FROM MEMORY TECHNOLOGY AND ARCHITECTURE TO

COMPUTING WITH NON-VOLATILE MEMORY

Pr. Lionel TORRES, lionel.torres@umontpellier.fr

Thanks to : S. Senni, G. Patrigeon, F. Ouattara, G. Sassatelli, A. Gamatié, J.Y Peneau, M. Robert, P. Benoit

ARCHI 2017-Nancy

Summary

1 - Context and objectives of the lecture
2 - Classical technologies and memory architecture overview (SRAM, DRAM, FLASH)
3 - Emerging memory technologies
4 - Computing with Non-Volatile memory technologies

- For high performance computing applications
- For Embedded applications (Non-volatile processor)
- For secure applications

5 - Conclusions

1- Context

Transistor count (millions)

Source : ISSCC 2013 High-performance digital trends
o Power limits the active silicon area (Dark silicon)

- Heat dissipation wall
- Power modes
o Memory a key component

Increase of
chip complexity

Area ${ }^{-1}$

1
1
Power

4
1.6
2.4

1
$(4 \times 1)^{-1}=25 \%$
$(16 \times 0.6)^{-1}=10 \%$

Source : « ARM CTO warns of dark silicon », eetimes, 2010

1-Context

- Observation

- Decreasing size of devices
\rightarrow power consumption and heat issues
\rightarrow stagnation of performance
- Why ?
- Leakage current of CMOS devices
- Volatility
- Memory: a key component

Figure 1: Leakage power becomes a growing problem as demands for more performance and functionality drive chipmakers to nanometer-scale process nodes (Source: IBS).

Source : Semico Research Corporation

-Requirement Dynamio plus Statio Power

```
```

\#Trend. Memory Statie Power

```
#Trend. Memory Statie Power
Trend Memory Dynamic Power 焐rend Logic Dynamic Power
```

