Design of VLSI Integrated Circuits A (very) deep dive into processors...

Olivier Sentieys

IRISA/INRIA – Cairn team University of Rennes 1

olivier.sentieys@inria.fr

http://people.rennes.inria.fr/Olivier.Sentieys/?page_id=95

VLSI Design

• Chips, logic gates and transistors

Intel's Xeon Chip

Α

B

R

Key Questions

- A deep dive into processors... (I hope not too deep)
- What is CMOS? How basic logic gates, registers and memory are designed?
- How to calculate the delay and the maximal frequency?
- How much power does my processor consume?
- What can advanced semiconductor technology bring?
- Are (homogeneous) multicores the right solution for performance or energy efficiency?

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Fundamental Building Block: MOSFET Transistor

The Basic Element: Transistor

Transistor as a switch

- Vgs > Vt: NMOS on
 Resistance R_{DS}
- Vgs < Vt: NMOS off
 - Leakage ${\rm I}_{\rm off}$

- Gate: capacitance C_G
- Switch: resistance R_{DS}

The Basic Element: Transistor

 Cutoff or sub-threshold mode:

> $V_{GS} < V_t$ $R_{DS} \approx +\infty$

- Saturation mode: $V_{GS} > V_t \text{ and } V_{DS} > V_{GS} - V_t$
 - A channel is created which allows current to flow between the drain and the source

MOS Transistor Models

- W: gate width
- L: gate length
- *tox*: oxyde width (#L/10)
- $K = \mu . \varepsilon . W/(tox.L) = \mu . Cox.W/L = k W/L$
- *Cox*: gate oxide capacitance per unit area
- μ : charge-carrier effective mobility NMOS (electrons) $\mu_N = 500 \text{ cm}^2/\text{V-sec} \# 2 \mu\text{P}$ PMOS (holes) $\mu_P = 270 \text{ cm}^2/\text{V-sec}$
- ε : oxyde permittivity # 4 ε_0 = 3.5 10⁻¹³ F/cm

 $I_{ds} = \begin{cases} 0 & \text{off} & Vgs - Vth < 0\\ K\left[(Vgs - Vth)Vds - \frac{Vds^2}{2}\right] & \text{linear} & 0 < Vds < Vgs - Vth\\ \frac{K}{2}(Vgs - Vth)^2 & \text{saturated} & 0 < Vgs - Vth < Vds \end{cases}$

- K defines transistor speed, $K \propto W/L$, $K_{NMOS} \sim 2.K_{PMOS}$
- Temperature increases $\rightarrow \mu$ decreases

NMOS Parasitic Elements

Length

9

Transistors

- Bulk CMOS
- Ultra Thin Body (FD) SOI
 - Total dielectric isolation
 - Lower S/D capacitances & leakages
 - Latch-up immunity
 - Improved VT variation
 - Promoted by STMicroelectronics

Transistors

(intel)

• Intel FinFET: transistors go 3D

22 nm Tri-Gate Transistor

Tri-Gate transistors can have multiple fins connected together to increase total drive strength for higher performance

22 nm Tri-Gate Transistors

(intel)

NMOS/PMOS Transistors

- NMOS
 - A '0' is well transmitted
 - A degraded '1' is transmitted (Vdd-Vtn)
- Vgs < Vtn
- Vgs > Vtn

- PMOS
 - A '1' is well transmitted
 - A degraded '0' is transmitted (Vss+|Vtp|)
- Vgs < |Vtp|

Vgs > |Vtp|

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Combinatorial Logic Cells

- Complementary Logic (CMOS)
 - CMOS Static Logic

NAND and NOR

Complex gates

 One CMOS stage can generate any sum-of-product or product-of-sum:

 $S = f(E1, E2, ..., EN) = \overline{SUM [PROD]} = \overline{PROD [SUM]}$

General rules for constructing F(X)

17

Static Logic

• Examples

Direct application of the design rules

- Example: $S = \overline{A.B + C.D}$
 - AOI (And-Or-Invert) gate

- Multiple-Stage Complex Functions
 - Optimisation of the logic equation
 - Trade-off between speed and area
 - -S3 = A.B.C.D
 - -S4 = !A.B+A.!B (XOR)

