
Multi-threading or SIMD?
How GPU architectures exploit regularity

Caroline Collange
Arénaire, LIP, ENS de Lyon

caroline.collange@inria.fr

ARCHI'11
June 14, 2011

 2

From GPU to integrated many-core

Yesterday (2000-2010)

Homogeneous multi-core

Discrete components Central
Processing Unit

(CPU)

Graphics
Processing
Unit (GPU)

Latency-
optimized

cores

Throughput-
optimized

cores

Today (2011-...)
Heterogeneous multi-core

Intel Sandy Bridge

AMD Fusion

NVIDIA Denver/Maxwell project…

Focus on the throughput-
optimized part

Similarities?

Differences?

Possible improvements?

Heterogeneous multi-core chip

Hardware
accelerators

 3

Outline

Performance or efficiency?

Latency architecture

Throughput architecture

Execution units: efficiency through regularity

Traditional divergence control

Towards more flexibility

Memory access: locality and regularity

Some memory organizations

Dealing with variable latency

 4

The 1980': pipelined processor

Example: scalar-vector multiplication: X ← a∙X

for i = 0 to n-1
X[i] ← a * X[i]

move i ← 0
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<n? loop Sequential CPU

add i ← 18

store X[17]

mul

Fetch

Decode

Execute

L/S Unit

Source code

Machine code

Memory

 5

The 1990': superscalar processor

Goal: improve performance of sequential applications

Latency: time to get the result

Exploits Instruction-Level Parallelism (ILP)

Lots of tricks

Branch prediction, out-of-order execution, register renaming,
data prefetching, memory disambiguation…

Basis: speculation

Take a bet on future events

If right: time gain

If wrong, roll back: energy loss

 6

What makes speculation work: regularity

Application behavior likely to follow regular patterns

Control
regularity

for(i…)
{

if(f(i)) {
}

j = g(i);
x = a[j];

}

Time

taken taken takentaken

Regular case Irregular case

taken takennot tk not tk

Memory
regularity

j=21 j=4 j=2j=17j=17 j=18 j=20j=19

Applications

Caches

Branch prediction

Instruction prefetch, data prefetch, write combining…

i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3

 7

The 2000': going multi-threaded

Obstacles to continuous CPU performance increase

Power wall

Memory wall

ILP wall

2000-2010: gradual transition from latency-oriented to
throughput-oriented

Homogeneous multi-core

Interleaved multi-threading

Clustered multi-threading

 8

Homogeneous multi-core

Replication of the complete execution engine

Multi-threaded software

Improves throughput thanks to explicit parallelism

move i ← slice_begin
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<slice_end? loop

Machine code

IF
ID

EX

LSU

IF

ID

EX

LSU

add i ← 18

store X[17]

mul

IF
ID

EX

LSU

IF

ID

EX

LSU

add i ← 50

store X[49]

mul

M
em

ory

T0 T1Threads:

 9

Interleaved multi-threading

mul

mul

add i ← 50

Fetch

Decode

Execute

L/S Unitload X[89]

Memory

Time-multiplexing of processing units

Same software view

Hides latency thanks to explicit parallelism

store X[72]
load X[17]

store X[49]

add i ← 73

T0 T1 T2 T3Threads:

move i ← slice_begin
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<slice_end? loop

Machine code

 10

Clustered multi-core

For each
individual unit,
select between

Replication

Time-multiplexing

Examples

Sun UltraSparc T2

AMD Bulldozer

Area-efficient tradeoff

br

mul

add i ← 50

Fetch

Decode

EX

L/S Unitload X[89]

Memory

store X[72]
load X[17]

store X[49]

mul
add i ← 73

store

T0 T1 T2 T3

→ Cluster 1 → Cluster 2

 11

Outline

Performance or efficiency?

Latency architecture

Throughput architecture

Execution units: efficiency through regularity

Traditional divergence control

Towards more flexibility

Memory access: locality and regularity

Some memory organizations

Dealing with variable latency

 12

Heterogeneity: causes and consequences

Latency-optimized multi-core

Low efficiency on parallel portions:
spends too much resources

Throughput-optimized multi-core

Low performance on sequential portions

Amdahl's law S=
1

1−P
P
N

Heterogeneous multi-core

Power-constrained: can afford idle
transistors

Suggests more radical specialization

Time to run
sequential portions

Time to run
parallel portions

13

Threading granularity

Coarse-grained threading

Decouple tasks to reduce
conflicts and inter-thread
communication

Fine-grained threading

Interleave tasks

Exhibit locality: neighbor
threads share memory

Exhibit regularity: neighbor
threads have a similar behavior

T0 T1 T2 T3

T0 T1 T2 T3

X

X

X[0..3] X[4..7] X[8..11] X[12-15]