Trend Memory Dynamic Power 焐rend Logic Dynamic Power

```
\(\begin{array}{llllllllllllll}2013 & 2014 & 2015 & 2016 & 2017 & 2018 & 2019 & 2020 & 2021 & 2022 & 2023 & 2024 & 2025 & 2026\end{array}\)

\section*{1- Context}

Memory market trends



Flash Market trends

\section*{1- Lecture Objectives}

1/ Giving a memory technology architecture overview

2/ Discussing on promising memory technologies

3/ Understanding which type of memory technologies related to applications

4/ Illustrating some case study to demonstrate that logic in memory could help to reach ultra low power consumption applications

2 - Technology and memory architecture overview


\section*{2 - Technology and memory architecture overview}

\section*{Memory Hierarchy}
- Closer the memory is to computing/calcul, the faster it must be
- Processor Registers are part of the memory hierarchy
- SRAM Cache memory connected to the processor
- Main memory in general is DRAM
- Data storage, slow but very dense, Nonvolatile memory
- What is important : the cell regularity !


2 - Technology and memory architecture overview
Memory \& applications requirements
- Main metrics
- Cost
- Performances
- Data retention
- Security
- Physical behaviour
- Power consumption
- Celle size
- Scalability


\section*{Memory array architecture}
- \(2^{\mathrm{n}}\) words of \(2^{\mathrm{m}}\) bits each
- If \(n \gg m\) fold by \(2^{k}\) into fewer rows of more columns
- What is important : the cell regularity !


\section*{2 - Technology and memory architecture overview}


SRAM Technology

SRAM cell (6T)


2 - Technology and memory architecture overview
SRAM Write


0 Write 01
1 Write 10


\section*{2 - Technology and memory architecture overview}

SRAM Read

1) Precharge bitlines and senseamp
2) Pulse wordlines, develop bitline differential voltage
3) Disconnect bitlines from senseamp, activate sense pulldown, develop full-rail data signals

Pulses generated by internal self-timed signals, often using "replica" circuits representing critical paths

2 - Technology and memory architecture overview


\section*{2 - Technology and memory architecture overview}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bit cells & D & Bit cells & Bit cells & D & Bit cells \\
\hline I/O & & I/O & I/O & & 1/O \\
\hline Bit cells & D & Bit cells & Bit cells & D & Bit cells \\
\hline Bit cells & D & Bit cells & Bit cells & D & Bit cells \\
\hline I/O & & I/O & 1/O & & I/O \\
\hline Bit cells & D & Bit cells & Bit cells & D & Bit cells \\
\hline
\end{tabular}
- Using Banks and sub-banks to construct larger array
- Due to RC delays 128-256 bits in row/column (sub-banks)
- For energy efficiency only one Bank (sub-bank) activated at same time
- Delay and energy dominated by I/ O wiring

\section*{2 - Technology and memory architecture overview}

\section*{SRAM Layout memory}

0.092 um \(^{2}\) SRAM cell for high density applications

0.108 um\(^{2}\) SRAM cell for low voltage applications


Intel 22 nm SRAM

2 - Technology and memory architecture overview

\section*{SRAM limitations}
- Static Noise margins
- Very high sensibility to process variability
- High sensibility to temperature
- High Leakage for advance node technology
- To overcome these drawbacks number of \(\operatorname{Tr}\) per cell increase!


2 - Technology and memory architecture overview
DRAM Technology
- To write \(-\mathrm{W}_{\mathrm{L}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{B}_{\mathrm{L}}\) is " 0 " or " 1 " depending of the value to store
- To read \(-\mathrm{VB}_{\llcorner }\)precharged at \(\mathrm{V}_{\text {PRE }}\) Then activate \(\mathrm{W}_{\mathrm{L}}\)
- If " 1 " \(-V_{B L} \nearrow-1\) is detected
- If " 0 " \(-V_{B L} \downarrow-0\) is detected

1 - Necessary to refresh the cell ( \(\sim m s\) )
2 - When a read occurs (destructive read), it is necessary to re-write the cell

\section*{2 - Technology and memory architecture overview}

\section*{DRAM Technology}


\section*{DRAM limitations}
- Capacitor integration (must be large enough)
- Refresh cost is depending of the capacitor
- Access transistor large to avoid static leakage
- DRAM Hard to scale in advance node
- Not easy to embed DRAM (Specific Techno)


\section*{2 - Technology and memory architecture overview}

\section*{SDRAM}
- interleaved (2 banks)- one is refreshing and the other can be accessed
- synchronized to clock and burst mode (without CAS)



Lecture banc A, ligne RO, colonne CO
Lecture banc B, ligne R1, colonne C1
Lecture banc A, ligne R2, colonne C2

Burst = 8 mots
(1) Entrée de la ligne R0
(2) Entrée de la ligne CO
(3) Lecture de la donnée

\section*{2 - Technology and memory architecture overview}

\section*{FLASH Technology}


Flash cell
- Double gate where charge storage can be changed - control of the \(V_{\text {th }}\) of the cell
- Cell Vth changes depending of the amount of F/G charge
- Electrons injected (ejected) into (out of) the F/G through Tox with electric field across Tox



Erase
F-N Tunneling
On cell
(Solid-1)

\section*{2 - Technology and memory architecture overview}

FLASH Technology


10x better endurance
Fast read (~100 ns)
Slow write ( \(\sim 10 \mu \mathrm{~s}\) )
Used for Code

Smaller cell size
Slow read ( \(\sim 1 \mu \mathrm{~s}\) )
Faster write ( \(\sim 1 \mu \mathrm{~s}\) )
Used for Data

\section*{2 - Technology and memory architecture overview}

Flash limitations
- Limited number of write/erase (endurance)
- Necessary to generate high voltage (charge pump)
- Access time
- Integration ( > 10 masks)
- Scalability, charge retention lose on advanced nodes
- MLC Capabilities appreciated (but complex)


\section*{2 - Technology and memory architecture overview}

\section*{Overall considerations}
- Bigger is slower
- Kbyte - Mbyte \(\rightarrow\) SRAM - fast access time ( \(\sim\) ns) - low density (6T/cell) - CMOS compatible - easy to embed - volatile
- Gbyte \(\rightarrow\) DRAM - reasonable access time ( \(\sim 30 \mathrm{~ns}\) ) - High density (2T/cell) Specific manufacture process - not easy to embed - volatile
- > 10 Gbyte \(\rightarrow\) FIASH - Slow access time ( \(\sim\) us) - Very high density (1T/cell) Specific manufacture process - could be embed (> 10 masks) - non-volatile
- Faster is more expensive
- SRAM - few \$ per Mbyte
- DRAM - <1\$ per Mbyte
- FLASH - < 1\$ per Gbyte

Other technologies have their place as well

\section*{3 - Emerging memory technologies}


\section*{3 - Emerging memory technologies}
o Currently used memories:
- SRAM for fast working memories
- Flash (data storage)
- FeRAM, smart cards
- ...

○ « Universal memory »candidates
- Magnetic tunneling junctions
- Phase change memory cells
- Programmable metallization cells
- OxRRAM

Universal memory:
"Non volatile RAM"
- Performance of SRAM
-Cell size of DRAM/Flash
- Non volatility of Flash
- Scalability

\section*{Resistance Switching Memory}

\section*{3 - Emerging memory technologies}

\section*{PCRAM Technology}
- Principe de fonctionnement : changement de phase du volume actif de l'élément de stockage de l'information
```