Pass-Transistor Logic

• Switch or Transmission Gate

• Example: 2-input multiplexer

$$A = \begin{bmatrix} A & \text{if } C = 0 \\ B & B & B \end{bmatrix}$$
$$S = \begin{bmatrix} A & \text{if } C = 0 \\ B & \text{if } C = 1 \end{bmatrix}$$

• Example: XOR

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Elementary Memory Cells

• Static Memory Basic Cell: Latch

Elementary Memory Cells

- Dynamic Memory Cell
 - MOS Capacitor: Cl = f(area)

- State ('1') (voltage level) is stored for few ms
 - Leakage current
 - Need for refreshing state
- Ex. Shift Register

Sequential Logic Circuits

- D Flip-Flop (edge-triggered)
 - Two latches in series

- D is sampled in inverter (1) when clk = 0
- Latch (1) and (2) keeps D value when clk = 1 until !D is transferred to second latch (3) and (4)
- Asynchronous clear signal: replace inv. (1) and (4) by NAND

Memory

- L2 Cache contains 4 Millions SRAM cells
 - Raw/column of 2000 cells

6-Transistor CMOS SRAM Cell

- Latch where WL replaces clock
- Dual-rail bit-lines required to increase noise margin during R/W
- WL selection: WL[i] = 1
- Write 0: BL=0 et !BL=1 ⇔ Reset of Latch
- Read: BL et !BL pre-charged to 1, WL selection -> BL=Q and !BL=!Q
 - Sense amplifiers will act as a comparator to increase speed of Latch value to output

3-Transistor DRAM

- 2 lines WL and BL: read and write
- No amplification

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Simplified Delay Model

- Rising Output: $t_{plh} = Rp.C_L$
- Falling Output: $t_{phl} = Rn.C_L$

Delay of Complex Gates

k-input NAND

 $t_{plh} =$ $t_{phl} =$

k-input NOR

 $t_{plh} = t_{phl} = 29$

Transistor Sizing

Complex function

— F =

- Tplh =
- Tphl =
- Indicate critical path
- Which input values give the best/worst case delay?

Logic-Level Delay Model

- Fan-In (or Drive): relative to size of transistors
 Basic inverter is 1x
- Fan-Out: ratio between load capacitance and drive
- Relative Fan-Out (RF): ratio between fan-out and nextstage fan-in

Logic-Level Delay Model

- Tp = transport delay + inertial delay = TD + ID
- ID = RF.UD
- Equivalent to $Tp = R_{DS}[C_{int} + C_{ext}]$

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Power Consumption

- Dynamic power: *Pdyn*
 - Charge and discharge of node capacitance
- Short-circuit power: Psc
 - Short circuit path in logic cells (Vdd → Vss) during commutation
 - Strongly depends on rising time and on Vth (NMOS/PMOS)
- Static power: Ps
 - Sub-threshold leakage current (~OFF)
 - Source/Drain-Bulk junction leakage

P = Pdyn + Psc + Ps

Dynamic power

• Energy per transition = $C_L V dd^2$

Power

• Power = Energy per transition x rate of transition

$$Pc = C_{L} Vdd^{2} f_{0 \rightarrow 1}$$

$$Pc = C_{L} Vdd^{2} f Prob_{0 \rightarrow 1}$$

$$Pc = \alpha C_{L} Vdd^{2} f$$

$$Pc = \alpha.f.C_{L}.Vdd^{2}$$

 α : activity, C_L: total load capacitance, f : frequency

Data dependant

Activity dependant

Activity

- Activity α_i is the probability to have a $0 \rightarrow 1$ transitions at the output of a gate
- Example: AND gate

$$-P_{S} = P(S=1) = P_{A}P_{B}$$

 $-\alpha_i = P_s(1 - P_s)$

Activity propagation

Propagating Activity is not So Simple

Conditional probabilities

$$\frac{A}{C} \xrightarrow{X} \frac{S}{1/4} \xrightarrow{S} \frac{A}{1/8} = \frac{X}{1/4} \xrightarrow{S} \frac{A}{1/4} \xrightarrow{X} \frac{S}{1/4} \xrightarrow{X} \frac{S}{1/4}$$

