
 Kalray SA. Confidential - All Rights Reserved. 1

www.kalrayinc.com

RISC AND VLIW ARCHITECTURES

Benoît Dupont de Dinechin,
Chief Technology Officer

ARCHI 2025

March 10 – 14 2025

 Kalray SA. Confidential - All Rights Reserved. 2  Kalray SA. Confidential - All Rights Reserved. 2

1.Kalray MPPA Platform

2.RISC Architectures

3.VLIW Architectures

4.RISC-V Accelerators

5.Converging to RISC-V

6.Conclusions

AGENDA

 Kalray SA. Confidential - All Rights Reserved. 3

ACCELERATING DATA-INTENSIVE APPLICATIONS

An Easy-to-Use Complete Open Environment

Single

Software

Architecture

&

Unified

Toolchain
 AccessCore® Middleware

 Customer Code (Processing/Application)

Open Software

& Tools

Multi-configuration

PCIe

Card

MPPA® DPU
Manycore

Processors

AccessCore®

MPPA®3 DPU - COOLIDGETM

 Open & Standard APIs (C/C++, SPDK, OpenCL, …)

 Compute Framework Storage Framework Networking Framework

2 modes

Stand-alone
no Host

Acceleration
(x86 or ARM as a host)

K300™

Linux

Systems

TC4™

MPPA®-DEV5
Development platform

Your own system
Workstation or server

Kalray FlashBox™
Unleash the Full Potential of SSD Storage

 Kalray SA. Confidential - All Rights Reserved. 4

KALRAY MPPA® SCALABLE MANY-CORE ACCELERATORS
3rd-gen MPPA® processor manufactured in TSMC 16nm technology, running at up to 1.2 GHz

MPPA3 ‘Coolidge’ v2 processor back from TSMC mid-2023

4× MPPA processors with 80 PEs per processor:

• 4× 49 TOPS INT8.32

• 4× 24.5 TFLOPS FP16.32

• 4× 1.5 TFLOPS FP32

Multiple Processors per Card

Many-Core Processor

Cluster of 16 PEs

PE = VLIW Core +

Tensor Coprocessor

 Kalray SA. Confidential - All Rights Reserved. 6

ACCESSCORE® COMPUTE SDK

High-Performance Programming Models

C/C++ POSIX
Programming

Standard multicore programming model
• MPPA Linux and ClusterOS
• Standard C/C++ programming
• POSIX threads interface
• GCC and LLVM OpenMP support

Exposed MPPA® communications
• RDMA using the MPPA Asynchronous

Communication library (mppa_async)
• OpenAMP Open Standard and APIs for

Asymmetric Multiprocessing Systems

OPENCL 1.2
Programming

Standard accelerator programming model
• POSIX host CPU accelerated by MPPA

device (OpenAMP interface)
• OpenCL 1.2 conformance based on

POCL and LLVM for OpenCL-C

OpenCL offloading modes:
• Linearized Work Items on a PE (LWI)
• Single Program Multiple Data (SPMD)
• Native functions called from kernels

STANDARD
PROGRAMMING
ENVIRONMENTS

 Kalray SA. Confidential - All Rights Reserved. 7  Kalray SA. - All Rights Reserved 7

KANN™ (KALRAY NEURAL NETWORK)

Inference compiler for convolutional neural networks

Leverage the OpenCL partition into sub-devices

On MPPA® processors, execution of each layer

is parallelized and distributed on all available

clusters for a low latency inference

MPPA® Platform

Video

Sources

O

u
tp

u
t,

D
is

p
la

y

Input data
- image,

- camera,

- Lidar, …

Results
- Classification,

- Object detection,

- Segmentation mask, …

Graph

Optim.

Code

Generator
Scheduling and

mapping of

optimized Neural

Network
Trained Neural Network

 Kalray SA. Confidential - All Rights Reserved. 8

AI INFERENCE AND DSP PROCESSING FOR EDGE COMPUTING

Customer measured x3.8 better compute efficiency than the market leader

TC4™ Board (4 x MPPA® processors) High-end GPU

Peak

capabilities
Performance Efficiency

Peak

capabilities
Performance Efficiency

FP16 107 TFLOPs 6 500 FPS 42 % 312 TFLOPs 5200 FPS 11.5 %

*UNet complexity = 6.93 GFLOPs / frame

Kalray TC4™ vs competition compute efficiency on UNet* model inference

UNet predictions example on
MRI brain tumor dataset

NN
Data type

FPS
TC4™ | PCIe

FPS
(for 1 Watt)

FPS
(for 1💰)

MPPA®

Coolidge V2

FP16 5,600 18.7 1.4

INT8 8,400 30.5 2.1

High-end GPU
FP16 5,200 17.3 0.27

INT8 5,950 19.8 0.31

*based on 300W consumption / PCIe card

x3 to x6
Perf/$

vs Comp.

 x3.8
Efficiency

vs Comp.