ETAT RESET
Phase amorphe
ETAT SET
Phase cristalline

```
- Lecture: contraste de résistance électrique entre la phase amorphe et la phase cristalline.


- Ecriture: changement de phase induit par effet Joule sous l'application d'une impulsion électrique


\section*{3 - Emerging memory technologies}

\section*{PCRAM Technology}
- Mémoire non-volatile (NVM)
- Temps d'accès court (12ns)
- Ecriture et effacement rapide (100ns)
- Tension de fonctionnement basse (3V)
- Ratio Roff/Ron important (x1000)
- Haute endurance ( \(10^{12}\) cycles)
- Rétention prouvée à 10 ans à \(150^{\circ} \mathrm{C}\) y compris à température de soudage!

3D XPoint \({ }^{\text {™ }}\) Technology: An Innovative, High-Density Design


From Intel / Micron websites
- Intégration 2D démontrée dans une architecture crossbar pour applications de stockage (cf. 3D XPoint)
- Technologie la plus mature parmi les candidates au remplacement de la flash (technologie industrielle)

\section*{Défis}
- Dérive de résistance et courant de reset relativement haut affectent la mise à l'échelle de la cellule mémoire (élément de stockage et transistor de sélection)

\section*{3 - Emerging memory technologies}

\section*{ReRAM Technology}

Variation résistance d'une structure Métal\Isolant\Métal contrôlée électriquement

2 Etats



\section*{Oxide-base RAM (OxRAM)}

請 Filament conducteur = chaine de lacunes d'oxygène (migration)

2 Opérations
- Set \(\rightarrow\) passage de l'état HRS à LRS
- Reset \(\rightarrow\) passage de l'état LRS à HRS


Conductive Bridge RAM (CBRAM)
解 Filament conducteur = chaine d'atomes métalliques ( \(\mathrm{Ag}, \mathrm{Cu}\) )

\section*{3 - Emerging memory technologies}

\section*{ReRAM Technology}

\section*{AVANTAGES}
- Structure simple, facile à fabriquer
- Fort potentiel pour la réduction de taille (mécanisme filamentaire)
- Faible tension (1V-3V)
- Courants de programmation \(10-100 \mu \mathrm{~A}\)
- Vitesse de commutation < 100ns
- Coût énergétique ~ 100pJ/bit
- Endurance > \(10^{8}\) cycles (OxRAM)
- Rétention de l'information \(>10\) ans à \(70^{\circ} \mathrm{C}\)
- Intégration en BEOL à faible température mais aussi compatible FEOL (OxRAM)
- Des produits déjà démontrés

\section*{Emerging Technologies : Fe-RAM}


Shosuke F. et al., First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, VLSI 2016

\section*{Emerging Technologies : Fe-RAM}

FE-HfO 2 based MFIS-Stack for 1T FRAM


Müller J et al. Ferroelectric hafnium oxide: a CMOScompatible and highly scalable approach to future ferroelectric memories. IEDM 2013

Pas un effet de chargement/ déchargement dans l'oxyde de grille (variation contraire de la tension de seuil)

Yurchuk et al., Charge-Trapping Phenomena in HfO2-Based FeFET-Type Nonvolatile Memories, IEEE Transaction on Electron Devices Vol. 63, No. 9, sept. 2016
++: consommation, rapidité
--: cyclage, rétention
- Concept de mémoire non-volatile très récent, manque de maturité, démonstration d'intégration au nœud 28nm HKMG
- HfO2 ferroélectrique: utilisable aussi pour des transistors MOS à faible pente sous le seuil (concept de capacité négative de grille)
- Conductance of magnetic metal plates is larger in the presence of a magnetic field perpendicular to the current flow

- Currently known as Anisotropic Magnetoresistance (AMR)
- Resistance variation attained: 2\%-5\% in RT

\section*{3 - Emerging memory technologies : MRAM}

Peter Grünberg and Albert Fert 2007 Nobel Prize in Physics
- Thin stacks of FM/NM metals have seen a conductance increase of up to \(100 \%\) when subjected to a magnetic field



\section*{SPIN TECHNOLOGY OVERVIEW Giant Magnetoristance}

Peter Grünberg and Albert Fert 2007 Nobel Prize in Physics

- In FM/NM/FM structures, electrons are scattered as a result of interactions between the magnetic field and their spin

\begin{tabular}{c|l}
\hline\(\uparrow\) & \(\downarrow\) Anti-Parallel configuration
\end{tabular}

\section*{SPIN TECHNOLOGY OVERVIEW Giant Magnetoristance}

\author{
Peter Grünberg and Albert Fert 2007 Nobel Prize in Physics
}

- In FM/NM/FM structures, electrons are scattered as a result of interactions between the magnetic field and their spin

\begin{tabular}{|||l|l}
\hline & \(\uparrow\) \\
\hline
\end{tabular}

\section*{3 - Emerging memory technologies : MRAM}
