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ACCELERATING DATA-INTENSIVE APPLICATIONS 

An Easy-to-Use Complete Open Environment 

Single  

Software  

Architecture 

& 

Unified 

Toolchain 
    AccessCore® Middleware 

    Customer Code (Processing/Application) 

Open Software  

& Tools 

Multi-configuration 

PCIe  

Card 

MPPA® DPU 
Manycore  

Processors 

AccessCore® 

MPPA®3 DPU - COOLIDGETM 

       Open & Standard APIs (C/C++, SPDK, OpenCL, …) 

       Compute Framework       Storage Framework    Networking Framework 

2 modes 

Stand-alone 
no Host 

Acceleration 
(x86 or ARM as a host) 

K300™  

Linux 

Systems 

TC4™  

MPPA®-DEV5 
Development platform 

Your own system 
Workstation or server 

Kalray FlashBox™ 
Unleash the Full Potential of SSD Storage  
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KALRAY MPPA® SCALABLE MANY-CORE ACCELERATORS 
3rd-gen MPPA® processor manufactured in TSMC 16nm technology, running at up to 1.2 GHz 

MPPA3 ‘Coolidge’ v2 processor back from TSMC mid-2023 

4× MPPA processors with 80 PEs per processor: 

• 4× 49 TOPS INT8.32 

• 4× 24.5 TFLOPS FP16.32 

• 4× 1.5 TFLOPS FP32 

Multiple Processors per Card 

Many-Core Processor 

Cluster of 16 PEs 

PE = VLIW Core + 

Tensor Coprocessor 
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ACCESSCORE® COMPUTE SDK 

High-Performance Programming Models 

C/C++ POSIX 
Programming 

Standard multicore programming model 
• MPPA Linux and ClusterOS 
• Standard C/C++ programming  
• POSIX threads interface 
• GCC and LLVM OpenMP support 

 
Exposed MPPA® communications 
• RDMA  using the MPPA Asynchronous 

Communication library (mppa_async) 
• OpenAMP Open Standard and APIs for 

Asymmetric Multiprocessing Systems 

OPENCL 1.2 
Programming 

Standard accelerator programming model 
• POSIX host CPU accelerated by MPPA 

device (OpenAMP interface) 
• OpenCL 1.2 conformance based on 

POCL and LLVM for OpenCL-C 
 

OpenCL offloading modes: 
• Linearized Work Items on a PE (LWI) 
• Single Program Multiple Data (SPMD) 
• Native functions called from kernels 

STANDARD 
PROGRAMMING 
ENVIRONMENTS 
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KANN™ (KALRAY NEURAL NETWORK) 

Inference compiler for convolutional neural networks 

Leverage the OpenCL partition into sub-devices 

 

On MPPA® processors, execution of each layer 

is parallelized and distributed on all available 

clusters for a low latency inference 

MPPA® Platform 
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Input data 
- image, 

- camera,  

- Lidar, … 

Results 
- Classification, 

- Object detection,  

- Segmentation mask, … 

Graph 

Optim. 

Code 

Generator 
Scheduling and 

mapping of 

optimized Neural 

Network  
Trained  Neural Network 
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AI INFERENCE AND DSP PROCESSING FOR EDGE COMPUTING 

Customer measured x3.8 better compute efficiency than the market leader 

TC4™ Board (4 x MPPA® processors) High-end GPU 

Peak 

capabilities 
Performance Efficiency 

Peak 

capabilities 
Performance Efficiency 

FP16 107 TFLOPs 6 500 FPS 42 % 312 TFLOPs 5200 FPS 11.5 % 

*UNet complexity = 6.93 GFLOPs / frame 

Kalray TC4™ vs competition compute efficiency on UNet* model inference 

UNet predictions example on 
MRI brain tumor dataset 

NN 
Data type 

FPS 
TC4™ | PCIe 

FPS 
(for 1 Watt) 

FPS 
(for 1💰) 

MPPA® 

Coolidge V2 

FP16 5,600 18.7 1.4 

INT8 8,400 30.5 2.1 

High-end GPU 
FP16 5,200 17.3 0.27 

INT8 5,950 19.8 0.31 

*based on 300W consumption / PCIe card 

x3 to x6  
Perf/$ 

vs Comp. 

 x3.8 
Efficiency  

vs Comp. 
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EARLY COMPUTER ARCHITECTURE EVOLUTION 

Load/Store ISA on the CDC6600, extended to vector registers on the Cray-1 
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IBM project started in 1974 to design a telephone switching machine capable of 12 MIPS 

“Imposing microcode between a computer and its users imposes an expensive overhead in performing 
the most frequently executed instructions.” [Cocke & Markstein 1990 IBM J. Research & Development] 

 

 

ORIGINS OF RISC: THE IBM 801 MINICOMPUTER  

The most important features which contributed to its low cost/performance ratio were: 

1. Separate instruction and data caches, allowing a much higher bandwidth between memory and CPU; 

2. No arithmetic operations to storage, which greatly simplified the pipeline; 

3. Uniform instruction length and simplicity of design, making possible a very short cycle time: ten levels of logic. 
(For example, all register-to-register operations executed in one cycle.) 