 Kalray SA. Confidential - All Rights Reserved. 10  Kalray SA. Confidential - All Rights Reserved. 10

1.Kalray MPPA Platform

2.RISC Architectures

3.VLIW Architectures

4.RISC-V Accelerators

5.Converging to RISC-V

6.Conclusions

AGENDA

 Kalray SA. Confidential - All Rights Reserved. 11

EARLY COMPUTER ARCHITECTURE EVOLUTION

Load/Store ISA on the CDC6600, extended to vector registers on the Cray-1

 Kalray SA. Confidential - All Rights Reserved. 12

IBM project started in 1974 to design a telephone switching machine capable of 12 MIPS

“Imposing microcode between a computer and its users imposes an expensive overhead in performing
the most frequently executed instructions.” [Cocke & Markstein 1990 IBM J. Research & Development]

ORIGINS OF RISC: THE IBM 801 MINICOMPUTER

The most important features which contributed to its low cost/performance ratio were:

1. Separate instruction and data caches, allowing a much higher bandwidth between memory and CPU;

2. No arithmetic operations to storage, which greatly simplified the pipeline;

3. Uniform instruction length and simplicity of design, making possible a very short cycle time: ten levels of logic.
(For example, all register-to-register operations executed in one cycle.)

A major advance was its ability to branch based on the state of any bit in any general purpose register.

A second form of branch, which is commonly called "delayed branch," caused the CPU to unconditionally
execute the instruction immediately following the branch, whether or not the branch was successful.

Compilers were expected to play a central role in the 801.

• The antithesis of the "semantic gap“ idea, in that instructions were specifically designed for efficient use by a compiler.

• Approach to register allocation, which was deemed to be central to the proper use of the 801, was "graph coloring." This
approach had been mentioned in the literature, but was implemented for the first time in the PL.8 compiler.

First ISA with 2-operand, 24-bit instructions. Second ISA with 3-operand, 32-bit instructions

 Kalray SA. Confidential - All Rights Reserved. 13

Successors of IBM 801, Berkeley RISC-I, Stanford MIPS

CLASSIC RISC ARCHITECTURE FEATURES

Berkeley RISC-1 (1981)

• Read as zero register zero, inherited from the CDC 6600

• Six register windows containing 14 registers. Of those 14 registers, 4 were overlapped from the prior window

• All other features similar to those of the IBM 801, including delayed branches

Stanford MIPS (1982)

• Similar to RISC-1, except for not including the overlapped register windows

• No pipeline stall on register dependencies « Microprocessor without Interlocked Pipeline Stages »

IBM RS/6000 (1990)

• Floating-point Fused Multiply-Add (FMA) instructions

• Base register + index register memory addressing

• Conditional branch with “decrement and test CTR” option

• FPU register remapping allows independent sequences using the same architected register to be processed concurrently

 Kalray SA. Confidential - All Rights Reserved. 14

RISC extension by CPU vendors

EVOLUTION OF RISC FEATURES

MIPS-III / R4000 (1991)

• Superpipelined implementation

DEC Alpha 21064 (1992)

• Superscalar in-order (dual issue)

• Weakest memory consistency model

ARM ARM7 TDMI (1994)

• Thumb ISA encoded in 16-bit words

HP PA-RISC 1.1 (1994)

• MAX (Multimedia Acceleration eXtensions) to accelerate MPEG decoding (Pentium P5 introduced MMX in 1997)

MIPS-IV / R10000 (1995)

• Superscalar out-of-order execution (quad issue)

DEC Alpha 21464 (Planned 2004)

• Out-of-order execution with 4x simultaneous multi-threading

 Kalray SA. Confidential - All Rights Reserved. 15

AltiVec is a floating point and integer 128-bit
SIMD instruction set designed and owned by
Apple, IBM and Freescale Semiconductor.

Code generation for the Cell SPE demonstrated
the advantages of a unified register file:

• The VS register file with 64 vector-scalar
registers (VSR) is created by extending the 32
floating-point registers (FPR) to 128 bit and
combining them with 32 AltiVec registers (VR)

• Many applications use either scalar floating-
point or vector types, but not both. These
applications experience a 2× increase of
usable registers by being able to allocate all
registers to their dominant data types.

• Vectorized code with a unified register file is
more efficient when vectorized code reads or
writes scalar operands, compared to designs
that require long latency transfers between
distinct register files and processing units.

IBM FROM ALTIVEC TO THE VECTOR SCALAR ARCHITECTURE

Integrated vector and floating-point architecture first introduced in the POWER7 processor

Restructure the core microarchitecture by integrating and sharing register files and execution
units of the previously separate scalar floating-point and AltiVec units [Gschwind 2016 IBM JRD]

 Kalray SA. Confidential - All Rights Reserved. 16

RISC-V Label

• Implement one of RV* Base ISA

• No requirements for Privileged ISA

• Scarce open-source software for
extensions beyond MAFDCB

RISC-V and AI

• Most AI compilers are proprietary

• IME and AME proposed extensions

CVA6 ISA

• RV64I Base ISA

• MAFDCB Extensions

KV4 Functional Equivalence

• RV64I Base ISA

• MAFDB + Zfh Extensions (no C)

RISC-V BACKGROUND

RISC-V ISA and Extensions

 Kalray SA. Confidential - All Rights Reserved. 17

RISC-V “SIMD INSTRUCTIONS CONSIDERED HARMFUL”

An older and, in our opinion, more elegant alternative to exploit data-level parallelism is
vector architectures [Patterson & Waterman 2017]

• SIMD starts off innocently enough. An architect partitions the existing 64-bit registers and ALU into many
8-, 16-, or 32-bit pieces and then computes on them in parallel.