T. Miyazaki, J. Moodera, J. Slonczewski (not in the pictures: M. Jullière)

o Spin-Dependent Transport (SDT): spin-up and spin-down have different probabilities of tunneling an FM/I/FM structure


\(\uparrow \quad \downarrow\) Anti-parallel configuration

\section*{3 - Emerging memory technologies : MRAM}
T. Miyazaki, J. Moodera, J. Slonczewski (not in the pictures: M. Jullière)

- Spin-Dependent Transport (SDT): spin-up and spin-down have different probabilities of tunneling an FM/I/FM structure

\begin{tabular}{l|l}
1 & \(\uparrow\) \\
\hline
\end{tabular}

\section*{3 - Emerging memory technologies : MRAM}

Field Induced Switching


Current Induced Switching
Writing current


0
Three terminals
- SOT switching not fully understood (Rashba effect + Spin Hall Effect)

Voltage Induced Switching

Magnetoelectric RAM (MeRAM)

- Very low current
- Voltage-controlled magnetic anisotropy effect

\section*{3 - Emerging memory technologies : MRAM}
- Vitesse à l'écriture (~ns)
- Courant d'écriture \(\sim 5 \mathrm{MA} / \mathrm{cm}^{2} \Leftrightarrow 15 \mathrm{uA}\) pour 20 nm , diminue avec la surface de la MTJ
- Endurance (>10 \({ }^{14-15}\) )
- Intégration sur CMOS
- Tension d'écriture et résistance ( \(\sim \mathrm{k} \Omega\) ) compatible avec CMOS
- ~3 masques supplémentaires
- Température back-end faible ( \(<350^{\circ} \mathrm{C}\) )
- Matériaux magnétiques «exotiques»
- Information non stockée sous forme de charge => immune aux radiations
- Compromis entre :
- Vitesse et consommation à l'écriture
- Rétention et consommation à l'écriture
- Scalabilité assurée jusqu'à 14 nm

- Stabilité proportionnelle au volume
- Courants d'écriture très petits : risque d'écriture lors de la lecture

\section*{3 - Emerging memory technologies : MRAM}

<STT-MRAM test chipt>
STT-MRAM Cache memory


Everspins MRAM Arduino Shield


Anti-parallel state


Parallel state

(b)


Example of accumulated input data during 30 ms


MRAM based memresistor - Human Brain - IEF/CEA


Crocus MRAM flexible sensors

\section*{3 - Emerging memory technologies: Overview}
- All these technologies are Non-volatile, based on resistance switching, with fast access time
- Two important aspects to consider
- Technology maturity
- Système integration (easy to replace actual memory)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Metricx & PCM & OxRAM & CBRAM & PSTT MRAM & FeFET & Flash \\
\hline Endurance & 4 & 4 & 2 & 5 & 1 & 3 \\
\hline Energy & 2 & 3 & 3 & 4 & 5 & 1 \\
\hline Integration & 3 & 5 & 4 & 2 & 5 & 3 \\
\hline Scalability & 4 & 5 & 5 & 4 & 3 & 1 \\
\hline Retention & 5 & 4 & 4 & 3 & 2 & 3 \\
\hline Speed & 4 & 3 & 3 & 5 & 4 & 1 \\
\hline Maturité & 3 & 3 & 2 & 2 & 1 & 5 \\
\hline
\end{tabular}

\section*{Techno overview summary}
-J. Joshua Yang, Dmitri B. Strukov \& Duncan R. Stewart Nature Nanotechnology 8, 13-24 (2013)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Memristor & PCM & STTRAM & SRAM & DRAM & Flash (NAND) & HDD \\
\hline & & \multicolumn{2}{|l|}{Prototypes} & \multicolumn{4}{|l|}{Commercialized technologies} \\
\hline Reciprocal density ( \(\mathrm{F}^{2}\) ) & <4 & 4-16 & 20-60 & 140 & 6-12 & \(1-4{ }^{+}\) & 2/3 \\
\hline Energy per bit (pJ) & 0.1-3 & 2-25 & 0.1-2.5 & 0.0005 & 0.005 & 0.00002 & \(1-10 \times 10^{9}\) \\
\hline Read time (ns) & <10 & 10-50 & 10-35 & 0.1-0.3 & 10 & 100,000 & \(5-8 \times 10^{6}\) \\
\hline Write time ( ns ) & \(\sim 10\) & 50-500 & 10-90 & 0.1-0.3 & 10 & 100,000 & \(5-8 \times 10^{6}\) \\
\hline Retention & years & years & years & As long as voltage applied & <<second & years & years \\
\hline Endurance (cycles) & \(10^{12}\) & \(10^{9}\) & \(10^{15}\) & \(>10^{16}\) & \(>10^{16}\) & \(10^{4}\) & \(10^{4}\) \\
\hline
\end{tabular}

\section*{3 - Emerging memory technologies: Overview}
- Actual market of emerging technologies is about 50 Millions \(\$ \mathbf{- 8 0}\) billions for DRAM and Flash
- 2021: 4,6 billions \$, a market growth of \(110 \%\) per year
- All the majors semiconductors companies are leading this market - but lot of start-up too!

EMERGING NON-VOLATILE MEMORY 2016


Yole market report

\section*{Summary}

1 - Context and objectives of the lecture
2 - Classical technologies and memory architecture overview (SRAM, DRAM, FLASH)
3 - Emerging memory technologies
4 - Computing with Non-Volatile memory technologies