A major advance was its ability to branch based on the state of any bit in any general purpose register. 

A second form of branch, which is commonly called "delayed branch," caused the CPU to unconditionally 
execute the instruction immediately following the branch, whether or not the branch was successful. 

Compilers were expected to play a central role in the 801. 

• The antithesis of the "semantic gap“ idea, in that instructions were specifically designed for efficient use by a compiler. 

• Approach to register allocation, which was deemed to be central to the proper use of the 801, was "graph coloring." This 
approach had been mentioned in the literature, but was implemented for the first time in the PL.8 compiler. 

First ISA with 2-operand, 24-bit instructions. Second ISA with 3-operand, 32-bit instructions 
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Successors of IBM 801, Berkeley RISC-I, Stanford MIPS  

CLASSIC RISC ARCHITECTURE FEATURES 

Berkeley RISC-1 (1981) 

• Read as zero register zero, inherited from the CDC 6600 

• Six register windows containing 14 registers. Of those 14 registers, 4 were overlapped from the prior window 

• All other features similar to those of the IBM 801, including delayed branches 

Stanford MIPS (1982) 

• Similar to RISC-1, except for not including the overlapped register windows 

• No pipeline stall on register dependencies « Microprocessor without Interlocked Pipeline Stages » 

IBM RS/6000 (1990) 

• Floating-point Fused Multiply-Add (FMA) instructions 

• Base register + index register memory addressing 

• Conditional branch with “decrement and test CTR” option 

• FPU register remapping allows independent sequences using the same architected register to be processed concurrently 
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RISC extension by CPU vendors 

EVOLUTION OF RISC FEATURES 

MIPS-III / R4000 (1991) 

• Superpipelined implementation 

DEC Alpha 21064 (1992) 

• Superscalar in-order (dual issue) 

• Weakest memory consistency model 

ARM ARM7 TDMI (1994) 

• Thumb ISA encoded in 16-bit words 

HP PA-RISC 1.1 (1994) 

• MAX (Multimedia Acceleration eXtensions) to accelerate MPEG decoding (Pentium P5 introduced MMX in 1997) 

MIPS-IV / R10000 (1995) 

• Superscalar out-of-order execution (quad issue) 

DEC Alpha 21464 (Planned 2004) 

• Out-of-order execution with 4x simultaneous multi-threading 
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AltiVec is a floating point and integer 128-bit 
SIMD instruction set designed and owned by 
Apple, IBM and Freescale Semiconductor. 

 

 

Code generation for the Cell SPE demonstrated 
the advantages of a unified register file: 

• The VS register file with 64 vector-scalar 
registers (VSR) is created by extending the 32 
floating-point registers (FPR) to 128 bit and 
combining them with 32 AltiVec registers (VR) 

• Many applications use either scalar floating-
point or vector types, but not both. These 
applications experience a 2× increase of 
usable registers by being able to allocate all 
registers to their dominant data types.  

• Vectorized code with a unified register file is 
more efficient when vectorized code reads or 
writes scalar operands, compared to designs 
that require long latency transfers between 
distinct register files and processing units. 

IBM FROM ALTIVEC TO THE VECTOR SCALAR ARCHITECTURE 

Integrated vector and floating-point architecture first introduced in the POWER7 processor 

Restructure the core microarchitecture by integrating and sharing register files and execution 
units of the previously separate scalar floating-point and AltiVec units [Gschwind 2016 IBM JRD] 
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RISC-V Label 

• Implement one of RV* Base ISA 

• No requirements for Privileged ISA 

• Scarce open-source software for 
extensions beyond MAFDCB 

RISC-V and AI 

• Most AI compilers are proprietary 

• IME and AME proposed extensions 

CVA6 ISA 

• RV64I Base ISA 

• MAFDCB Extensions 

KV4 Functional Equivalence 

• RV64I Base ISA 

• MAFDB + Zfh Extensions (no C) 

 

 

RISC-V BACKGROUND 

RISC-V ISA and Extensions 
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RISC-V “SIMD INSTRUCTIONS CONSIDERED HARMFUL” 

An older and, in our opinion, more elegant alternative to exploit data-level parallelism is 
vector architectures [Patterson & Waterman 2017] 

• SIMD starts off innocently enough. An architect partitions the existing 64-bit registers and ALU into many 
8-, 16-, or 32-bit pieces and then computes on them in parallel.  

• To accelerate SIMD, architects subsequently double the width of the registers to compute more partitions 
concurrently. 

• Because ISAs traditionally embrace backwards binary compatibility, and the opcode specifies the data 
width, expanding the SIMD registers also expands the SIMD instruction set. 

