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Context

Secure embedded systems

Strong cryptography from a mathematic point of view

e Used to manage sensitive data

e AES, RSA, ECC, SHA-3, GIFT-COFB, SABER...



Classical cryptography

Black box model
e Key(s) stored in the device

e Cryptographic operations computed inside the device
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Encryption

e The attacker has only access to pairs of plaintexts / ciphertexts



Puzzle

Which bulb is lit by which switch?




Side-Channel attacks

Grey box model
e Cryptosystems integrated in CMOS technology

e Physical leakages correlated with computed data (P. Kocher, 1996)
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Encryption

e The attacker has also access to physical leakages



Physical side-channel
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Leakages

Power SCA

e Cryptosystems integrated in CMOS technology
e Power leakages correlated with computed data (P. Kocher, 1999)




CMOS technology
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CMOS technology
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CMOS technology

S:0->1,1->0
o High power consumption
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o Low power consumption
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Leakages

Electromagnetic SCA

e Maxwell equations: a current flowing through a conductor induces an
electromagnetic field (E. Brier 2004)
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Leakages

Power SCA

e Cryptosystems integrated in CMOS technology
e Power leakages correlated with computed data (P. Kocher, 1999)
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e Maxwell equations: a current flowing through a conductor induces an
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Pre-requisite

All future illustrations are based on Advanced Encryption Standard —
AES

e Developed by Vincent Rijmen and Joan Daemen
e Replace the old DES

e Block cipher - 128-bit plaintexts / ciphertexts

e Three versions

- 128-bit keys with 10 rounds Plaimext plock
- 192-bit keys with 12 rounds J,

- 256-bit keys with 14 rounds Key

AES I8 192, 256 bits

. . . '
We consider the 128-bit keys version Ciphertext block

128 bits

How the algorithm works?
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How the algorithm
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Side-channel adversary mo

In this talk, we consider the following hypotheses
e The adversary can steal the device and get full control of it
e The device has few communication interfaces
e Each communication interface exposes few commands

e There is no software vulnerability due to previous points

e Examples are done with 128-bit key AES
- 128-bit long keys, plaintexts and ciphertexts
- 10 rounds encryption scheme

00 | 11 | 22 | 33 0?7 ?? | ?? AC | 23 | 98 | 46
44 | 55 [ 66 | 77 0?7 ?? | ?? 43 | EF | CA| F1
88 | 99 | AA| BB 1?2 ?? | ?? 32 | D9 | 72 | 05
CC | DD | EE | FF 0?2 ?? | ?? 90 | 29 | 38 | 4F

Plaintext Key Ciphertext 19



1st step: Acquisition

Electromagnetic bench example

Oscilloscope

EM Probe

EM waves
plotting

data acquisition




Example (1/2)

128-bit key AES executed on STM32

B00.0
m

Full Encryption: 5.8ms

'1 2 34 56 7 8 9 10
Wi
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I ms | a0 ]

21



Example (2/2)

128-bit key AES executed on a cryptoprocessor
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Disclaimer

Pre-Processing Techniques required
e Signal processing
- Filtering

- Resynchrnisation

e Research of Point of Interest
- Signal-to-Noise-Ratio (SNR)
- Variance
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2nd step: selection fu

Link between the leakage and the key

e The key must be mix with the plaintext/ciphertext
e Non-linearity is needed

- Differentiate the key and the inverse of the key

24



2nd step: selection functi

Link between the leakage and the key
e The key must be mix with the plaintext/ciphertext
e Non-linearity is needed

- Differentiate the key and the inverse of the key

Example
e First round AES
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2nd step: selection functio

Link between the leakage and the key
e The key must be mix with the plaintext/ciphertext
e Non-linearity is needed

- Differentiate the key and the inverse of the key

Example
e First round AES
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2nd step: selection fun

Divide and conquer strategy
e The key could be search byte-by-byte
e 28 = 256 possibilities for each byte
e We consider all possibilities
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2nd step: selection func