- Glitches: gate delay
 - Significant in arithmetic

Example: Adder

Static Power: Leakage

• High performance

Low leakage

I_{off}: Sub-threshold Leakage Current

- Exponential in inverse of Vt
- Exponential in temperature
- ~Linear in device count

 $\mathbf{P_{stat_i}} = \mathbf{N}.\mathbf{I_{off}}.\mathbf{Vdd}$

Sum-up: Power at Gate Level

 $\mathbf{P_i} = \alpha_i \cdot \mathbf{f_i} \cdot \mathbf{C_i} \cdot \mathbf{Vdd^2} + \mathbf{I_{leak_i}} \cdot \mathbf{Vdd}$

$$\mathbf{P} = \sum_{\mathbf{i}} \left[\alpha_{\mathbf{i}}.\mathbf{f_i}.\mathbf{C_i}.\mathbf{Vdd^2} + \mathbf{I_{leak_i}}.\mathbf{Vdd} \right]$$

Power vs. Performance

- Delay of a gate
- Dynamic power $P_{dyn_i} = \alpha_i . f_{clk} . C_i . Vdd^2$
- Leakage power $P_{stat_i} = N.I_{off}.Vdd$

Dynamic Power vs. Performance

Decreasing Vdd reduces power but increases delay

 $\mathbf{P_{dyn_i}} = \alpha_i . \mathbf{f_{clk}} . \mathbf{C_i} . \mathbf{Vdd^2}$

Minimum Energy per Operation

• Putting all together

Conclusion: Power

$P = \alpha f C_L V_{DD}^2 + V_{DD} I_{peak} (P_{0 \rightarrow 1} + P_{1 \rightarrow 0}) + V_{DD} I_{leak}$

Dynamic power (≈ 40-70% today and decreasing relatively) Short-circuit power (≈ 10% today and decreasing absolutely) Leakage power (≈ 20-50% today and increasing)

$$P = \frac{energy}{operation} \times rate + static \ power$$

Reducing Power

- Power gating, multi-Vt
- Clock gating
- Vdd scaling
 Parallel, pipeline
- Activity reduction
 - Pre-computation, correlation, encoding
- Glitch Power Reduction

Dynamic Power Management

- Dynamic Voltage and Frequency Scaling (DVFS)
- Reduce speed (clock freq.) and Vdd depending on processor activity

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Timing Parameters

- D Flip-Flop
 - Setup Time: Tsetup
 - Hold Time: Thold
 - Propagation Time: Tp
 - on Clock and Reset

Propa	gation	Delay
-------	--------	-------

nanoSeconds, as a function of C (load in pF) and Tr (input transition time in nS)

Cell	Path	Event	Best 1.32V - 40C	Worst 1.08V 125C	Nominal 1.2V 25C
FD1QLL	CP-Q	CP_Q (fall)	0.082 + 0.119*Tr + 1.221*C	0.195 + 0.179*Tr + 2.777*C	0.125 + 0.148*Tr + 1.731*C
FD1QLL	CP-Q	CP_Q (rise)	0.075 + 0.118*Tr + 1.672*C	0.178 + 0.180*Tr + 3.473*C	0.113 + 0.148*Tr + 2.408*C
FD1QLLP	CP-Q	CP_Q (fall)	0.087 + 0.121*Tr + 0.644*C	0.205 + 0.182*Tr + 1.428*C	0.133 + 0.150*Tr + 0.903*C
FD1QLLP	CP-Q	CP_Q (rise)	0.079 + 0.120*Tr + 0.836*C	0.189 + 0.182*Tr + 1.727*C	0.120 + 0.150*Tr + 1.198*C
FD1QLLX4	CP-Q	CP_Q (fall)	0.111 + 0.122*Tr + 0.342*C	0.267 + 0.183*Tr + 0.760*C	0.173 + 0.152*Tr + 0.482*C
FD1QLLX4	CP-Q	CP_Q (rise)	0.093 + 0.121*Tr + 0.425*C	0.224 + 0.184*Tr + 0.891*C	0.141 + 0.151*Tr + 0.612*C