• Each subsequent step of doubling the width of SIMD registers and the number of SIMD instructions leads 
ISAs down the path of escalating complexity. 

• The widest data for RISC-V is 64 bits, and today’s vector processors typically execute two, four, or eight 
64-bit elements per clock cycle. 
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RISC-V VECTOR EXTENSION (RVV) 

Gather objects from main memory and put them into long, sequential vector registers 

Element operations are independent by definition, and so a processor could theoretically 
compute all of them simultaneously 

A vector processor with N 64-bit elements per register also computes on vectors with 2N 32-
bit, 4N 16-bit, and 8N 8-bit elements 

 
• RVV defines 32 vector registers of size VLEN bits (VLEN is vector register bit size, e.g. 512) with 

elements of maximum bit size ELEN  32 or 64 

• Vector registers are divided in elements whose bit size is a power of two  8 and  ELEN 

• The vtype register contains fields sew (standard element width) and lmul (length multiplier) 

8  sew  ELEN and lmul  { 1/8, ¼, ½, 1, 2, 4, 8 } 

Setting vl > 1 groups vector registers as single operands of vector operations 

vlmax = (VLEN / sew) × lmul is the maximum number of elements operated per vector instruction 

• The vl register specifies the count of vector elements operated by subsequent vector instructions 

0  vl  vlmax 

• Vector operations with masking use the v0 register as a vector of predicates (one bit per element) 
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RISC-V VECTOR INSTRUCTIONS IN PRACTICE [FERRER 2022 BSC] 

RISC-V Vector operation arguments and parameters cannot be encoded in 32-bit instructions 

The CPU state is configured with vsetvl / vsetvli / vsetivli instructions (“set vector length”) 

First source of vsetvl* is application vector length, destination gets the hardware selected vl 
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ORIGIN OF VLIW: THE FPS AP-120B “ARRAY PROCESSOR” (1975) 

Programmed with “horizontal microcode” 64-bit words to implement loop software pipelining 

Data Pad X / Y accessed relative to the DPA  register are the first “rotating register files” 
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SOFTWARE PIPELINING EXAMPLE ON ARM A53 (1) 

‘SAXPY’ loop from BLAS 

Need to use [restrict] to inform compiler 
there are no data dependences between 
the memory accesses 

Compilation with GCC –O2 on a ARM 
workstation (cortex A53 cores) 

Loop: load x[i], load y[i], FMA, store z[i], 
update loop counter, loop branch back 
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SOFTWARE PIPELINING EXAMPLE ON ARM A53 (2) 

Loop schedule, no pipelining 

One iteration per 11 clock cycles 

Software pipelined loop 

One iteration started every 3 clock cycles 

Cycle LSU FPU Other 

0 v1=[x4*0x8+x1]     

1 v2=[x4+0x8+x2]     

2       

3   v1={v1*v0+v2}   

4       

5       

6       

7       

8 [x4*0x8+x3]=v1   x4=x4+0x1 

9     cc=cmp(x0,x4) 

10     pc={(cc>0)?Loop:pc} 

Cycle LSU FPU Other 

0 v1=[x4*0x8+x1]     

1 v2=[x4+0x8+x2]     

2       

3 v1'=[x4'*0x8+x1] v1={v1*v0+v2}   

4 v2'=[x4'+0x8+x2]     

5       

6 v1''=[x4''*0x8+x1] v1'={v1'*v0'+v2'}   

7 v2''=[x4''+0x8+x2]     

3*N+5 [x4*0x8+x3]=v1   x4=x4+0x1 

3*N+6 v1'''=[x4'''*0x8+x1] v1''={v1''*v0''+v2''} cc=cmp(x0,x4) 

3*N+7 v2'''=[x4'''+0x8+x2]   pc={(cc>0)?Loop:pc} 

… [x4'*0x8+x3]=v1'   x4'=x4'+0x1 

…     cc=cmp(x0,x4') 

…     pc={(cc>0)?Loop:pc} 

…     x4''=x4''+0x1 

…     cc=cmp(x0,x4'') 

…     pc={(cc>0)?Loop:pc} 

In order to software pipeline, the loop temporary variables must be ‘modulo expanded’ 

Modulo expansion consumes registers and also requires pipelined loop kernel unrolling 

Modulo expansion can be omitted on CPUs with hardware renaming or rotating registers 

pipelined 
loop prolog 

pipelined 
loop kernel 

pipelined 
loop epilog 
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The most suitable VLIW should exhibit four 
basic features [Colwell et al. 1998 IEEE TC]. 

• One central controller issues a single long 
instruction word per cycle. 

• Each long instruction simultaneously 
initiates many small independent 
operations. 

• Each operation requires a small, statically 
predictable number of cycles to execute. 

• Each operation can be pipelined. 