• To accelerate SIMD, architects subsequently double the width of the registers to compute more partitions
concurrently.

• Because ISAs traditionally embrace backwards binary compatibility, and the opcode specifies the data
width, expanding the SIMD registers also expands the SIMD instruction set.

• Each subsequent step of doubling the width of SIMD registers and the number of SIMD instructions leads
ISAs down the path of escalating complexity.

• The widest data for RISC-V is 64 bits, and today’s vector processors typically execute two, four, or eight
64-bit elements per clock cycle.

 Kalray SA. Confidential - All Rights Reserved. 18

RISC-V VECTOR EXTENSION (RVV)

Gather objects from main memory and put them into long, sequential vector registers

Element operations are independent by definition, and so a processor could theoretically
compute all of them simultaneously

A vector processor with N 64-bit elements per register also computes on vectors with 2N 32-
bit, 4N 16-bit, and 8N 8-bit elements

• RVV defines 32 vector registers of size VLEN bits (VLEN is vector register bit size, e.g. 512) with

elements of maximum bit size ELEN  32 or 64

• Vector registers are divided in elements whose bit size is a power of two  8 and  ELEN

• The vtype register contains fields sew (standard element width) and lmul (length multiplier)

8  sew  ELEN and lmul  { 1/8, ¼, ½, 1, 2, 4, 8 }

Setting vl > 1 groups vector registers as single operands of vector operations

vlmax = (VLEN / sew) × lmul is the maximum number of elements operated per vector instruction

• The vl register specifies the count of vector elements operated by subsequent vector instructions

0  vl  vlmax

• Vector operations with masking use the v0 register as a vector of predicates (one bit per element)

 Kalray SA. Confidential - All Rights Reserved. 19

RISC-V VECTOR INSTRUCTIONS IN PRACTICE [FERRER 2022 BSC]

RISC-V Vector operation arguments and parameters cannot be encoded in 32-bit instructions

The CPU state is configured with vsetvl / vsetvli / vsetivli instructions (“set vector length”)

First source of vsetvl* is application vector length, destination gets the hardware selected vl

 Kalray SA. Confidential - All Rights Reserved. 20  Kalray SA. Confidential - All Rights Reserved. 20

1.Kalray MPPA Platform

2.RISC Architectures

3.VLIW Architectures

4.RISC-V Accelerators

5.Converging to RISC-V

6.Conclusions

AGENDA

 Kalray SA. Confidential - All Rights Reserved. 21

ORIGIN OF VLIW: THE FPS AP-120B “ARRAY PROCESSOR” (1975)

Programmed with “horizontal microcode” 64-bit words to implement loop software pipelining

Data Pad X / Y accessed relative to the DPA register are the first “rotating register files”

 Kalray SA. Confidential - All Rights Reserved. 22

SOFTWARE PIPELINING EXAMPLE ON ARM A53 (1)

‘SAXPY’ loop from BLAS

Need to use [restrict] to inform compiler
there are no data dependences between
the memory accesses

Compilation with GCC –O2 on a ARM
workstation (cortex A53 cores)

Loop: load x[i], load y[i], FMA, store z[i],
update loop counter, loop branch back

 Kalray SA. Confidential - All Rights Reserved. 23

SOFTWARE PIPELINING EXAMPLE ON ARM A53 (2)

Loop schedule, no pipelining

One iteration per 11 clock cycles

Software pipelined loop

One iteration started every 3 clock cycles

Cycle LSU FPU Other

0 v1=[x4*0x8+x1]

1 v2=[x4+0x8+x2]

2

3 v1={v1*v0+v2}

4

5

6

7

8 [x4*0x8+x3]=v1 x4=x4+0x1

9 cc=cmp(x0,x4)

10 pc={(cc>0)?Loop:pc}

Cycle LSU FPU Other

0 v1=[x4*0x8+x1]

1 v2=[x4+0x8+x2]

2

3 v1'=[x4'*0x8+x1] v1={v1*v0+v2}

4 v2'=[x4'+0x8+x2]

5

6 v1''=[x4''*0x8+x1] v1'={v1'*v0'+v2'}

7 v2''=[x4''+0x8+x2]

3*N+5 [x4*0x8+x3]=v1 x4=x4+0x1

3*N+6 v1'''=[x4'''*0x8+x1] v1''={v1''*v0''+v2''} cc=cmp(x0,x4)

3*N+7 v2'''=[x4'''+0x8+x2] pc={(cc>0)?Loop:pc}

… [x4'*0x8+x3]=v1' x4'=x4'+0x1

… cc=cmp(x0,x4')

… pc={(cc>0)?Loop:pc}

… x4''=x4''+0x1

… cc=cmp(x0,x4'')

… pc={(cc>0)?Loop:pc}

In order to software pipeline, the loop temporary variables must be ‘modulo expanded’

Modulo expansion consumes registers and also requires pipelined loop kernel unrolling

Modulo expansion can be omitted on CPUs with hardware renaming or rotating registers

pipelined
loop prolog

pipelined
loop kernel

pipelined
loop epilog

 Kalray SA. Confidential - All Rights Reserved. 24

The most suitable VLIW should exhibit four
basic features [Colwell et al. 1998 IEEE TC].

• One central controller issues a single long
instruction word per cycle.

