@sncc D mm o
[ ]

Security of Embedded Al

Side-channel attacks for input extraction

Maria Méndez Real

Chaire Professeur Junior

Meutes de Drones Maritimes Autonomes et de Confiance
maria.mendez-real@univ-ubs.fr

ARCHI 2025



Contents

* Motivating security of embedded
Neural Network




Al In todays (critical) systems




« Autonomous navigation

« Cable detection/following

* Mine detection

« Survelllance, traffic monitoring
« Intrusion detection systems

=> put what can go wrong?
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What can go wrong?

« Misclassification
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Adversarial example
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Y. Zhong, et al., Adversarial Learning with Margin-based Triplet Embedding Regularization, CCV’19
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What can go wrong?

« Missclassification

- Adversarial examples in maritime autonomous systems
- Real physical scenarios?
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(a) Original Input (b) Adversarial Image

Wang, Y., et. al., Towards a physical-world adversarial patch for blinding object detection models. Informag
459-471.21
Tam, K, et. al.,. 'Adversarial Al Testcases for Maritime Autonomous Systems',Al, Computer Science and Robotics
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What can go wrong?

* Since, a panoply of attacks on different vulnerable
assets

Training Inference
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What can go wrong?

« Misclassification 3 2

 No response ontime 3
* |Ptheft 1

 Private data theft/disclosure 1

— unreliable Al, Security Properties
= mission failure, '

— collateral damage,
— data disclosure,

— money loss

3 Denial of service
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Objective (long term)

Are CNN models intrinsically different/vulnerable/robust to
SCA vulnerabllities?

How can the target and implementation choices impact
CNN security vulnerabilities?

Can CNN security vulnerabilites be evaluated/measured?

@sncc



Focus on privacy attacks

By observing side-channel information, can
secret/private information be deduced?

- Private information: inference inputs
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Side-Channel Information

« Electromagnetic emissions, power consumption
« Are NN just as vulnerable as crypto?
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Al vs Crypto

Al vs Crypto

- Secret asset: Secret key (256 bits) vs images
- Leakage assessment metrics

« Threat model specificities
- Crypto: public crypto algorithms
= Possible to hypothesize on intermediate results ...

@-STICC



Disclaimer

 This talk is not about Al

« This talk is about (some) security vulnerabilities of Al
accelerators
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Input extraction - vulnerabilities at
the SoC level?

 First work on black box scenario

* Threat model

Black box, no interaction with the victim NN
Physical proximity to the target
EM traces available to the attacker

« Deducing secret/private information from the victim EM
signature

@sncc



System considered and setup

Xilinx FINN to implement LeNet trained on MNIST

dataset on Zyng-7000 SoC (A9+FPGA)
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System considered and setup
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Leakage localization

 EM cartography
 Data transfer on current bus wires

0.1 mm distance, with a spatial resolution of 0.5 mm




Leakage localization

 EM cartography
 Data transfer on current bus wires, AXI 32-bit bus
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Intuition and leakage model

 The bus activity revealed by the EM emanations is proportional to
the hamming distance HD

- signed HD (upper/lower bit transitions)

Signed transitions

............

,,,,,,,,,,,,,,,,,,

EM traces -> activity on the bus




Intuition and leakage model

- Simply define a threshold to differentiate the set of the majority of the
pixels in a X-pixel group
- deducing the difference between neighbouring image pixels
-> Back vs foreground pixels

-> Single EM trace

Signed transitions Back/foreground detection

.............

,,,,,,,,,,,,,,,,,,

EM traces -> activity on the bus
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Some results
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(a) Example of original MNIST images (first line) with highly accurate recovered images through
HBIR (second line)
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(b) Example of original MNIST images (first line) with less accurate recovered images through
HBIR (second line)

« How to evaluate?

‘STICC



Some results

« 83,69% accuracy on the class of recovered images (vs 89%)

Target system

Image

[ 0] e
Output Class




Can we go further?
-> template-based attack

« Can we deduce input data characteristics?
 (Oriented) Hamming distance between two consecutive cycles?

 Threat model
- An access to a similar victim target is assumed prior to the attack

* Building a template attack? -> HD of 4/8/12/16

@ Prior to the attack

Database

'['(‘m[)ldl(‘

Raw EM Trace

1. Preparation > (_ 2. Correlation D 3. Reconstruction >

[ { Recovered Image
Data EM ']'l;n';' : QSTICC




Some results

Tests on MNIST and Fashion MNIST
How to evaluate?