X[0]
X[4]
X[8]
X[12]

X[1]
X[5]
X[9]
X[13]

X[2]
X[6]
X[10]
X[14]

X[3]
X[7]
X[11]
X[15]

 14

Parallel regularity

Similarity in behavior between threads

IrregularRegular

Control
regularity

Memory
regularity

T
im

e

Thread
1 2 3 41 2 3 4

switch(i) {
 case 2:...
 case 17:...
 case 21:...
}

i=21 i=4 i=2i=17i=17 i=17 i=17i=17

load
A[8]

load
A[0]

load
A[11]

load
A[3]

load
A[8]

load
A[9]

load
A[10]

load
A[11]

A Memory

Data
regularity

a=32 a=32

r=A[i]

r=a*b

a=32 a=32

b=52 b=52 b=52 b=52

a=17 a=-5 a=11 a=42

b=15 b=0 b=-2 b=52

 15

Single Instruction, Multiple Threads (SIMT)

In NVIDIA-speak

SIMT: Single Instruction, Multiple Threads

Convoy of synchronized threads: warp

Improves Area/Power-efficiency thanks to regularity

Consolidates memory transactions: less memory pressure

(0-3) store

(0) mul

IF

ID

EX

LSU(0)

M
em

ory

(1) mul (2) mul (3) mul

(1) (2) (3)

(0-3) load

Cooperative sharing of fetch/decode, load-store units

Fetch 1 instruction on behalf of several threads

Read 1 memory location and broadcast to several registers

T0

T1

T2

T3

 16

Example GPU: NVIDIA GeForce GTX 580

SIMT: warps of 32 threads

16 SMs / chip

2×16 cores / SM, 48 warps / SM

1580 Gflop/s

Up to 24576 threads in flight

Time

C
ore 1

C
ore 2

C
ore 16

Warp 3

Warp 1

Warp 47

SM1 SM16

……
C

ore 17

C
ore 18

C
ore 32

Warp 4

Warp 2

Warp 48

…

 17

Outline

Performance or efficiency?

Latency architecture

Throughput architecture

Execution units: efficiency through regularity

Traditional divergence control

Towards more flexibility

Memory access: locality and regularity

Some memory organizations

Dealing with variable latency

 18

Capturing instruction regularity

How to handle control divergence?

Techniques from Single Instruction,
Multiple Data (SIMD) architectures

Rules of the game

One thread per Processing Element
(PE)

All PE execute the same instruction

PEs can be individually disabled

PE 1 PE 21 instruction PE 0 PE 3

Thread 0 Thread 1 Thread 2 Thread 3

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

// Uniform condition

// Divergent conditions

 19

Most common: mask stack

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

Code

push

push

pop

push

pop

pop

1111

1111 1100

1111 1100 1000

1111 1100

1111 1100 0100

1111 1100

1111

Mask Stack
1 activity bit / thread

tid=0

tid=1

tid=2

tid=3

1111

skip

// Uniform condition

// Divergent conditions

A. Levinthal and T. Porter. Chap - a SIMD graphics processor. SIGGRAPH’84, 1984.

 20

Curiosity: activity counters

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

Code

inc

inc

dec

inc

dec

dec

0 0 0 0

Counters
1 (in)activity counter / thread

tid=0

tid=1

tid=2

tid=3

skip

// Uniform condition

// Divergent conditions

0 0 1 1

0 1 2 2

0 0 1 1

1 0 2 2

0 0 1 1

0 0 0 0

R. Keryell and N. Paris. Activity counter : New optimization for the dynamic scheduling of
SIMD control flow. ICPP ’93, 1993.

 21

Brute-force: 1 PC / thread

Master PC

Code Program Counters (PCs)
tid= 0 1 2 3x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

1 0 0 0

PC0

PC1

PC2 PC3

Match
→ active

No match
→ inactive

P. Hatcher et al. A production-quality C* compiler for Hypercube multicomputers,
PPOPP '91, 1991.

 22

Traditional SIMT pipeline

Instruction
Fetch

MPC,
Activity
mask

Insn,
Activity
mask B

ro
ad

ca
st

Exec
Instruction
Activity bit

Exec
Instruction,
Activity bit

Exec
Instruction,
Activity bit

Instruction
Sequencer

Mask
stack

Activity bit=0: discard instruction

Used in virtually every modern GPU

 23

Outline

Performance or efficiency?