• Each long instruction simultaneously
initiates many small independent
operations.

• Each operation requires a small, statically
predictable number of cycles to execute.

• Each operation can be pipelined.

In the same spirit as MIPS and the IBM 801,
the microarchitecture is exposed to the
compiler so that the compiler can make better
decisions about resource usage

• the architecture is load/store,

• there is no microcode.

Multiflow TRACE 7/300 is the entry model with
one ‘cluster’ of execution units

MULTIFLOW TRACE 7 SERIES

 Designed as a target for a trace scheduling compiler

 Kalray SA. Confidential - All Rights Reserved. 25

Encoding instructions requires 41 bits and
instructions are fully predicated

Bundles of 3 instructions are encoded in 128 bits,
with template bits that specify the parallel groups

The GR registers have 64+1 bit for “Not a Thing”

Loads can be control-speculative, in case of
traps the “Not a Thing” is set and checked later

Loads can be advanced before possibly
interfering stores, with interference checked by
the “Advanced Load Address Table” (ALAT)

Rotating register are available on GR, FR
(floating-point) and PR (predicate)

ITANIUM ARCHITECTURE (IA64)

“Evolution of the VLIW architecture” through the Cydrome Cydra-5 then the HPL Play Doh

 Kalray SA. Confidential - All Rights Reserved. 26

Classic VLIW architecture (J. A. Fisher)

• SELECT operation on Boolean value

• Conditional load/store/FPU operations

• Dismissible loads (non-trapping)

• Multi-way conditional branches

Compiler techniques

• Trace scheduling (global instruction scheduling)

• Partial predication (S. Freudenberger algorithm)

Main examples

• Multiflow TRACE (1987)

• Philips Trimedia (1998)

• HP Labs Lx / ST200 family (2000)

EPIC VLIW architecture (B. R. Rau)

• Fully predicated ISA + predicate define instructions

• Speculative loads (control speculation)

• Advanced loads (data speculation)

• Rotating registers

Compiler techniques

• Modulo scheduling (software pipelining)

• Full predication (R-K algorithm, J. Fang algorithm)

Main examples

• Cydrome Cydra-5 (1987)

• TI C6X DSPs (1998)

• HP-intel IA64 (2001)

VLIW ARCHITECTURE PRINCIPLES

Promote “horizontal microcode” to bundles of RISC-like instructions

Co-design architecture, microarchitecture and compiler optimizations

 Kalray SA. Confidential - All Rights Reserved. 27

HP LX ARCHITECTURE / STMICROELECTONICS ST200 FAMILY

VLIW architecture designed by J. Fisher et al. at HP Labs [Faraboschi et al. 2000 ISCA]
[Book “Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools”]

Further developed by STMicroelectronics as the ST200 family of media processors

ISA designed as a 4-issue VLIW extension
of the DLX ISA (academic RISC ISA)

• Register file with R0 read as zero and
R64 alias of the link register

• Fully pipelined execution units

• No multiway branch

• ‘end-of-bundle’ bit, unlike IA64 templates

• Every parallel instruction group is a valid
instruction bundle

HPLabs used the Multiflow trace compiler

The STMicroelectronics st200 compiler,
based on Open64 with superblock
scheduling and modulo scheduling,
outperformed the Multiflow trace compiler

 Kalray SA. Confidential - All Rights Reserved. 28

Lx/ST200 ISA features

• Fully-pipelined execution units, single-cycle reservations

• Any instruction schedule parallel group is a valid bundle

PowerPC ISA features

• No GP register aliased to special resources (LR, zero)

• Memory addressing modes similar to those of PowerPC

• Effective floating-point support with Fused Multiply Add

TI C6x ISA features

• Grouping of registers into pairs or quadruples

• Complex number arithmetic (integer and FP32)

Improved data memory bandwidth

• Load/store widening to 256-bit, no alignment restrictions

• Enable large immediate values in the instruction stream

• All memory accesses may bypass the L1 data cache

Rework if-conversion support

• Remove Boolean registers and SELECT instructions

• Use CMOV and conditional load/store instructions

Simple hardware looping

• Counted or forever inner loops with early exits

Tightly coupled tensor coprocessor (TCA)

KALRAY KVX VLIW ARCHITECTURES

Started from the Lx/ST200 VLIW architecture and adopted PowerPC, TIC6x, ARM features

KV3 added SIMD instructions, matrix instructions and a generalization of rotating registers

KV4 is under development with RISC-V convergence requirements

 Kalray SA. Confidential - All Rights Reserved. 29

Vector-scalar ISA

• 64x 64-bit general-purpose registers

• SIMD operands can be single registers (64-bit),
register pairs (128-bit) or register quadruples (256-bit)

• 128-bit SIMD instructions by dual-issuing 64-bit on the
two ALUS or by using the 128-bit FPU datapath

• FPU capable of 4x FP32 FDP2A operations / cycle

The FDP2A operator computes 𝑎 ± 𝑏 × 𝑐 ± 𝑑 × 𝑒

• 256-bit load/store unit with byte masking

DSP capabilities

• Counted or while hardware loops with early exits

• Non-temporal loads (L1 cache bypass / preload)

CPU capabilities

• 4 privilege levels (rings), MMU (runs Linux kernel)

• Recursive ISA virtualization (Popek & Goldberg)

