release in 2009
- 80+ users on the forum
- 300 000 lines (C++)

OpenViBE (ARCHI 2017) - 45

THE COMMUNITY

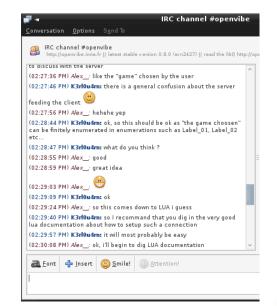
OpenViBE (ARCHI 2017) - 46

What is Free Software?

- Free software supposes 4 basic rules :
 - You are free to use the software for any purpose
 - You are free to study the source code and modify it for your own needs (that is the software must be open-source)
 - You are free to re-distribute copies of the software
 - You are free to distribute modified versions of the software but you have to keep them free as in freedom !
- Usually there is a community and an ecosystem around the

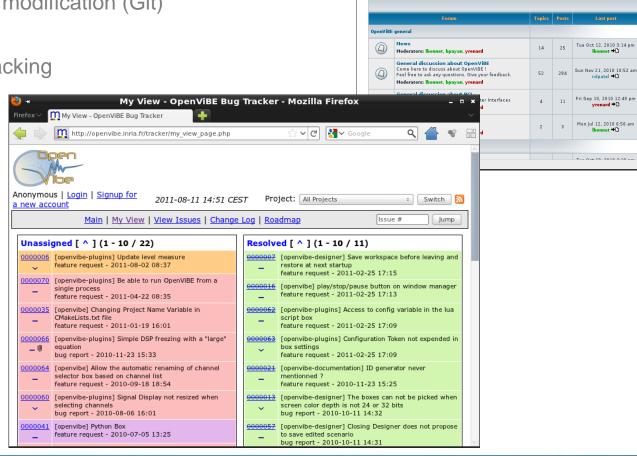
free software that can

- Provide Support
- Share experience and ideas
- Help in solving scientific or technical challenges
- Give continuous guidelines



http://openvibe.inria.fr

- News
- Made with OpenViBE
- Job offers
- Support :
 - Documentation for users and developers (Starter, Tutorials, Tips & Tricks)
 - Forum, mailing list, bug tracker


<u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ook	OpenViBE documentation . marks <u>T</u> abs <u>H</u> elp
i v 🖕 v 🛞 i	2 🖀 🔗 🗉 🔍 Q
nttp://openvibe.inria.fr/do	cumentation/unstable/index.html
Open Hbe	OpenViBE Documentation
✓ OpenViBE Documentation Doxygen	Home
✓ Modules ✓ Namespaces ✓ Class List ✓ Class Index	Note
✓ Class Hierarchy Hot Topics ✓ Video Tutorials®	The writing of the OpenVBE project documentation is in progress and far from complete at the moment. The way the documentation is structured may also change over time. However, existing documentation files are already made available to users and developers since they contain
√ FAQ √ Licence	valuable information, albeit in a not very organised fashion. This is a start Don't forget to read the Frequently asked questions !
✓ Licence ✓ Installation	Have a nice reading!
✓ User Doc ✓ Developer Doc	Overview
✓ Exisiting Boxes Contact	This website describes the OpenV/BE software platform. OpenV/BE enables to design, test and use Brain-Computer Interfaces. Brain-Computer Interfaces (BCI) are communication systems that enable users to send commands to computers only by means of brain activity.
√ Software Home छै √ Forum छै √ INRIA gForge छै	OpenV/BE is free and open source (under the term of this Licence). The whole software is developed in C++. It consists of a set of software modules that can be integrated easily and efficiently to design BCI applications. Key features of the platform are:
√ Mailing Lists छै √ Bug Tracker छै √ Research Project छै	Modularity and reusability. Our platform is a set of software modules devoted to the acquisition, pre-processing processing and visualization of cerebral data, as well as to the interaction with virtual reality displays. OperVBE being a general purpose software implies users should be able to easily add new software modules in order to fit their needs. This is
Enter a web address to o	pen, or a phrase to search for