- For high performance computing applications
- For Embedded applications (Non-volatile processor)
- For secure applications

5 - Conclusions

\section*{Motivation}

\section*{- Solution}
- Go towards non-volatile systems using emerging NVMs
- Current NVMs issues : Speed, Dynamic energy, Reliability


Where and how to place MRAM to:
reduce total power consumption?
keep same or get better performance ?

Hybrid CMOS/MRAM Blocks for FPGAs
- MRAM FPGA Features :
\# LUT 4
\# TILES
\# Sequential el
\# of MTJs \# of Transistors Silicon Area MRAM Reconfi Energy
MRAM Restora Clock Frequenc Full configuratio Tile reconfiguration \# Input/Output


Self Referenced cells


\section*{MRAM-based cache}
- MRAM technologies evaluated:
- 130 nm TAS (L2)
- 45 nm STT (L1/L2)


STT-MRAM

- Multi-core architecture:
- ARMv7 ISA
- Private L1 I/D
- Shared L2

\section*{4- What About Security ...}

PUF solution exploits the differential sensing during read operation, based on read current comparison against a reference value.


\footnotetext{
Fig. 4. The implementation strategy of the proposed PUF solution: 1) Write all cells to '1'; 2) Read each cell;
} 3) Use the read value

Elena loana Vatajelu, Giorgio Di Natale, Mario Barbareschi, Lionel Torres, Marco Indaco, Paolo Prinetto STT-MRAM-Based PUF Architecture exploiting Magnetic Tunnel Junction Fabrication-Induced Variability, ACM JETC, 2015

\section*{Contributions}
1. Evaluation of MRAM-based cache memory hierarchy:
- Exploration flow and extraction of memory activity
- L1 and L2 caches based on STT-MRAM and TAS-MRAM
2. Non-volatile computing
- Instant-on/off capability for embedded processor
- Analysis and validation of Rollback mechanism
3. Secure applications with NVM

\section*{MRAM applied to cache}

\section*{- Possible studies}



Non-volatile Cache POTENTIAL APPLICATIONS ?

Take advantages of MRAM
Low leakage
High density
Non-volatility

Mitigate drawbacks of MRAM
write latency
write energy

\section*{MRAM applied to cache}

\section*{NVM exploration flow}

2. Exphớret \(\mathrm{M} /\) RAMMbased çache configuraticne
- L1, L2, L3, Hy Executiontime

\section*{3. Extract many us}
- Runtime, cache enteryy, cache transactions.. \(\downarrow\)

Total L1/L2 energy consumption

\section*{MRAM applied to cache}

\section*{Experimental setup}

\section*{From single to multi-core architecture \\ ARMv7 ISA}

Private L1 instruction/Data
Shared L2
(Additional levels of caches possible)
Main Memory


\section*{MRAM applied to cache}

Area

\section*{Circuit-level analysis: Models (NVSim) \& Prototype}

- MRAM is denser for large cache capacity
- MRAM cell size smaller than that of SRAM
- MRAM needs large transistors for write
- TAS-MRAM cache larger due to field lines

\section*{MRAM applied to cache}

Circuit-level analysis:
Models (NVSim) \& Prototype
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{Read} & \multicolumn{2}{|c|}{Write} & Standby \\
\hline Node & Technology & Latency (ns) & Energy (nJ) & Latency (ns) & Energy (nJ) & Leakage (mW) \\
\hline 45nm & SRAM
STT-MRAM & \multicolumn{2}{|l|}{\[
\left.\begin{array}{l}
4.28 \\
2.61
\end{array}\right) / 2.2^{0.27} 0.28:
\]} & \[
\left.\begin{array}{l}
2.87 \\
6.25
\end{array}\right)
\] & \[
\begin{aligned}
& 0.02 \\
& 0.05
\end{aligned}
\] & \[
\left.\begin{array}{c}
320 \\
23
\end{array}\right) / 14
\] \\
\hline 120nm & SRAM
TAS-MRAM & 5.95
35 & 1.05
1.96 & 4.14
35 & 0.08
4.62 & \[
\left.\begin{array}{l}
82 \\
10
\end{array}\right) / 8
\] \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { STT-MRAM } \approx \text { SRAM } \\
& \text { TAS-MRAM > SRAM }
\end{aligned}
\]} & \multicolumn{2}{|l|}{MRAM > SRAM} & MRAM << SRAM \\
\hline Node & Technology & Latency (ns) & Energy (nJ) & Latency (ns) & Energy ( n ) & Leakage (mW) \\
\hline \multirow{2}{*}{45nm} & SRAM & 1.25 & 0.024 & 1.05 & 0.006 & 22 \\
\hline & STT-MRAM & 1.94 & 0.095 & 5.94 & 0.04 & 3.3 \\
\hline & & \multicolumn{2}{|l|}{MRAM > SRAM} & \multicolumn{2}{|l|}{MRAM > SRAM} & MRAM << SRAM \\
\hline
\end{tabular}

\section*{MRAM applied to cache}

\section*{Case study}
- Quad-core architecture:
- Frequency 1GHz
- ARMv7ISA
- Private L1 I/D
- Shared L2
- DDR3 Main memory

- Benchmarks
- SPLASH-2
- Mostly high performance computing
- PARSEC