In the same spirit as MIPS and the IBM 801, 
the microarchitecture is exposed to the 
compiler so that the compiler can make better 
decisions about resource usage 

• the architecture is load/store, 

• there is no microcode. 

 

Multiflow TRACE 7/300 is the entry model with 
one ‘cluster’ of execution units 

MULTIFLOW TRACE 7 SERIES 

 Designed as a target for a trace scheduling compiler 
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Encoding instructions requires 41 bits and 
instructions are fully predicated 

 

 

Bundles of 3 instructions are encoded in 128 bits, 
with template bits that specify the parallel groups 

 

 

The GR registers have 64+1 bit for “Not a Thing” 

Loads can be control-speculative, in case of 
traps the “Not a Thing” is set and checked later 

Loads can be advanced before possibly 
interfering stores, with interference checked by 
the “Advanced Load Address Table” (ALAT) 

 

 

Rotating register are available on GR, FR 
(floating-point) and PR (predicate) 

ITANIUM ARCHITECTURE (IA64) 

“Evolution of the VLIW architecture” through the Cydrome Cydra-5 then the HPL Play Doh 
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Classic VLIW architecture (J. A. Fisher) 

• SELECT operation on Boolean value 

• Conditional load/store/FPU operations 

• Dismissible loads (non-trapping) 

• Multi-way conditional branches 

Compiler techniques 

• Trace scheduling (global instruction scheduling) 

• Partial predication (S. Freudenberger algorithm) 

Main examples 

• Multiflow TRACE (1987) 

• Philips Trimedia (1998) 

• HP Labs Lx / ST200 family (2000) 

 

EPIC VLIW architecture (B. R. Rau) 

• Fully predicated ISA + predicate define instructions 

• Speculative loads (control speculation) 

• Advanced loads (data speculation) 

• Rotating registers 

Compiler techniques 

• Modulo scheduling (software pipelining) 

• Full predication (R-K algorithm, J. Fang algorithm) 

Main examples 

• Cydrome Cydra-5 (1987) 

• TI C6X DSPs (1998) 

• HP-intel IA64 (2001) 

VLIW ARCHITECTURE PRINCIPLES 

Promote “horizontal microcode” to bundles of RISC-like instructions 

Co-design architecture, microarchitecture and compiler optimizations 
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HP LX ARCHITECTURE / STMICROELECTONICS ST200 FAMILY 

VLIW architecture designed by J. Fisher et al. at HP Labs [Faraboschi et al. 2000 ISCA] 
[Book “Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools”] 

Further developed by STMicroelectronics as the ST200 family of media processors 

 

 
ISA designed as a 4-issue VLIW extension 
of the DLX ISA (academic RISC ISA) 

• Register file with R0 read as zero and 
R64 alias of the link register 

• Fully pipelined execution units 

• No multiway branch 

• ‘end-of-bundle’ bit, unlike IA64 templates 

• Every parallel instruction group is a valid 
instruction bundle 

HPLabs used the Multiflow trace compiler 

The STMicroelectronics st200 compiler, 
based on Open64 with superblock 
scheduling and modulo scheduling, 
outperformed the Multiflow trace compiler 
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Lx/ST200 ISA features 

• Fully-pipelined execution units, single-cycle reservations 

• Any instruction schedule parallel group is a valid bundle 

PowerPC ISA features 

• No GP register aliased to special resources (LR, zero) 

• Memory addressing modes similar to those of PowerPC 

• Effective floating-point support with Fused Multiply Add 

TI C6x ISA features 

• Grouping of registers into pairs or quadruples 

• Complex number arithmetic (integer and FP32) 

Improved data memory bandwidth 

• Load/store widening to 256-bit, no alignment restrictions 

• Enable large immediate values in the instruction stream 

• All memory accesses may bypass the L1 data cache  

Rework if-conversion support 

• Remove Boolean registers and SELECT instructions 

• Use CMOV and conditional load/store instructions 

Simple hardware looping 

• Counted or forever inner loops with early exits 

Tightly coupled tensor coprocessor (TCA) 

KALRAY KVX VLIW ARCHITECTURES 

Started from the Lx/ST200 VLIW architecture and adopted PowerPC, TIC6x, ARM features 

KV3 added SIMD instructions, matrix instructions and a generalization of rotating registers 

KV4 is under development with RISC-V convergence requirements 
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Vector-scalar ISA 

• 64x 64-bit general-purpose registers 

• SIMD operands can be single registers (64-bit), 
register pairs (128-bit) or register quadruples (256-bit) 

• 128-bit SIMD instructions by dual-issuing 64-bit on the 
two ALUS or by using the 128-bit FPU datapath 

• FPU capable of 4x FP32 FDP2A operations / cycle 

The FDP2A operator computes 𝑎 ± 𝑏 × 𝑐 ± 𝑑 × 𝑒 

• 256-bit load/store unit with byte masking 

DSP capabilities 

• Counted or while hardware loops with early exits 

• Non-temporal loads (L1 cache bypass / preload) 