Truth Table

IQ	Q
IQ	IQ

Truth Table

D	СР	IQ	IQ
D	/	-	D
-	-	IQ	IQ

Physical Dimensions

Property	FD1QLL	FD1QLLP	FD1QLLX4
Area(um2)	28.241	28.241	30.258

Capacitance

picoFarads

	Cell	Property	Best 1.32V -40C	Worst 1.08V 125C	Nominal 1.2V 25C
F	D1QLL	CP Input Cap.	0.0032	0.0028	0.0030
F	D1QLL	Q Max Load	0.160	0.160	0.160
F	D1QLL	D Input Cap.	0.0023	0.0020	0.0021
FD	1QLLP	Q Max Load	0.320	0.320	0.320
FD	1QLLP	D Input Cap.	0.0022	0.0019	0.0021
FD	1QLLP	CP Input Cap.	0.0032	0.0027	0.0029
FD	1QLLX4	CP Input Cap.	0.0032	0.0027	0.0029
FD	1QLLX4	Q Max Load	0.640	0.640	0.640
FD	1QLLX4	D Input Cap.	0.0022	0.0019	0.0020

Synchronous Circuits

Synchronous Circuits

Critical Path

- All circuits have a maximal frequency, which is given by finding its critical path
 - Data must be stable when sampled by the clock
- Tcp: critical path delay of the logic

$$Tcp = MAX_{\forall i}(D_i)$$
, with D_i Delay of path *i*

Maximal Frequency

$$Fclk_{max} = \frac{1}{Tcp + Tp + Tsetup}$$

Critical Path in Processor Pipelines

• A typical (yet simple) processor pipeline

Clock Skew

• Every FF receives the clock edge at a different time

- Light Speed: $300 \mu m/ps$
- Diagonal : 30 mm (21mm side)
- 100 ps
- 1 clock cycle @ 10GHz
- 5-10 clock cycles @ 1-2GHz

Clock Skew: problems

- Skew δ can be negative or positive
 - Reduction of maximal frequency
 - Maximal skew for circuit operation
 - Worst case is when receiving edge arrives late
 - Edge f ' of CLK2 should not violate hold time of D2
 - Race between data and clock

Fe_{max}

 $\overline{Tcc + Tp + Tsetup + \delta}$

Clock Distribution

• Geometric buffering

Tree-based

H-tree: constant skew in each block with equivalent number of flip-flops

Buffering: local reduction of skew

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

Technology Evolution and Scaling

1971

- 10 μm 1971
- 6 μm 1974
- 3 μm 1977
- 1.5 μm 1982
- 1 µm 1985
- 800 nm 1989
- 600 nm 1994
- 350 nm 1995
- 250 nm 1997
- 180 nm 1999
- 130 nm 2001
- 90 nm 2004
- 65 nm 2006
- 45 nm 2008
- 32 nm 2010
- 22 nm 2012
- 14 nm 2014
- 10 nm 2017
- 7 nm -~2018
- 5 nm ~2020
- and then?

1958

2010

2000

The First Microprocessor

- Intel 4004
- 1971
- 400 kHz
- 4 bits
- 200 US\$ (1200FF)
- 0,06 MOPS
- 10 microns
- 2300 transistors
- 640 addressable bytes

intel.

Microprocessor Gallery

INTEL 4004 (1971)

4-bit data

2300 transistors, 10 microns 0,06 MOPS, 108 kHz

INTEL Pentium II (1996)

32-bit data

5.5M transistors, 0.35μ, 2 cm² 200 MHz, 200 MOPS, 3.3V, 35W

Microprocessor Gallery

2000 : Intel® Pentium® 4 Processor 42M Tr, 0.18um, 1.5GHz – 3.6GHz

2010: NVIDIA Tegra 2 SoC 260M Tr, 40nm, 49mm², 2 Cortex A9 1Ghz, 300 Mhz (rest of the chip)

- Scaling factor: s
- Between two successive generations: *s* # 0.7

- Device dimensions W, L, tox: s
- Transistor density: s²
- Speed (before power wall...)
 - Vdd, Vt: *s*
 - delay: s
 - frequency: 1/s

- Energy
 - $E = C.Vdd^2$
 - Capacitances C=W.L.Cox: s
 - Energy: s³
- Power is decreased by 50%
 - $P = f.C.Vdd^2$
 - Power: s²
 - Activity is supposed constant
- But this is for a constant transistor count!
 - But...Transistor density (#Tr/cm²): s²
 - Power Density
 - And power supply current increases a lot
 - 100W at 1v equals to ...?