Consumption model
e e.g. circuit leaks as the Hamming Weight of the end of the SBOX
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2nd step: selection function

Compute these values for each plaintext
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3rd step: distinguisher

Statistical tool
e Allows to distinghish the good subkey guess from the bad ones

e e.g. Pearson Correlation

For each key guess
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Most used distinguishers

o Kocher and al. (1999)
- Difference of means (T-
test) - Differential Power
Analysis (DPA)

* Lerman and al. (2011)

* Machine learning

A

Machine Learning Domain

N

* Machine learning

* Hospodar and al. (2011)

—

Time Domain

AN

* Le and al. (2010)

¢ Mutual information - MIA
using 4th cumulant
(statistical filter)

* Whitnall and al. (2011)

+ Statistical Test
(Kolmogorov-Smirnov)

* Brier and al. (2004)

* Pearson correlation
coefficient -
Correlation Power
Analysis (CPA)

« S.Tiran (2011)
¢ Coherence - SCAN

N

Frequency Domain

~_ ¢

* E. Gebotys (2005)
+ Difference of means - DFA (“DPA”)

* 0. Schimmel (2010)

- CPFA (“CPA”)

e Pearson correlation coefficient
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Metrics

How to know if the attack works well?

e Compute the attack for a small number of traces, then add traces until the key is
found

Measurement To Disclosure (MTD)

e Number of traces to find the right subkey

Measurement To Disclosure with Stability (MTDwS)

e Number of traces to find the right subkey

Percentage of Correct Guesses (PCG)

e Pourcentage de clés correctes sur la totalité des échantillons

[ Subkey # [ S1 S2 S3 S4 S5 S6 S7 S8 |
MTD 141 101 101 144 101 165 108 219
MTDwS | 1141 1104 1168 1243 1101 1389 1164 1449
PCG 99.75%  99.80%  99.72%  99.57%  99.80% = 99.39%  99.74%  99.21%
Rank 1 1 1 1 1 1 1 1
Broken success success success success success success sSuccess success




Advanced metrics

Guessing entropy
e Rank of the good subkey according to the number of traces processed

e Based on the analysis of several independent sets of traces

e Example

a0 .

m.\“ . . . . -
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Mumber of Traces <10

Axorage Guessing Entropy
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Advanced metrics

Success rate

e Percentage of correct subkeys found according to the number of traces
processed

e Based on the analysis of several independent sets of traces

e Example
Global Success Rate
1 F T T T T /_)—.I J,—\\,
A J‘f
08 II. W
fufh”
|
] )ru
E 0_6 — | -
7
[
= II
2 E
S o4t l.' .
]
J
f
nl
n
02 I.'| _
|
\!
0E 1 — | | | | | | | | E
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of fraces - - _ _ _

34



Countermeasures

Objective

e Remove the link between intermediate values and consumption

Masking
e A random mask obscures the intermediate values

e Can be at different levels (algorithmic -> gates)

Hiding
e Make consumption independent of intermediate values

e Special logic, addition of hazards, reduction of SNR
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Software countermeas

Temporal contingencies: operations are shifted in time
e Using NOP
e Adding random delays
e Use of "false" variables and operations (sequence scrambling)

e Data balancing (redundancy to keep the HW constant)

Swapping instructions

e Changing the order of execution of SBOXes

Masking

e Xor
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Harware countermeas

Adding noise
e HW generator using an RNG

- Overall consumption is increased (problem?)

Consumption filtering
e RLC filters
e Use of active components

e |[solated power supply

New logics

e Balanced logic
e dual rail, triple ralil
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Real life examples

{* SECURITY *}

IoT worm can hack Philips Hue lightbulbs, spread
across cities

Easy chain reaction hack would spread across Paris, boffins say

Darren Pauli

Thu 10 Nov 2016 // 06:02 UTC

Source: Philips

This NXP side-channel attack can clone

Google T|tan 2FA keys e B

oot a2y 1 2 R y//// 7
e YOS Source: Google store
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Questions?

Florent Bruguier

Contact : florent.bruguier@lirmm.fr
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