- Animation, data mining, computer vision, media processing


\section*{MRAM applied to cache}

Architecture-level analysis: gem5

\section*{Read/Write ratio}
\(\square\) Reads \(\quad\) Writes



\section*{L2/L1 access ratio}

Number of accesses
Benchmark
Benchmark
SPLASH-2

PARSEC

Static/Dynamic energy ratio

Static energy

L2 \(\rightarrow\) 90\%
L1 \(\rightarrow 80 \%\)

\section*{MRAM-based L2}

\section*{Execution time}

- Observations:
—barnes -ocean2
- STT shows good performance
- L2 has small impact in overall performance
- For TAS, 14\% of penalty in average (SPLASH-2)
- Depends on applications (Cache miss rate, L1/L2 access ratio)


\section*{MRAM-based L2 \\ Total L2 cache energy consumption}

- Observations:
- Up to 90\% of gain for STT
- From 40\% to 90\% for TAS
- Due to the very low leakage of MRAM-based cache
—fluidanimate (read) —fluidanimate (write)


\section*{MRAM-based cache}

\section*{Summary}
- NVM exploration flow available
- Input from models or silicon chip
- Memory activity analysis
- Is MRAM suitable for cache ?
- Good candidate for lower level of cache (L2 or last level cache)
- Up to 90\% of energy gain
- No or small performance penalty
- More memory capacity using MRAM
- Cache L2 is up of \(20 \%\) energy consumption of overall system
- Not suitable for upper level of cache (L1) for high performance - but depending of the application some gain in energy
- Micro-architectural modifications required to mask latency
- Not detailed in this presentation but full evaluation of cache L1 done too

\section*{Contributions}
1. Evaluation of MRAM-based cache memory hierarchy:
- Exploration flow and extraction of memory activity
- L1 and L2 caches based on STT-MRAM and TAS-MRAM
2. Non-volatile computing
- Instant-on/off capability for embedded processor
- Analysis and validation of Rollback mechanism
3. Secure applications with NVM

\section*{MRAM-based processor}

\section*{Normally-off computing}
- Two concepts:
- Instant on/off
- Restore processor state

- Backward error recovery (Rollback)
- Restore previous valid state

Checkpoint/rollback


\section*{MRAM-based processor}


\section*{MRAM-based processor}

\section*{Case study: Amber 23 processor (ARM based instruction)}


Address decoder
Unified Instruction/Data Cache

Memory bus interface

\section*{Main memory}

\section*{FEATURES}
- 3-stage pipeline
- 16x32-bit register file
- 32-bit wishbone system bus
- Unified instruction/data cache (16 kBytes)
- Write through
- Read-miss replacement policy
- Main memory (> Mbytes)
- Multiply and multiply-accumulate operations
\(>\) Implementation of both instant-on/off and rollback (Verilog code modified)
\(>\) Duplication of the registers to emulate the non-volatility

\section*{Instant on/off}

\section*{Instant on/off}
(1) Save the register's state


POWER DOWN

POWER UP
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{c} 
Main memory based on MRAM \\
\(\downarrow\)
\end{tabular} \\
Data preserved
\end{tabular}



Restore the register's state

\section*{Instant on/off}

\section*{Instant-on/off: backup energy}

Non-volatile flip-flops performance
\begin{tabular}{ccccc}
\hline \hline Technology & \multicolumn{2}{c}{\begin{tabular}{c} 
Latency (ns) \\
Restore
\end{tabular}} & \multicolumn{2}{c}{ Enack-up } \\
Restore & Back-up \\
\begin{tabular}{c} 
STT-MRAM \\
[Chabi et al. 2014]
\end{tabular} & 0.2 & 4 & 0.012 & 0.5 \\
\begin{tabular}{c} 
TAS-MRAM \\
[Jovanovic et al. 2015]
\end{tabular} & 0.13 & 16 & 0.012 & 5.2 \\
\begin{tabular}{c} 
OxRAM \\
[Jovanović et al. 2014]
\end{tabular} & 6 & 70 & 1.4 & 28 \\
\begin{tabular}{c} 
PCRAM \\
[Choi et al. 2013]
\end{tabular} & 370 & 370 & 7.4 & 463 \\
\hline \hline
\end{tabular}
- Backup energy:
\(\rightarrow\) less than 1nJ for STT-MRAM
\(\rightarrow\) less than 10nJ for TAS-MRAM
- [1] The required current to erase and program flash can vary from 4 to 12 mA

\section*{- 1644 Flip-Flops saved}
- Flip-Flops are backed-up in parallel

[1] "Benchmarking mcu power consumption for ultra-low-power applications," White paper, Texas Instruments

\section*{Instant on/off}

\section*{Instant-on/off: Restore energy}

Non-volatile flip-flops performance
\begin{tabular}{ccccc}
\hline \hline Technology & \multicolumn{2}{c}{ Latency (ns) } & \multicolumn{2}{c}{ Energy (pJ) } \\