	🔷 - 😣 🧲 🚰 😣 🖪 🛛 🤤			
http://op	envibe.inria.fr/forum/			
	swered posts View active topics			
Board inc	lex			All times are UT
			_	
	Forum	Topics	Posts	Last post
OpenViBl	Egeneral			
	News Moderators: Ibonnet, bpayan, <mark>yrenard</mark>	14	25	Tue Oct 12, 2010 3:14 pm Ibonnet →D
	General discussion about OpenVIBE Come here to discuss about OpenVIBE ! Feel free to ask any questions. Give your feedback. Moderators: Ibonnet, bpayan, yrenard	52	284	Sun Nov 21, 2010 10:52 ar ndpatel +D
	General discussion about BCI Free discussions about Brain Computer Interfaces Moderators: Ibonnet, bpayan, yrenard	4	11	Fri Sep 10, 2010 12:49 pm yrenard →D
	Feature Requests Ask for a new OpenViBE feature. Moderators: Ibonnet, bpayan, yrenard	2	3	Mon Jul 12, 2010 6:56 am Ibonnet →D
0	E development			

- The project is hosted by the INRIA gForge
- Multiple services available such as :
 - Website hosting
 - Concurrent source modification (Git)
 - Bug tracking
 - Feature request tracking
 - Mailing lists
 - Several statistics
 - Automatic builds

OpenViBE forum • Index page

🕗 🔲 🤤 🔍

All times are UTC

File Edit View <u>G</u>o <u>B</u>ookmarks <u>T</u>abs <u>H</u>elp

http://openvibe.inria.fr/forum/

Board index

View unanswered posts | View active topics

- Benefits of bug tracking / feature request tracking :
 - Report information about what does not work
 - Report information about what should work in a different manner
 - Report information about what could be added to make the software better
 - Following how those issues are solved by the developers
 - This tool becomes more and more valuable as the community grows
- The Forum now replaces the mailing lists

The OpenViBE forum

- (http://openvibe.inria.fr/forum)
 - General discussion about OpenViBE
 - General discussion about BCI
 - Feature Requests
 - OpenViBE development
 - OpenViBE use
 - OpenViBE scenarios

<u>E</u> dit	<u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> abs <u>H</u> elp					
Y [🔷 - 🗵 🧲 🕑 🔲 🔍	e				
tp://op	envibe.inria.fr/forum/					
ew unan	swered posts View active topics					
oard ind	lex		All times are UTC			
-	Forum	Topics	Posts	Last post		
penViBl	E general					
	News Moderators: Ibonnet, bpayan, yrenard	14	25	Tue Oct 12, 2010 3:14 pm Ibonnet →D		
	General discussion about OpenViBE Come here to discuss about OpenViBE ! Feel free to ask any questions. Give your feedback. Moderators: Ibonnet, bpayan, yrenard	52	284	Sun Nov 21, 2010 10:52 am ndpatel →D		
	General discussion about BCI Free discussions about Brain Computer Interfaces Moderators: Ibonnet, bpayan, yrenard	4	11	Fri Sep 10, 2010 12:49 pm yrenard → D		
	Feature Requests Ask for a new OpenViBE feature. Moderators: Ibonnet, bpayan, yrenard	2	3	Mon jul 12, 2010 6:56 am Ibonnet →D		
	E development					
penViBl						

- What OpenViBE can do for you?
 - Acquire, process and visualize brain activity in real-time
 - Extract, analyze and visualize evoked potentials in real-time
 - Offer flexibility for designing, testing and using new brain signal pattern detection
- How you can contribute and get involved in OpenViBE?
 - Provide feedback about your use of the software
 - Express needs for adapting the tool to your field
 - Support the developments by funding OpenViBE experts for creating the features you need
 - Create and share OpenViBE additions with the community

Contributors/Users

- Université de Mons (Belgium)
- Ghent University (Belgium)
- GIPSA-Lab (France)
- Clinatec / LETI Minatec (France)
- Inria (France)
- INSERM (France)
- Neurospin (France)
- University of Lorraine (France)
- Oldenburg university (Germany)
- Universidad de Pavia (Italy)
- Universitat Pompeu Fabra in Barcelona (Spain)
- Université de Bristol (UK)

. . .

Future

- Steering committee -> Consortium (Inria's Foundation/InriaSoft)
- OpenViBE release (twice a year)
- Support engineers
- Mensia technology (<u>www.mensiatech.com</u>)
- CertiViBE project for medical certifiable solutions
 (OpenViBE kernel + core modules)
- BCI Book with practical chapters using OpenViBE (ISTE-Wiley, 2016)