- average HD difference: 12,5% MNIST, 30% Fashion MNIST

- recognition accurary: similar for MNIST, better for fashion MNIST (73%
vs 60%)

Example of horizontal attack-based reconstruction on fashion MNIST

Example of template-based reconstruction on fashion MNIST

| @-sncc
Template-based

Original Image HBIR



Some remarks

EM activity on data transfer applied to NN accelerators

Highly depends on the dataset
Interesting to enhance the accuracy at the pixel value?

Still a controlled environment
What about power?




Similar but CNN-based attack

 Threat model and objective
- Similar: EM, physical access
« Localizing the leakage

- Statistical approach: Test-Vector Leakage
Assessment (fixed vs random)

— Trace (class 0)
t-Score

Amplitude

—-15 1 . . : : :
0.00 0.25 0.50 0.75 1.00 1.25
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Similar but CNN-based attack

 Threat model and objective
- Similar: EM, physical access

« Approach:
- Test-Vector Leakage Assessment

- Directly training a classifier on EM traces (4layer, 1dimensional
CNN model)
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Set up and some results

« Setup: ZCU104

 Results on LeNet5: 13,77% less accuracy (vs 6% in our
simple image processing methodology)

Original accuracy Recognition accuracy on
reconstructed images

MNIST CIFAR-10 ImageNet-10 Device Implementation MNIST CIFAR-10 IMN-10
MLP 84.2 54.3 - MLP 45.6 54.7
CNN3 0R 8 - - CNN3 80.0 -
LeNet5 6.4 72 4 - ZCU104 LeNet5 74.5 -
SqueezeNet - 91.1 58.1 SqueezeNet - - 64.5
ResNet18 90.8 941 69.8 ResNet18 92.8 89.4 -
RPi3B LeNet5 - 96.3

@sncc
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Input extraction — within the accelerator
-> exploiting an implementation choice

 Threat model and objective
Physical proximity to the target
Power traces available

No interaction with the victim NN

Knowledge/hypothesis on NN implementation details
Assumes same input is infered several times (noise reduction)

Training
Data Set
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Intuition

« Deducing secret/private information from the dynamic power signature
« Convolution unit drives power consumption
How convolution is implemented?

. Can we observe intermediate values in the convolution unit and correlate
them to a power consumption model?

Convolution Unit

Input Image ' Line Buffer '
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Fig. 7: Detailed view of the convolution unit. Output is generated
from the 3x3 input image, shown in the red box, and the kernel.
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Power model

 The more internal activity (i.e., convolution unit), the higher the
power consumed

« |f dataremain unchanged between cycles, internal transitions
Induced are limited

= Observing the magnitude of the power consumption in
each cycle

= Deducing related pixels with similar values (e.g.,
background)

@-STICC



Experimental protocol

« Simply choosing a threshold to differentiate back from
foreground pixels

« EXxperimental setup
- BNN, kernel 3*3 and 5*5
- MNIST 28*28
- Line size buffer 28

- Xilinxs Spartan-6 on the SAKURA G board designed for
power measurements

@-STICC



Some results

« Metrics?
- Pixel-level accuracy
- Recognition accuracy (through MLP, vs 99%)

100
1751 !
Kernel 1 - 100% { p———tp— - -
I - :
150 1 mm Kernel 2 S aVeraQi- 81.6%
50 8 S 80%.
1251 Threshold = 0.5 @ g
- \ F25 g‘ 8
5 1991 o < 60%-
(=) 0 ¢ g
L 754 o o
25 2 g
o g 40% average: 64.6%
50 — o
50 o Q
| w1ad = 2
] T 75 O 20%4 —#— Original Image
0 | IJJ | I I I | I | I |JJJ.JJJ-. —4&— Recovered Image (3x3 kernel)
0.0 1.0 20 3.0 4.0 5.0 —#— Recovered Image (5x5 kernel)
(a) Power consumed per cycle 0% 5 : T I " : : : : :
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* Loss of information proportional to the size of the kernel

« Compared to EM?
@sncc
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 What if there is no physical access to

the victim?
@sncc



What if there is no physical access
to the victim?