Restore & Back-up & Restore & Back-up \\
\begin{tabular}{c} 
STT-MRAM \\
[Chabi et al. 2014]
\end{tabular} & 0.2 & 4 & 0.012 & 0.5 \\
\begin{tabular}{c} 
TAS-MRAM \\
[Jovanovic et al. 2015]
\end{tabular} & 0.13 & 16 & 0.012 & 5.2 \\
\begin{tabular}{c} 
OxRAM \\
[Jovanovic et al. 2014]
\end{tabular} & 6 & 70 & 1.4 & 28 \\
\begin{tabular}{c} 
PCRAM \\
[Choi et al. 2013]
\end{tabular} & 370 & 370 & 7.4 & 463 \\
\hline \hline
\end{tabular}
- Restore energy:
\(\rightarrow\) 20pJ for both STT-MRAM and TASMRAM
- [1] Wang et al. showed that the energy consumption to restore 1607 Flip-Flops from off-chip flash (on-chip flash) is \(1.3 \mu \mathrm{~J}(0.6 \mu \mathrm{~J})\)
- 1644 Flip-Flops restored
- Flip-Flops are restored in parallel

[1] "A 3us wake-up time nonvolatile processor based on ferroelectric flip-flops," in ESSCIRC (ESSCIRC), Proceedings of the. IEEE, 2012

\section*{Instant on/off}

\section*{Instant-on/off: sleep mode}



Without instant-on/off
With instant-on/off
\[
\left(P_{\text {active }}+P_{\text {leakage }}\right) \times T_{\text {backup }}+E_{\text {backup }}<P_{\text {leakage }} \times T_{\text {sleep }}
\]

Minimum Tsleep required to be more energy efficient
\[
T_{\text {sleep }}>\frac{\left(P_{\text {active }}+P_{\text {leakage }}\right) \times T_{\text {backup }}+E_{\text {backup }}}{P_{\text {leakage }}}
\]

\section*{Instant on/off}

\section*{Instant-on/off: sleep mode}

Synthesis of the Amber 23 (65nm CMOS low-power HVT process)

Switching activity \(\rightarrow 0.5\) /cycle
\[
\begin{gathered}
\text { Pactive }=173 \mathrm{~mW}(40 \mathrm{MHz}) \\
\text { Pleakage }=12 \mathrm{~mW}
\end{gathered}
\]

Technology
STT-MRAM
TAS-MRAM
OxRAM
PCRAM

\section*{Minimum Tsleep}

130 ns
968 ns
\(4.9 \mu \mathrm{~s}\)
\(69 \mu s\)
- Not considering the power down/up circuitry
- Cache warm-up penalty to consider
- Area overhead to consider

\section*{Rollback}

\section*{CHECKPOINT}
- Save registers
- Save memory

\section*{NORMAL EXECUTION \\ Rollback}
- Only the main memory contents are modified
- The checkpoint memory is powered off

ON

Main
memory

ROLLBACK
1. Stall the processor
2. Restore checkpoint
3. Execution


ON Restore ON

Main
memory
Checkpoint
memory

\section*{Rollback}

\section*{Rollback (Memory part)}

\section*{NORMAL EXECUTION}


\section*{OFF}

\section*{CHECKPOINT}
- Only the modified memory locations are copied

\section*{ROLLBACK}
- Only the modified memory locations are restored

Buffer (128 entries)


Buffer (128 entries)


\section*{Rollback}

\section*{Rollback: validation}


\section*{Rollback}

\section*{Rollback: validation}

Dhrystone Benchmark, Version 2.1 (Language: C) Program compiled without 'register' attribute
Checkpoint
created here \begin{tabular}{l} 
Execution starts, 256 runs through Dhrystone \\
Execution ends
\end{tabular}

Final values of the variables used in the benchmark:
Int_Glob:
Bool_Gl should be:
should be:
Ch_1_Glob:
Ch_2_G1ob:
should be:
Arr_1_Glob[8]:
Arr_2_Glob[8][7]: 266
should be: 266
- - •

- Dhrystone 2.1 application
- Register part:
- Same time/energy as intant-on/ off to backup/restore
- Area overhead to consider
- Memory part:
- To be evaluated more precisely
- We know how to evaluate checkpoint memory size
- Penalty due to cache warm-up to consider

\section*{Summary}


\section*{Contributions}
1. Evaluation of MRAM-based cache memory hierarchy:
- Exploration flow and extraction of memory activity
- L1 and L2 caches based on STT-MRAM and TAS-MRAM
2. Non-volatile computing
- Instant-on/off capability for embedded processor
- Analysis and validation of Rollback mechanism
3. Secure applications with NVM

\section*{What AbOUT SECURITY ...}

\section*{True Number \\ Generator}

Physically
Unclonable
Function

Secure elements

Side Channel
Analysis

Smart Efficient TRNG based on MRAM

Physically Unclonable Function using MRAM

Dedicated logic for secure Elements based on MRAM

Side Channel Analysis of MRAM memories


Fukushima \& al (2015)


Vatajelu \& al (2015)

\section*{What ABOUT SECURITY ...}

\section*{Smart Efficient TRNG based on perpendicular STT-MRAM}

Main principle

\[
\begin{equation*}
P_{\mathrm{sw}}(I)=1-\exp \left\{-\frac{t}{\tau_{0}} \exp \left[-\Delta\left(1-\frac{I}{I_{\mathrm{c} 0}}\right)^{2}\right]\right\}, \tag{1}
\end{equation*}
\]