MPPA3 COOLIDGE V2 64-BIT KV3 CORE

VLIW architecture co-designed for compilers to appear as an in-order superscalar core

VLIW CORE PIPELINE

 Kalray SA. Confidential - All Rights Reserved. 30

V
L

IW
 C

o
re

C
o

p
ro

c
e

s
s

o
r

256-bit

256-bit

64x 64-bit

Registers

64x 256-bit

Registers

Basic Linear

Algebra Unit

Control

Execution

Units

SMEM (SPM / L2Cache)

256-bit

MPPA3 COOLIDGE V2 PROCESSING ELEMENT (PE)

KV3 6-issue 64-bit VLIW core with a tightly-coupled tensor coprocessor

Coprocessor may use 2 issue lanes and shares the load/store unit with core

• Matrix multiply-add on 4x4 tiles

• Matrix zip/unzip & transpose

• 256-bit load/store unit with masking

• Groups of 256-bit registers used as

circular buffer or as lookup table

Tensor Coprocessor

VLIW Core
• Scalar 32-bit and 64-bit INT & FP

• 8x 8-bit, 4x 16-bit, 2x 32-bit SIMD

• 128-bit 256-bit SIMD operations by

bundling 64-bit SIMD instructions

• 256-bit load/store unit with masking

 Kalray SA. Confidential - All Rights Reserved. 31

COPROCESSOR REGISTER GROUPS AS ROTATING REGISTERS

XPRELOAD <reg-group>, <target-index> = <address>

• <reg-group> specifies a group of coprocessor registers whose size is a
power-of-2 an starts on the same power-of-2 register specifier

• <target-index> specifies a core register containing a byte offset into
<buffer> where the loaded data will be written modulo the buffer size

• <address> specifies the effective address in memory

XALIGN <dest-regs> = <reg-group>, <source-index>

• <dest-regs> is a coprocessor register or a core register quadruple

• <reg-group> specifies a coprocessor register group as in XLOAD

• <source-index> specifies a core register containing a byte offset into
<buffer> where 32-bytes will be extracted modulo buffer size

Example of a memory copy loop

• Copy array w[] of 64-bit words (4 elements per 256-bit access)

• Assume src is aligned 8 modulo 32 (could be any byte address)

• Preloading absorbs memory latency and ensures 32-byte aligned
256-bit accesses irrespective of src data start address

ANDD $r0 = src, 31 5 low bits of src pointer (here 8)

ANDD $r1 = src, -32 32-aligned src pointer (here src-8)

MAKE $r2 =0 Write index of $a0 into $a0..a3

MAKE $r3 = dst initialize to dst pointer

XPRELOAD $a0..a3, $r2 = 0[r1] Load w[-1], w[0], w[1], w[2] in $a0

ADDD $r2 = $r2, 32 Write index of $a1 into $a0..a3

ADDD $r1 = $r1, 32 Points to src-8+32 = src+24

XPRELOAD $a0..a3, $r2 = 0[r1] Load w[3], w[4], w[5], w[6] in $a1

ADDD $r2 = $r2, 32 Write index of $a1 into $a0..a3

ADDD $r1 = $r1, 32 Points to src-8+64 = src+56

XPRELOAD $a0..a3, $r2 = 0[r1] Load w[7], w[8], w[9], w[10] in $a2

ADDD $r2 = $r2, 32 Write index of $a3 into $a0..a3

ADDD $r1 = $r1, 32 Points to src-8+96 = src+88

LOOP BEGIN <i>

XPRELOAD $a0..a3, $r2 = 0[r1]

Load w[11+i], w[12+i], w[13+i],

w[14+i] in $a<3+i>

ADDD $r2 = $r2, 32 Update write index into $a0..a3

ADDD $r1 = $r1, 32

Points to src-8+128+32*i =

src+120+32*i

XALIGN $r8r9r10r11 = $a0..a3,

$r0

$r8=w[0+i], $r9=w[1+i],

$r10=w[2+i], $r11=w[3+i]