CPU capabilities 

• 4 privilege levels (rings), MMU (runs Linux kernel) 

• Recursive ISA virtualization (Popek & Goldberg) 

MPPA3 COOLIDGE V2 64-BIT KV3 CORE 

VLIW architecture co-designed for compilers to appear as an in-order superscalar core 

VLIW CORE PIPELINE 
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SMEM (SPM / L2Cache) 

256-bit 

MPPA3 COOLIDGE V2 PROCESSING ELEMENT (PE) 

KV3 6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor 

Coprocessor may use 2 issue lanes and shares the load/store unit with core 

• Matrix multiply-add on 4x4 tiles 

• Matrix zip/unzip & transpose 

• 256-bit load/store unit with masking 

• Groups of 256-bit registers used as 

circular buffer or as lookup table 

Tensor Coprocessor 

VLIW Core 
• Scalar 32-bit and 64-bit INT & FP 

• 8x 8-bit, 4x 16-bit, 2x 32-bit SIMD 

• 128-bit 256-bit SIMD operations by 

bundling 64-bit SIMD instructions 

• 256-bit load/store unit with masking 
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COPROCESSOR REGISTER GROUPS AS ROTATING REGISTERS 

XPRELOAD <reg-group>, <target-index> = <address> 

• <reg-group> specifies a group of coprocessor registers whose size is a 
power-of-2 an starts on the same power-of-2 register specifier 

• <target-index> specifies a core register containing a byte offset into 
<buffer> where the loaded data will be written modulo the buffer size 

• <address> specifies the effective address in memory 

XALIGN <dest-regs> = <reg-group>, <source-index> 

• <dest-regs> is a coprocessor register or a core register quadruple 

• <reg-group> specifies a coprocessor register group as in XLOAD 

• <source-index> specifies a core register containing a byte offset into 
<buffer> where 32-bytes  will be  extracted modulo buffer size 

Example of a memory copy loop 

• Copy array w[] of 64-bit words (4 elements per 256-bit access) 

• Assume src is aligned 8 modulo 32 (could be any byte address) 

• Preloading absorbs memory latency and ensures 32-byte aligned 
256-bit accesses irrespective of src data start address 

ANDD $r0 = src, 31 5 low bits of src pointer (here 8) 

ANDD $r1 = src, -32 32-aligned src pointer (here src-8) 

MAKE $r2 =0 Write index of $a0 into $a0..a3 

MAKE $r3 = dst initialize to dst pointer 

XPRELOAD $a0..a3, $r2 = 0[r1] Load w[-1], w[0], w[1], w[2] in $a0 

ADDD $r2 = $r2, 32 Write index of $a1 into $a0..a3 

ADDD $r1 = $r1, 32 Points to src-8+32 = src+24 

XPRELOAD $a0..a3, $r2 = 0[r1] Load w[3], w[4], w[5], w[6] in $a1 

ADDD $r2 = $r2, 32 Write index of $a1 into $a0..a3 

ADDD $r1 = $r1, 32 Points to src-8+64 = src+56 

XPRELOAD $a0..a3, $r2 = 0[r1] Load w[7], w[8], w[9], w[10] in $a2 

ADDD $r2 = $r2, 32 Write index of $a3 into $a0..a3 

ADDD $r1 = $r1, 32 Points to src-8+96 = src+88 

LOOP BEGIN <i> 

XPRELOAD $a0..a3, $r2 = 0[r1] 

Load w[11+i], w[12+i], w[13+i], 

w[14+i] in $a<3+i> 

ADDD $r2 = $r2, 32 Update write index into $a0..a3 

ADDD $r1 = $r1, 32 

Points to src-8+128+32*i = 

src+120+32*i 

XALIGN $r8r9r10r11 = $a0..a3, 

$r0 

$r8=w[0+i], $r9=w[1+i], 

$r10=w[2+i], $r11=w[3+i] 

ADDD $r0 = $r0, 32 Update read index into $a0..a3 

STORE 0[$r3] = $r8r9r10r11 Store w[0+i, .. 3+i] at dst+32*i 

ADDD $r3 = $r3, 32 Update store address 

LOOP END 
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KV3 TENSOR COPROCESSOR MATRIX MULTIPLY-ADD 

16-bit to 32-bit floating-point operation: (4x8)fp16 . (8x4)fp16 += (4x4)fp32 

Based on exact fused Dot Product Add operator 

 

•512b x 512b += 512b operands 

•256-bit register pair multiplicands 

•256-bit register pair addend & accumulator 

•128 FMA equivalent per cycle, 256 flops/cycle 

 

 

Page 32 

MAxMB
T += MC 

MB
T 

MC MA 
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KV3 PE TO PE 256-BIT DUPLEX COMMUNICATION RING  

Distribute tensor operations across 4 PEs while avoiding redundant memory loads 

INT8.32 operation (4x16) . (16x4) += 4x4 

• Macro-scheme executed by 4 PEs  

• 8x 256-bit memory loads (XLO) per PE 

• 8x 256-bit data exchanges per PE 

• 8x matrix multiply-add per PE 

• Matrix A and B are loaded by quarter by each PE 

which exchange one quarter with 2 different PEs 

• Kernel for INT8.32: (16 x 32) . (32 x 16) += 16 x 16  
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The ET-SoC-1 chip features over one thousand 
RISC-V processors on a single 7nm chip. 