Latency architecture

Throughput architecture

Execution units: efficiency through regularity

Traditional divergence control

Towards more flexibility

Memory access: locality and regularity

Some memory organizations

Maximizing throughput

 24

Goto considered harmful?

j
jal
jr
syscall

MIPS

jmpi
if
iff
else
endif
do
while
break
cont
halt
msave
mrest
push
pop

Intel GMA
Gen4
(2006)

jmpi
if
else
endif
case
while
break
cont
halt
call
return
fork

Intel GMA
SB
(2011)

push
push_else
pop
push_wqm
pop_wqm
else_wqm
jump_any
reactivate
reactivate_wqm
loop_start
loop_start_no_al
loop_start_dx10
loop_end
loop_continue
loop_break
jump
else
call
call_fs
return
return_fs
alu
alu_push_before
alu_pop_after
alu_pop2_after
alu_continue
alu_break
alu_else_after

AMD Cayman
(2011)

push
push_else
pop
loop_start
loop_start_no_al
loop_start_dx10
loop_end
loop_continue
loop_break
jump
else
call
call_fs
return
return_fs
alu
alu_push_before
alu_pop_after
alu_pop2_after
alu_continue
alu_break
alu_else_after

AMD
R600
(2007)

jump
loop
endloop
rep
endrep
breakloop
breakrep
continue

AMD
R500
(2005)

bar
bra
brk
brkpt
cal
cont
kil
pbk
pret
ret
ssy
trap
.s

NVIDIA
Tesla
(2007)

bar
bpt
bra
brk
brx
cal
cont
exit
jcal
jmx
kil
pbk
pret
ret
ssy
.s

NVIDIA
Fermi
(2010)

Control instructions in some CPU
and GPU instruction sets

Why so many?

Expose control flow structure to the instruction sequencer

 25

SIMD is so last century

Maspar MP-1 (1990)

1 instruction for
16 384 PEs

PE : ~1 mm²,
1.6 µm process

SIMD programming
model

NVIDIA Fermi (2010)

1 instruction for
16 PEs

PE : ~0,03 mm²,
40 nm process

Threaded programming
model

From centralized control to flexible distributed control

/1000

×50

Fewer PEs

Bigger PEs

More
divergence

 26

A democratic instruction sequencer

Maintain one PC per thread

Vote: select one of the individual PCs as the Master PC

Which one? Various policies:

Majority: most common PC

Minimum: threads which are late

Deepest control flow nesting level

Deepest function call nesting level

Various combinations of the former

J. Meng, D. Tarjan and K. Skadron. Dynamic warp subdivision for integrated branch and
memory divergence tolerance. ISCA'2010, 2010.

W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp formation and scheduling for efficient
GPU control flow. MICRO’07, 2007.

C. Collange. Une architecture unifiée pour traiter la divergence de contrôle et la divergence
mémoire en SIMT. SympA'14, 2011.

 27

Our new SIMT pipeline

V
ot

e Instruction
Fetch

MPC Insn,
MPC

B
ro

ad
ca

st

Match Exec Update PC
Insn

PC0PC0

PC1

Insn,
MPC

Match Exec Update PC
Insn

PC1
Insn,
MPC

Match Exec Update PC
Insn

PCn
Insn,
MPCPCn

No match: discard instruction

 28

Benefits of multiple-PC arbitration

Before: stack, counters

O(n), O(log n) memory
n = nesting depth

1 R/W port to memory

Exceptions: stack
overflow, underflow

Still SIMD semantics
(Bougé-Levaire)

Structured control flow only

Specific instruction sets

After: multiple PCs

O(1) memory

No shared state

Allows thread
suspension, restart,
migration

True SPMD semantics
(multi-thread)

Traditional languages,
compilers

Traditional instruction sets

Enables many new
architecture ideas

 29

add

With multiple warps

Two-stage scheduling

Select one warp

Select one instruction (MPC) for this warp

mul
mul

mul

mul

mul add store load
add add add

load mul add

sub0
1

0 1 2 3

PEReady? Next I

sub
add

Warp








add add add

load
mul

Execute

Read
registers

2
3

r4, r0
r1, r3
r3, [r1]
r5, r2

 30

add

Dual Instruction, Multiple Threads (DIMT)

Two-stage scheduling

Select one warp

Select two instructions (MPC1, MPC2) for this warp

mul
mul

mul

mul

mul add store load
add add add

load mul add

sub0
1

0 1 2 3
PEReady? Next I

sub
add

Warp








muladd add add

load
mul

Execute

Read
registers

2
3

r4, r0
r1, r3
r3, [r1]
r5, r2

More than 2 instructions: NIMT

add r1, r3
mul r5, r2
add r1, r3
add r1, r3

A. Glew. Coherent vector lane threading. Berkeley ParLab Seminar, 2009.

 31

Why DIMT?