ADDD $r0 = $r0, 32 Update read index into $a0..a3

STORE 0[$r3] = $r8r9r10r11 Store w[0+i, .. 3+i] at dst+32*i

ADDD $r3 = $r3, 32 Update store address

LOOP END

 Kalray SA. Confidential - All Rights Reserved. 32

KV3 TENSOR COPROCESSOR MATRIX MULTIPLY-ADD

16-bit to 32-bit floating-point operation: (4x8)fp16 . (8x4)fp16 += (4x4)fp32

Based on exact fused Dot Product Add operator

•512b x 512b += 512b operands

•256-bit register pair multiplicands

•256-bit register pair addend & accumulator

•128 FMA equivalent per cycle, 256 flops/cycle

Page 32

MAxMB
T += MC

MB
T

MC MA

 Kalray SA. Confidential - All Rights Reserved. 33

KV3 PE TO PE 256-BIT DUPLEX COMMUNICATION RING

Distribute tensor operations across 4 PEs while avoiding redundant memory loads

INT8.32 operation (4x16) . (16x4) += 4x4

• Macro-scheme executed by 4 PEs

• 8x 256-bit memory loads (XLO) per PE

• 8x 256-bit data exchanges per PE

• 8x matrix multiply-add per PE

• Matrix A and B are loaded by quarter by each PE

which exchange one quarter with 2 different PEs

• Kernel for INT8.32: (16 x 32) . (32 x 16) += 16 x 16

M
a

tr
ix

 B

Matrix A

4
 r

o
w

s

4
x
 X

L
O

 b
y
 P

E
2

4 cols 4 cols

4
x
 X

L
O

 b
y
 P

E
3

4
x
 X

L
O

 b
y
 P

E
0

4
x
 X

L
O

 b
y
 P

E
1

 4x XLO by PE2

 4x XLO by PE3

4x XLO by PE1

4x XLO by PE0
 PE 1 PE 0

 PE 2 PE 3

4
 r

o
w

s

4
 r

o
w

s

4
 r

o
w

s

4 cols 4 cols

3
2

 r
o
w

s

32 cols

 Kalray SA. Confidential - All Rights Reserved. 34  Kalray SA. Confidential - All Rights Reserved. 34

1.Kalray MPPA Platform

2.RISC Architectures

3.VLIW Architectures

4.RISC-V Accelerators

5.Converging to RISC-V

6.Conclusions

AGENDA

 Kalray SA. Confidential - All Rights Reserved. 35

The ET-SoC-1 chip features over one thousand
RISC-V processors on a single 7nm chip.

• 1088 energy-efficient ET-Minion 64-bit RISC-V
in-order cores, each with a custom
vector/tensor unit optimized for ML
applications

• 4 high-performance ET-Maxion 64-bit RISC-V
out of-order cores for running an OS in self-
hosted mode

• Over 160 million bytes of on-chip SRAM

ET-Minion executes instructions in order, for
maximum efficiency, while extensions support
vector and tensor operations on up to 256 bits of
floating-point data (using 16-bit or 32-bit
operands) or 512 bits of integer data (using 8-bit
operands) per clock cycle.

RISC-V BASED AI ACCELERATION EXAMPLE

 ESPERANTO ET-SOC-1

“Energy efficiency across a range of AI, HPC and
mixed mode workloads”

 Kalray SA. Confidential - All Rights Reserved. 36

Tenstorrent's Wormhole n150

• The Wormhole n150 features a single
processor with 72 Tensix cores. Each Tensix
core features 5 RISV-C baby cores

• Tensix cores support a variety of data formats,
including BF4, BF8, INT8, FP16, BF16, and
even FP64

• The new Wormhole n150 chip and its single
processor features a 160W TDP and pushes
262 TFLOPs of FP8 performance

Each Tensix core comprises of five RISC cores,
an array math unit for tensor operations, a SIMD
unit for vector operations, 1MB or 2MB of SRAM,
and fixed function hardware for accelerating
network packet operations and
compression/decompression.

RISC-V BASED AI ACCELERATION EXAMPLE

 TENSTORRENT WORMHOLE

“Featuring RISC-V & Phenomenal Price To
Performance Value”

 Kalray SA. Confidential - All Rights Reserved. 37

At the heart of Metis AI Processing Unit, there
are four AI Cores.

• Each AI core provides a 512×512 matrix-
vector multiplication (MVM) in-memory
compute array and a vector datapath that
operates on streams of data.

• Push as much as possible into low-level driver
software where we can innovate, correct, and
adapt throughout the product’s life cycle.

• Things like atomic handling may only be
standardized for specific platforms

• Therefore, each AI Core has a dedicated
RISC-V, application-class core, that has full
control over the datapath unit.

At the heart of each AI core is a massive in-
memory-computing-based matrix-vector-
multiplier to accelerate matrix operations, up to
53.5 TOPS at energy efficiency of 15 TOPS/W.

RISC-V BASED AI ACCELERATION EXAMPLE

 AXELERA METIS

“Powerful Edge Inference requires groundbreaking
and cost-effective AI acceleration”

 Kalray SA. Confidential - All Rights Reserved. 38

MIPS RISC-V Processors

• High-performance compute with simultaneous
multi-threading (SMT)

• 4-issue, 16-stage out-of-order pipeline with 1-
or 2-way SMT

• Custom instructions for improved memory
operations and data movement

Coherence Manager

• Support for up to 8 Coherent initiators
comprising of either MIPS RISC-V Processors
or 3rd party accelerators

• Cluster Level-2 Cache L2$ up to 2MB

• HW pre-fetch, widened busses, reduced
latency

RISC-V BASED AI ACCELERATION EXAMPLE

 MIPS ACCELERATOR INTEGRATION

“Bring your own accelerators”

 Kalray SA. Confidential - All Rights Reserved. 39

Vector Processing for AI/ML workloads

• SiFive Intelligence Extensions
(custom instructions that accelerate AI/ML
performance critical operations)

• VCIX interface for direct connectivity of vector
accelerators

• Separate vector load/store units (full-duplex
operation)

• 1024-bit VLEN (X390), 512-bit VLEN (X380)

Scalar processing architecture

• 64-bit RISC-V ISA, 8-stage dual-issue in-order

• Linux capable Applications processor

RISC-V BASED AI ACCELERATION EXAMPLE

 SIFIVE ACCELERATOR MORAY

“Tightly Integrated Matrix Engine shared between
four Shark processors with dual vector ALUs”