Technology (Dennard's) Scaling

- Scaling factor: s
- Between two successive generations: s # 0.7

Device dimensions :	S
W, L, tox, junction depth	
Transistor area (W.L)	S ²
Capacitance per unit area : Cox	1/s
Capacitances : C=WLCox	S
Vdd, Vt	S
Gate delay	S
Power/gate	S ²
Power.delay product	S ³
Power density	1

Outline

- The Fundamental Element: MOSFET Transistor
- Design of CMOS Cells: Combinatorial Logic
- Memory Cells
- Delay
- Power Consumption
- Synchronous Design
- Technology Scaling (Moore's Law revisited)
- Multicore: power and utilization walls

And then came the "Power Wall"

Source: C. Batten, Cornell

and the "Multicore Era"

Increasing performance by increasing # of cores

Moving to multicore

- 1 core@2GHz@1.2V@1W
- 1 core@1GHz@0.8V@0.25W
- 2 cores@1GHz@0.8V@0.5W
- But... twice area (and not so simple)
- Advanced technology nodes?

14 nm

Classical (Dennard's) scaling

Utilization	1
Device power	1/S ²
Capacitance, Vdd	1/S
Device frequency	S
Device count	S ²

End of Dennard's Scaling

 Energy efficiency is not scaling along with integration capacity

Leakage limited scaling

(w/o) leakage

Multicore and Dark Silicon

• Replace dark cores with specialized cores (10-100x more energy efficient)

Energy Cost in a Processor

Energy Cost in a Processor

Fetching operands costs more than computing

Energy Savings in Specialized HW

An example: Bitcoin Mining

Туре	Model	Mhash/s	Mhash/J	Power (W)
GPP	Intel Xeon X5355 (dual)	22.76	0.09	120
GPP	ARMCortex-A9	0.57	1.14	1.5
GPP	Intel Core i7 3930k	66.6	0.51	130
GPU	AMD 7970x3	2050	2.41	850
GPU	Nvidia GTX460	158	0.66	240
ASIC	AntMiner S1	180.000	500	360
ASIC	AntMiner S5	1.155.000	1957	590
FPGA	Bitcoin Dominator X5000	100	14.7	6.8
FPGA	Butterflylabs Mini Rig	25.200	20.16	1250

Time has Come for Specialization

• Microsoft Unveils Catapult to Accelerate Bing!

- One FPGA per blade
- 6 × 8 2-D torus topology
- High-end Stra
- Running Bing l extraction and

- Increase ranking throughput by 95% at comparable latency to software-only
- Increase power consumption by 10%
- Increase total cost of ownership by less than 30%

Towards Heterogeneous Multicores

Embedded and High-Performance Computing

 C to hardware high-level synthesis boosts hardware designer productivity

Conclusions

- A not too deep dive into processors?
- Transistors, logic gates, registers and memory
- Delay and maximal frequency
- Power is data dependent and dominated by data transfers
- Energy efficiency is no more scaling along with integration density
- Efficiency of hardware specialization
- Dark Silicon is an opportunity
 - Heterogeneous manycore architectures
 - Bring a new demand for genuinely high level synthesis tools and (JIT) compilers that map programs to accelerators

On-Chip Interconnect?

- Gate delay decreases but... wire delay increases
- Crossing chip in 5-10 clock cycles
- Also affected by noise...

- Metal layers to reduce wire delay
- Repeaters

 Towards networkon-chip

Chips go 3D!

- 3D Integrated Circuits
 - Stack Multiple Dies
- Wire Length Reduction
 - Replace long, high capacitance wires by Through Silicon Vias (TSVs)
 - Low latency, low energy, high bandwidth
- Heterogeneous Integration
 - Image Sensors, Sensor Network Nodes
 - Processor + Memory

Micro-bumps

Micro-bumps

Micro-bumps

Bumps (

Balls

TSVs I/Os + Power

HEATSINK

BULK

BULK

BULK

BULK

PACKAGE

AYERS

METAL LAYERS

METAL LAYERS

Tier 4

Tier 3

Tier 2

Tier 1

PRINTED CIRCUI

3D Heterogeneous Multicores

• 3D Optical Manycore Project