• 1088 energy-efficient ET-Minion 64-bit RISC-V 
in-order cores, each with a custom 
vector/tensor unit optimized for ML 
applications 

• 4 high-performance ET-Maxion 64-bit RISC-V 
out of-order cores for running an OS in self-
hosted mode 

• Over 160 million bytes of on-chip SRAM 

ET-Minion executes instructions in order, for 
maximum efficiency, while extensions support 
vector and tensor operations on up to 256 bits of 
floating-point data (using 16-bit or 32-bit 
operands) or 512 bits of integer data (using 8-bit 
operands) per clock cycle. 

RISC-V BASED AI ACCELERATION EXAMPLE 

 ESPERANTO ET-SOC-1  

“Energy efficiency across a range of AI, HPC and 
mixed mode workloads” 
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Tenstorrent's Wormhole n150  

• The Wormhole n150 features a single 
processor with 72 Tensix cores. Each Tensix 
core features 5 RISV-C baby cores 

• Tensix cores support a variety of data formats, 
including BF4, BF8, INT8, FP16, BF16, and 
even FP64 

• The new Wormhole n150 chip and its single 
processor features a 160W TDP and pushes 
262 TFLOPs of FP8 performance 

Each Tensix core comprises of five RISC cores, 
an array math unit for tensor operations, a SIMD 
unit for vector operations, 1MB or 2MB of SRAM, 
and fixed function hardware for accelerating 
network packet operations and 
compression/decompression. 

RISC-V BASED AI ACCELERATION EXAMPLE 

 TENSTORRENT WORMHOLE 

“Featuring RISC-V & Phenomenal Price To 
Performance Value” 



 Kalray SA. Confidential  - All Rights Reserved. 37 

At the heart of Metis AI Processing Unit, there 
are four AI Cores. 

• Each AI core provides a 512×512 matrix-
vector multiplication (MVM) in-memory 
compute array and a vector datapath that 
operates on streams of data. 

• Push as much as possible into low-level driver 
software where we can innovate, correct, and 
adapt throughout the product’s life cycle. 

• Things like atomic handling may only be 
standardized for specific platforms 

• Therefore, each AI Core has a dedicated 
RISC-V, application-class core, that has full 
control over the datapath unit. 

At the heart of each AI core is a massive in-
memory-computing-based matrix-vector-
multiplier to accelerate matrix operations, up to 
53.5 TOPS at energy efficiency of 15 TOPS/W. 

RISC-V BASED AI ACCELERATION EXAMPLE 

 AXELERA METIS 

“Powerful Edge Inference requires groundbreaking 
and cost-effective AI acceleration” 
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MIPS RISC-V Processors 

• High-performance compute with simultaneous 
multi-threading (SMT) 

• 4-issue, 16-stage out-of-order pipeline with 1- 
or 2-way SMT 

• Custom instructions for improved memory 
operations and data movement 

Coherence Manager 

• Support for up to 8 Coherent initiators 
comprising of either MIPS RISC-V Processors 
or 3rd party accelerators 

• Cluster Level-2 Cache L2$ up to 2MB 

• HW pre-fetch, widened busses, reduced 
latency 

RISC-V BASED AI ACCELERATION EXAMPLE 

 MIPS ACCELERATOR INTEGRATION 

“Bring your own accelerators” 
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Vector Processing for AI/ML workloads 

• SiFive Intelligence Extensions 
(custom instructions that accelerate AI/ML 
performance critical operations) 

• VCIX interface for direct connectivity of  vector 
accelerators 

• Separate vector load/store units (full-duplex 
operation) 

• 1024-bit VLEN (X390), 512-bit VLEN (X380) 

Scalar processing architecture 

• 64-bit RISC-V ISA, 8-stage dual-issue in-order 

• Linux capable Applications processor 

RISC-V BASED AI ACCELERATION EXAMPLE 

 SIFIVE ACCELERATOR MORAY  

“Tightly Integrated Matrix Engine shared between 
four Shark processors with dual vector ALUs” 

Matrix instructions accelerates GEMM routines 

• Instructions fetched by CPU 

• Source data comes from vector registers 

Accumulator can be accessed by vector unit 

• Accumulator context for each Shark core 
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Out-of-order 64-bit core based on RISC-V ISA that 
includes Gazzillion Misses™ Technology to 
efficiently manage large data sets 