Matrix instructions accelerates GEMM routines

• Instructions fetched by CPU

• Source data comes from vector registers

Accumulator can be accessed by vector unit

• Accumulator context for each Shark core

 Kalray SA. Confidential - All Rights Reserved. 40

Out-of-order 64-bit core based on RISC-V ISA that
includes Gazzillion Misses™ Technology to
efficiently manage large data sets

The VU is fully compliant with the RISC-V Vector
Extension 1.0, can deliver up to 2048 bits of
computation per cycle

The TU implements Semidynamics’ custom
extension for tensor instructions achieves up to 8
TOPS (INT8) per GHz

The three components share the L1 data cache.
Furthermore, the VU and TU have access to the
same Vector Register

DMA-free programming: computations can be
offloaded to VU or TU with zero latency. Memory
copies are not required since the core, VU and TU
can access the same shared data cache

RISC-V BASED AI ACCELERATION EXAMPLE

 SEMIDYNAMICS ALL-IN-ONE

“Fuse CPU, GPU and NPU into a unified solution”

 Kalray SA. Confidential - All Rights Reserved. 41  Kalray SA. Confidential - All Rights Reserved. 41

1.Kalray MPPA Platform

2.RISC Architectures

3.VLIW Architectures

4.RISC-V Accelerators

5.Converging to RISC-V

6.Conclusions

AGENDA

 Kalray SA. Confidential - All Rights Reserved. 42

FRAMEWORK PARTNERSHIP AGREEMENT (FPA) FOR

DEVELOPING A LARGE-SCALE EUROPEAN INITIATIVE FOR HIGH

PERFORMANCE COMPUTING (HPC) ECOSYSTEM

Expected Outcome:

Framework Programme Agreement (FPA) for European
hardware and software technologies, based on RISC-V in
order to deliver high-end processors and/or accelerators
and systems based on a strategic research roadmap, and
the realisation of test-beds, pilots and/or demonstrators,
integrating these processors.

The FPA is expected to address the following
outcomes:

Contribution towards European technological sovereignty,
by establishing, maintaining and implementing a strategic
R&I roadmap that fosters the European capabilities to
design, develop and produce the IP related to high-end
processors and/or accelerators based on RISC-V, driven by
relevant key performance indicators.

 Kalray SA. Confidential - All Rights Reserved. 43

• Runs rich operating system (Linux distribution)

• Implements standard extensions, not V

• SMP programming model

• Out-of-Order superscalar micro-architecture

• Branch prediction

• Multiple instruction issue

• Hardware register renaming

• Hardware data prefetching

• Hardware speculative execution

• Runs simple run-time system or RTOS

• Compute unit (cluster) with local memory and
data move engine (DMA with atomics)

• Power-efficient micro-architecture

• In-order issue or VLIW core

• High-throughput local memory access

• Software data prefetching or preloading

• Possibly implements V extension as
prerequisite for matrix operations (custom
extension or IME & AME draft standards)

RISC-V FOR APPLICATION CORES

STANDARD LIBRARIES AND TOOLS

RISC-V FOR ACCELERATION CORES

CUSTOMIZED LIBRARIES AND TOOLS

RISC-V CORE IMPLEMENTATION DIRECTIONS

Application cores: for multicore processors maximizing single-thread performance

Acceleration cores: for manycore processors maximizing multiple thread throughput

 Kalray SA. Confidential - All Rights Reserved. 44

TWO OPTIONS FOR A RISC-V KVX EXTENSION

Both options require that KV4 instructions align on RISC-V (floating-point, atomics, memory)

Both options enable to execute multiple RISC-V instruction per cycle (in-order superscalar)

Ensure RISC-V compliance by running the standard RISC-V architecture test suites

1. KVX with RISC-V execution mode (PS bit)

• RISC-V and KVX instruction encoding may conflict

• Execute the RV64G user instructions without privilege

• Interrupts, Traps and SysCalls switch mode to KVX

• Also run low-level and runtime software in KVX mode

2. KVX as a (non-standard) RISC-V Extension

• Reuse the ‘C’ extension to encode the KVX ISA inside the RISC-V ISA opcode space

• Freely mix the two ISAs in a single application, enable to unify the two software toolchains

• Requires to reorganize the KVX encodings, which disconnects the KV4 tools from the KV3 tools

 Kalray SA. Confidential - All Rights Reserved. 45

OPTION1: KV4 CORE EXECUTING RISC-V BINARY CODE

Compiled application code produced with a standard RISC-V toolchain (GCC, NewLib)

Boot and initialize the KVX execution platform in KVX mode

Set the RISC-V start address in $SPC (saved PC), and Privilege Level in $SPS (saved PS)

Execute RFE so that execution starts in RISC-V mode at $SPC address

On RISC-V system call (ECALL), transition to higher Privilege Level which is back to KVX

 Kalray SA. Confidential - All Rights Reserved. 46

OPTION2: REUSE THE ‘C’ ENCODING SPACE FOR VLIW BUNDLES

Supporting VLIW encodings [The RISC-V Instruction Set Manual Volume I]

The base 32-bit encoding has to be supported to allow use of any standard software tools

Fixed-Size Instruction Group

Encoded-Length Groups

Fixed-Size Instruction Bundles

End-of-Group bits in Prefix

• Repurpose the two prefix bits in the fixed-width
32-bit encoding.