 Multi tenant environment on FPGA

« The power distribution model is shared among the entire
FPGA

Multi tenant FPGA

User 1 circuit

User 2 circuit
@sncc

Shared Power
Distribution Network




What if there is no physical access
to the victim?

 Multi tenant environment on FPGA

« The power distribution model is shared among the entire
FPGA

Multi tenant FPGA

NN accelerator

Victim circuit

Attacker circuit
@sncc
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What if there is no physical access
to the victim?

Multi tenant environment on FPGA

The power distribution model is shared among the entire
FPGA

Can a collocated attacker sense what the victim is
processing?

Multi tenant FPGA

5 NN accelerator

% \ /

o %jj Victim circuit
e e e e P
9 .

S

G

"

Attacker circuit
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« Custom circuits can be designed as voltage sensors
- Signal delay varies as supply voltage changes

- An attacker circuit, near the victim circuit can sense voltage
changes and deduce the victim activity!

- EX
o Time Delay Converter
o Ring Oscillators

[(n-1) < Delay J_ Delay J — Delay .I




« Threat model
- Same, BUT no physical proximity is required
- No interaction with the NN
- Attack and victim co-located on the same FPGA
- Attack locates voltage sensors near the victim circuit
- Based on line buffer architecture for convolution implementation

. Multi-tenant FPGA
Input Image Sent

by Victim User Victim Circuit

‘Number 6’
= BNN Accelerator

Y

Side-Channel

6 X
Voltage Estimate T(n)
Sentto J_ J J
Adversary User T(n-1) < Delay Delay H... - Delay
T‘i‘l ) 'Il") lime-to-Digital Converter

Clk Adversary Circuit




Experimental setup

3 different Xilinx FPGA-based boards

TABLE I: Details of the evaluation boards used for the experiments.
The system clock generates the clock for the BNN accelerator and

TDC module.
Board Name Device FPGA Family Clk (MHz)
ChipWhisperer | XC7A100T Artix 7 50
ZCU104 XCZUTEV | Zynq UltraScale+ 120
VCU118 XCVU9P Virtex UltraScale+ 100

@sncc
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Some results

As ] { @ 80 7 " 0 Foreground
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Orange peaks are foreground pixels

STICC

Moini, Shayan, et al. "Remote power side-channel attacks on BNN accelerators in FPGAs." 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021.




Some results

«  Examples on inputs recovered on different boards

NONHBBZEANERE

(a) Input images

ROBRESANER

(b) Recovered images from ZCU104

NEARENANER

(c) Recovered images from VCU118

«  What can go wrong?




Some results

« Efficiency depends on the number of runs (same image), and TDC

placement (3000 runs)

Metric? -> cross-correlation, recognition accuracy (65%)

EREQER0

(a) ZCU104, (b) ZCU104, (c) VCU118, (d) VCU118,
cross-die adjacent cross-die adjacent

Fig. 9: Recovered images with adjacent and cross-die placement for
3,000 runs.

i

(a) 100, 0.19  (b) 500, 0.61 (c) 1,000, 0.65 (d) 3,000, 0.75

Fig. 10: Recovered images for the ZCU104 board for (number of
runs, normalized cross-correlation with the original image).
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Some conclusions

« Embedded Al are security/privacy vulnerable in many
ways
« Attack vectors at the implementation, at the SoC

* Privacy attacks
- Are these rather simple inputs interesting?/realistic?




Can we extract anything else?
welghts?

° Many Other a_tta_CkS_ 4 Systolic array N zzz # Processing Element (PE)
. . DNN model parameters by1 by b3 \8
What if the only thing the in {1
attacker knows is actually the -
Inputs?

« Alongwaytogo...




Solutions?

- Vulnerabilities on the bus transfer

- Vulnerabilities on the implementation
choices

- Vulnerabillities when sharing the PDN

@-STICC



-

Illustration of MACPruning

Attacker lose a proportion of correlated EM emission signal to
their attack model due to random pruned MAC operation.

iq i i3 W 23
Input tensor Weight matrix
Target weight: ws Attacker input: l1, 12, {3

Attack model: H W(a3) ?

| . > —» ——.Z —— ——>

;"r"a"ﬁ'do‘m;;fﬁiimg' jo Q =4 ‘\\

:  Which attack model should I use" Wthh MAC should Iattack"
* | HW(a3) = (iyw; + i3w3)? (i;w, + i3w3)? (iywy Hiow, + i3ws)?
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