The VU is fully compliant with the RISC-V Vector 
Extension 1.0, can deliver up to 2048 bits of 
computation per cycle 

The TU implements Semidynamics’ custom 
extension for tensor instructions achieves up to 8 
TOPS (INT8) per GHz 

The three components share the L1 data cache. 
Furthermore, the VU and TU have access to the 
same Vector Register 

DMA-free programming: computations can be 
offloaded to VU or TU with zero latency. Memory 
copies are not required since the core, VU and TU 
can access the same shared data cache 

RISC-V BASED AI ACCELERATION EXAMPLE 

 SEMIDYNAMICS ALL-IN-ONE  

“Fuse CPU, GPU and NPU into a unified solution” 
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FRAMEWORK PARTNERSHIP AGREEMENT (FPA) FOR 

DEVELOPING A LARGE-SCALE EUROPEAN INITIATIVE FOR HIGH 

PERFORMANCE COMPUTING (HPC) ECOSYSTEM 
 

 

Expected Outcome: 

Framework Programme Agreement (FPA) for European 
hardware and software technologies, based on RISC-V in 
order to deliver high-end processors and/or accelerators 
and systems based on a strategic research roadmap, and 
the realisation of test-beds, pilots and/or demonstrators, 
integrating these processors. 

The FPA is expected to address the following 
outcomes: 

Contribution towards European technological sovereignty, 
by establishing, maintaining and implementing a strategic 
R&I roadmap that fosters the European capabilities to 
design, develop and produce the IP related to high-end 
processors and/or accelerators based on RISC-V, driven by 
relevant key performance indicators. 
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• Runs rich operating system (Linux distribution) 

• Implements standard extensions, not V 

• SMP programming model 

• Out-of-Order superscalar micro-architecture 

• Branch prediction 

• Multiple instruction issue 

• Hardware register renaming 

• Hardware data prefetching 

• Hardware speculative execution 

• Runs simple run-time system or RTOS 

• Compute unit (cluster) with local memory and 
data move engine (DMA with atomics) 

• Power-efficient micro-architecture 

• In-order issue or VLIW core 

• High-throughput local memory access 

• Software data prefetching or preloading 

• Possibly implements V extension as 
prerequisite for matrix operations (custom 
extension or IME & AME draft standards) 

RISC-V FOR APPLICATION CORES 

STANDARD LIBRARIES AND TOOLS 

RISC-V FOR ACCELERATION CORES 

CUSTOMIZED LIBRARIES AND TOOLS 

RISC-V CORE IMPLEMENTATION DIRECTIONS 

Application cores: for multicore processors maximizing single-thread performance 

Acceleration cores: for manycore processors maximizing multiple thread throughput 
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TWO OPTIONS FOR A RISC-V KVX EXTENSION 

Both options require that KV4 instructions align on RISC-V (floating-point, atomics, memory) 

Both options enable to execute multiple RISC-V instruction per cycle (in-order superscalar) 

Ensure RISC-V compliance by running the standard RISC-V architecture test suites 

1. KVX with RISC-V execution mode (PS bit) 

• RISC-V and KVX instruction encoding may conflict 

• Execute the RV64G user instructions without privilege 

• Interrupts, Traps and SysCalls switch mode to KVX 

• Also run low-level and runtime software in KVX mode 

 

2. KVX as a (non-standard) RISC-V Extension 

• Reuse the ‘C’ extension to encode the KVX ISA inside the RISC-V ISA opcode space 

• Freely mix the two ISAs in a single application, enable to unify the two software toolchains 

• Requires to reorganize the KVX encodings, which disconnects the KV4 tools from the KV3 tools 
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OPTION1: KV4 CORE EXECUTING RISC-V BINARY CODE 

Compiled application code produced with a standard RISC-V toolchain (GCC, NewLib) 

Boot and initialize the KVX execution platform in KVX mode 

Set the RISC-V start address in $SPC (saved PC), and Privilege Level in $SPS (saved PS) 

Execute RFE so that execution starts in RISC-V mode at $SPC address 

 

 

 

 

 

 

 

 

 

 

On RISC-V system call (ECALL), transition to higher Privilege Level which is back to KVX 

 



 Kalray SA. Confidential  - All Rights Reserved. 46 

OPTION2: REUSE THE ‘C’ ENCODING SPACE FOR VLIW BUNDLES 

Supporting VLIW encodings [The RISC-V Instruction Set Manual Volume I] 

The base 32-bit encoding has to be supported to allow use of any standard software tools 

 
Fixed-Size Instruction Group 

Encoded-Length Groups 

Fixed-Size Instruction Bundles 

End-of-Group bits in Prefix 

• Repurpose the two prefix bits in the fixed-width 
32-bit encoding. 