• One prefix bit can be used to signal "end-of-
group" if set …

• The main disadvantage of this approach is that
the base ISAs lack the complex predication
support usually required in an aggressive
VLIW system, and it is difficult to add space to
specify more predicate registers in the
standard 30-bit encoding space.

The proposed RISC-V KVX extension adapts the
“End-of-Group bits in Prefix” direction:

• “The main disadvantage” is from the implicit
assumption that a VLIW is EPIC-Style and that
bundles contain RISC-V instruction opcodes

• The RV64G ISA is register-constrained so the
VLIW instructions have to be recoded anyway

[The C extension also recodes basic instructions]

 Kalray SA. Confidential - All Rights Reserved. 47

BSC VPU Open Vector Interface (EPI VEC) Each RISC-V vector instruction is dispatched to a
KVX kernel that implements its functionality

Each KVX kernel could match or outperform a
RISC-V Vector instruction given the same local
memory system (bandwidth, latency)

Overhead of branching to a software kernel is not
significant for long vectors (BSC VPU target) and
could be lowered with hardware support

However, sequential runs of optimized hardware
/ software KVX kernels misses the “vector
chaining” opportunities

OPTION 1: CONNECT A VECTOR
PROCESSING UNIT (VPU) TO THE KVX
USING A WELL DEFINED INTERFACE

OPTION 2: EXECUTE VECTOR
INSTRUCTIONS BY RUNNING
“HORIZONTAL MICROCODE” KERNELS

SUPPORTING THE RISC-V VECTOR EXTENSION

The RISC-V Vector extension is designed for classic HPC applications (FP64)

Not yet proven for Edge / DSP applications, unlike Intel AVX512 and ARM NEON

The KVX SIMD ISA is designed for efficient mapping of Intel AVX512 and ARM NEON

 Kalray SA. Confidential - All Rights Reserved. 48

VECTOR INSTRUCTION CHAINING

Overlapped execution in a sequence of dependent vector instructions [Cray-1, Cray XMP]

Vector instruction starts as soon as the first elements of its source vectors are available

 Kalray SA. Confidential - All Rights Reserved. 49

Output from the BSC LLVM-based compiler in
vector-length agnostic (VLA) mode [Ferrer 2022]

Proposed solution: patching of binary RVV code
at load time or at MMU mapping time

• Identify the sequences of same vtype and vl
inside basic blocks (split at vsetvl* instruction)

• Select the subsequences of vector instructions
that expose chaining opportunities

• Generate or instantiate from a code template
the corresponding KVX kernel

• Patch all but one RVV instruction with NOP
and call the kernel in the last RVV instruction

See “Software Vector Chaining” [Ertl 2018]

DIRECTIONS FOR OPTION 2

Addressing the challenges of executing one vector instruction / kernel at a time

 Kalray SA. Confidential - All Rights Reserved. 50  Kalray SA. Confidential - All Rights Reserved. 50

1.Kalray MPPA Platform

2.RISC Architectures

3.VLIW Architectures

4.RISC-V Accelerators

5.Converging to RISC-V

6.Conclusions

AGENDA

 Kalray SA. Confidential - All Rights Reserved. 51

RISC AND VLIW ARCHITECURES

Common origin of RISC and VLIW architectures

• RISC architecture was motivated by exposing “vertical microcode” as simple register-register instructions

• VLIW architecture was motivated by exposing “horizontal microcode” as bundles of RISC-like instructions

In both cases, microcode was eliminated in favor of pipelined instructions, and architecture was tuned to
match compiler machine code optimizations

RISC and VLIW architectures have been extended to support SIMD and vector instructions

• SIMD instructions have architecturally defined vector sizes and execute single-cycle

• Vector instructions abstract vector size for binary compatibility but may not execute single-cycle

Compiler compatibility trumps binary compatibility, especially for VLIW domain-specific architectures (DSA)
“Ten lessons from three generations shaped Google's TPUv4i” [Jouppi et al. 2021 ISCA]

RISC implementations have evolved through superpipeline, superscalar in-order, superscalar out-of-order

VLIW implementations cannot execute out-of-order, so must explicitly manage register renaming at compile
time and mitigate the effects of variable load latencies

VLIW architectures still dominate in image processing, signal processing and AI pre/post processing

 Kalray SA. Confidential - All Rights Reserved. 52

• Gaudi2 integrates
Habana’s fourth
generation Tensor
Processor Core.

• The TPC is a general
purpose VLIW processor
which is 256B SIMD
wide and supports FP32,
BF16, FP16 & FP8, in
addition to INT32, INT16
& INT8 data types.

• the TPC exposes a
DMA-free programming
model which significantly
eases SW development.

• Each AI Engine tile
consists of a very long
instruction word (VLIW),
single instruction multiple
data (SIMD) vector
processor optimized for
machine learning and
advanced signal
processing applications.

• AMD XDNA is a spatial
dataflow NPU
architecture consisting of
a tiled array of AI Engine
processors.

INTEL/HABANA GAUDI
AI ACCELERATORS

XILINX VERSAL / AMD
XDNA AI ENGINES

SUCCESSFUL VLIW ACCELERATORS

Main applications in image processing, signal/telecom, AI

Synopsys, CEVA, Intel/Habana, Xilinx, AMD

 Kalray SA. Confidential - All Rights Reserved. 54

www.kalrayinc.com

THANK YOU