Table II. Pass rate of the randomness tests of NIST SP-800. \({ }^{18)}\)
\begin{tabular}{lllll}
\hline & \multicolumn{4}{c}{ Pass rate } \\
\cline { 2 - 5 } & Raw & XOR & XOR \(^{2}\) & XOR \(^{3}\) \\
\hline MTJ1 & 0.000 & \multirow{2}{c}{0.000} & & \\
MTJ2 & 0.000 & & 0.417 & \\
\cline { 2 - 3 } MTJ3 & 0.000 & \multirow{2}{*}{0.167} & & 0.467 \\
MTJ4 & 0.000 & & & \\
\cline { 2 - 3 } MTJ5 & 0.000 & \multirow{2}{*}{0.058} & & \\
MTJ6 & 0.000 & & & \\
\cline { 2 - 5 } MTJ7 & 0.000 & \multirow{2}{*}{0.075} & & \\
MTJ8 & 0.000 & & & \\
\hline
\end{tabular}

Akio Fukushima*, Takayuki Seki, Kay Yakushiji, Hitoshi Kubota, Hiroshi Imamura, Shinji Yuasa, and Koji Ando Spin dice: A scalable truly random number generator based on spintronics, Applied Physics Express 7, 083001 (2014)

\section*{WHAT ABOUT SECURITY ...}

Smart Efficient TRNG based on perpendicular STT-MRAM (instead current pulse, external field is used)

50 Millions of random bits


\section*{What About security ...}
- Non-Volatility help security (and also Energy !)
- Persistent data storage
- Authentication
- Battery backed-memories
- Secure CPU Boot


NV - SRAM
Non-Volatile SRAM/MRAM cel
\begin{tabular}{|l|l|l|l|}
\hline Read speed & \(39 \mathrm{ps}(1.5 \mathrm{f})\) & Density & \(25.000 \mathrm{~nm} 2 / 3\) bits \\
\hline Read Energy & 5.8 fJ & SNM & 314 mV \\
\hline Write Energy & 56 fJ & DR & Yes (1) \\
\hline Static Power & 396 nW & WVD & Yes (1) \\
\hline
\end{tabular}
B. Jovanovic, R. Brum, L. Torres, Comparative Analysis of MTJ/CMOS Hybrid Cells based on TAS and In-plane STT Magnetic Tunnel Junctions, IEEE Transactions on Magnetic,

\section*{What About security ...}
- Non-Volatility help security (and also Energy !)
- Persistent data storage
- Authentication
- Battery backed-memories
- Secure CPU Boot


Non-Volatile SRAM/MRAM cell
- First evaluation of NV CPU @ LIRMM :
- 32-bit RISC like processor
- Validation of checkpoint/rollback capability
- Non-Volatile register bank (instead Volatile)
- Low performance overhead
- Non-volatile memory from register level to main memory


\section*{What about security ...}

CROCUSTechnology
Blossoming future

Magnetic Logic Unit


XOR Function

Match In place


Authentication function/comparison

\section*{WHAT ABOUT SECURITY}

\section*{PUF solution exploits the differential sensing during read operation,} based on read current comparison against a reference value.


Unique


PUF

Low-cost


Fig. 4. The implementation strategy of the proposed PUF solution: 1) Write all cells to '1'; 2) Read each cell; 3) Use the read value

\section*{What about security ...}

\section*{Test Bench Overview}


LeCroy Oscilloscope

oscilloscope
settings
\&
data acquisition
Active DSO
control


\section*{What AbOUT SECURITY ...}


\section*{MRAM Conclusion}

MRAM has a high potential to:
- Certainly Reduce energy consumption
- At cache level (sure and proven)
- Normally-off computing (to be confirmed)
- Can facilitate some features
- Normally-off computing / Instant on-off
- Backward error recovery (Rollback)
- Results should be confirmed through measurements on silicon prototype!
- Link with compilation and OS ( \(\rightarrow\) National project started, Non-volatility )
- Under development : a complete flow including power consumption estimation of processor + memory hierarchy
Input Evaluation Flow Output


\section*{Overall Conclusion}
- No Ideal memory technology - really depending of the targeted application
- Normally-off computing will be tomorrow the key element for SoC design (for Energy!)
- But Non-Volatile memory could change the way to imagine the memory hierarchy
- Rather than improved the memory hierarchy... rethink it!
- Distributed NV elements/memories
- Security (with loT trend) will be everywhere
- Better understand NV technologies for security issues
- Use NV Technologies for security!

\section*{NV future ...}


\section*{THANK YOU FOR YOUR ATTENTION}


\section*{MRAM-based L1}

Execution time
\(\square\) STT-MRAM L1 \(\quad\) STT-MRAM L1 (I-Cache only) \(\square\) STT-MRAM L1 (D-Cache only)

- Observations:
- Up to \(21 \%\) of runtime penalty
- L1 much more accessed than L2

\section*{MRAM-based L1}

Total L1 energy consumption

- Observations:
- Low leakage does not always compensate the high dynamic energy of MRAM```