• One prefix bit can be used to signal "end-of-
group" if set … 

• The main disadvantage of this approach is that 
the base ISAs lack the complex predication 
support usually required in an aggressive 
VLIW system, and it is difficult to add space to 
specify more predicate registers in the 
standard 30-bit encoding space. 

 

 

 

The proposed RISC-V KVX extension adapts the 
“End-of-Group bits in Prefix” direction: 

• “The main disadvantage” is from the implicit 
assumption that a VLIW is EPIC-Style and that 
bundles contain RISC-V instruction opcodes 

• The RV64G ISA is register-constrained so the 
VLIW instructions have to be recoded anyway 

[The C extension also recodes basic instructions] 
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BSC VPU Open Vector Interface (EPI VEC) Each RISC-V vector instruction is dispatched to a 
KVX kernel that implements its functionality 

Each KVX kernel could match or outperform a 
RISC-V Vector instruction given the same local 
memory system (bandwidth, latency) 

Overhead of branching to a software kernel is not 
significant for long vectors (BSC VPU target) and 
could be lowered with hardware support 

However, sequential runs of optimized hardware 
/ software KVX kernels misses the “vector 
chaining” opportunities 

 

OPTION 1: CONNECT A VECTOR 
PROCESSING UNIT (VPU) TO THE KVX 
USING A WELL DEFINED INTERFACE 

OPTION 2: EXECUTE VECTOR 
INSTRUCTIONS BY RUNNING 
“HORIZONTAL MICROCODE” KERNELS 

SUPPORTING THE RISC-V VECTOR EXTENSION 

The RISC-V Vector extension is designed for classic HPC applications (FP64) 

Not yet proven for Edge / DSP applications, unlike Intel AVX512 and ARM NEON 

The KVX SIMD ISA is designed for efficient mapping of Intel AVX512 and ARM NEON 
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VECTOR INSTRUCTION CHAINING 

Overlapped execution in a sequence of dependent vector instructions [Cray-1, Cray XMP] 

Vector instruction starts as soon as the first elements of its source vectors are available 
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Output from the BSC LLVM-based compiler in 
vector-length agnostic (VLA) mode [Ferrer 2022] 

 

Proposed solution: patching of binary RVV code 
at load time or at MMU mapping time 

• Identify the sequences of same vtype and vl 
inside basic blocks (split at vsetvl* instruction)  

• Select the subsequences of vector instructions 
that expose chaining opportunities 

• Generate or instantiate from a code template 
the corresponding KVX kernel 

• Patch all but one RVV instruction with NOP 
and call the kernel in the last RVV instruction 

See “Software Vector Chaining” [Ertl 2018] 

DIRECTIONS FOR OPTION 2 

Addressing the challenges of executing one vector instruction / kernel at a time 
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RISC AND VLIW ARCHITECURES 

Common origin of RISC and VLIW architectures 

• RISC architecture was motivated by exposing “vertical microcode” as simple register-register instructions 

• VLIW architecture was motivated by exposing “horizontal microcode” as bundles of RISC-like instructions 

In both cases, microcode was eliminated in favor of pipelined instructions, and architecture was tuned to 
match compiler machine code optimizations 

 

RISC and VLIW architectures have been extended to support SIMD and vector instructions 

• SIMD instructions have architecturally defined vector sizes and execute single-cycle 

• Vector instructions abstract vector size for binary compatibility but may not execute single-cycle 

Compiler compatibility trumps binary compatibility, especially for VLIW domain-specific architectures (DSA) 
“Ten lessons from three generations shaped Google's TPUv4i” [Jouppi et al. 2021 ISCA] 

 

RISC implementations have evolved through superpipeline, superscalar in-order, superscalar out-of-order 

VLIW implementations cannot execute out-of-order, so must explicitly manage register renaming at compile 
time and mitigate the effects of variable load latencies 

VLIW architectures still dominate in image processing, signal processing and AI pre/post processing 
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• Gaudi2 integrates 
Habana’s fourth 
generation Tensor 
Processor Core. 

• The TPC is a general 
purpose VLIW processor 
which is 256B SIMD 
wide and supports FP32, 
BF16, FP16 & FP8, in 
addition to INT32, INT16 
& INT8 data types. 

• the TPC exposes a 
DMA-free programming 
model which significantly 
eases SW development. 

 

 

• Each AI Engine tile 
consists of a very long 
instruction word (VLIW), 
single instruction multiple 
data (SIMD) vector 
processor optimized for 
machine learning and 
advanced signal 
processing applications. 

• AMD XDNA is a spatial 
dataflow NPU 
architecture consisting of 
a tiled array of AI Engine 
processors. 

INTEL/HABANA GAUDI 
AI ACCELERATORS 

XILINX VERSAL / AMD 
XDNA AI ENGINES 

SUCCESSFUL VLIW ACCELERATORS 

Main applications in image processing, signal/telecom, AI 

Synopsys, CEVA, Intel/Habana, Xilinx, AMD 
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