“Fills holes” using parallelism between execution paths

Master PC 0

Code Program Counters (PCs)
tid= 0 1 2 3x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

PC0

PC1

PC2 PC3

No overlap

Master PC 1

 32

add

Dynamic Warp Formation (DWF)

Why need warps at all?

Select master PC from global thread pool

On each PE, select one thread from local thread pool

mul
mul

mul

mul

mul add store load
add add add

load mul add

sub
0 1 2 3

PEReady?








addadd add add Execute

Read
registers

W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp formation and scheduling for efficient
GPU control flow. MICRO’07, 2007.

 33

New DIMT+DWF pipeline

V
ot

e Instruction
Fetch

B
ro

ad
ca

st

Match Exec Update PC PC0

PC00

PC10

Insn0,
MPC0

Match Exec Update PC
Insn

1 PC1

Match Exec Update PC
Insn

PCn

PCnm

MPC0

MPC1

Insn0,
MPC0

Insn1,
MPC1

Insn1,
MPC1

Insn
0

tid
PC01

PC11

Radical departure from classical SIMD

 34

Avoiding redundancy

Goal: keep execution units busy?

Keep execution units busy doing real work!

 35

What are we computing on?

Uniform data

In a warp, v[i] = c 5 5 5 5 5 5 5 5

8 9 101112131415

thread
Affine data

In a warp, v[i] = b + i s

Base b, stride s
b=8

s=1

c=5

Inputs

Operations

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Uniform
Affine
Other

Average frequency on GPGPU applications

 36

mov i ← tid A←A
loop:

load t ← X[i] K←U[A]
mul t ← a×t K←U×K
store X[i] ← t U[A]←K
add i ← i+tcnt A←A+U
branch i<n? loop A<U?

loop:
load t ← X[i] K←U[A]
mul t ← a×t K←U×K
...

Instructions

t
17 X X X X X
0 1 X X X X

51 X X X X X

a
i
n

Thread
0 10 2 3 …

Tagging registers

K
U

U
A

Tag

Tags
Associate a tag to each
vector register

Uniform, Affine, unKnown

Propagate tags across
arithmetic instructions

2 lanes are enough to
encode uniform and affine
vectors

T
race

 37

Dynamic Work Factorization (DWF)

DecodeFetch

De-
duplication

Tags

Read
operands

Scalar
RF

Vector RF

Execute

Branch /
Mask

...

Reg ID Reg ID + tag

Inactive for
24% of instructions

Inactive for
38% of operands

C. Collange, D. Defour, Y. Zhang. Dynamic detection of uniform and affine vectors in
GPGPU computations. Europar HPPC09, 2009

 38

Catch-22

I.
Fetch

Vote Broadcast

Match Exec Update PC PC0

PC00

PC10

Insn0,
MPC0

Match Exec Update PC
Insn

1 PC1

Match Exec Update PC
Insn

PCn

PCnm

MPC0

MPC1

Insn0,
MPC0

Insn1,
MPC1

Insn1,
MPC1

Insn
0

tid
PC01

PC11

Control logic needs to stay much smaller / simpler /
less power-hungry than Execution logic

Is execution unit utilization such an issue anyway?

Tags

 39

Outline

Performance or efficiency?

Latency architecture

Throughput architecture

Execution units: efficiency through regularity

Traditional divergence control

Towards more flexibility

Memory access: locality and regularity

Some memory organizations

Dealing with variable latency

 40

It's the memory, stupid!

Our primary constraint: power

Power measurements on NVIDIA GT200

Energy/op
(nJ)

Total power
(W)

Instruction control 1.8 18

Multiply-add on a 32-wide
warp

3.6 36

Load 128B from DRAM 80 90

With the same amount of energy

Load 1 word from DRAM

Compute 44 flops

Memory traffic is what matters (most)

C. Collange, D. Defour, A. Tisserand. Power consumption of GPUs from a software
perspective. ICCS 2009.

 41

Memory access patterns

In traditional vector processing

Memory

Registers

Memory

Registers

T1 TnT2

T1 TnT2

Memory

Registers

T1 TnT2

In SIMT

Every load is a gather, every store is a scatter

Memory

Registers

T1 TnT2

Scalar load & broadcast Unit-strided load

(Non-unit) strided load Gather

Reduction & scalar store Unit-strided store

(Non-unit) strided store Scatter

 42

The memory we want

Many independent R/W ports

Supports lots of small transactions: 4B or 8B-wide

PE
0

PE
1

PE
2

PE
3

D
ecode rs

Addresses

Data: 4 bytes

 43

The memory we have

DRAMs

Wide bus, burst mode

Use wide transactions (≥32B)

Switching DRAM pages is expensive

Group accesses by pages (1 page ≈ 2KB)

One shared bus, read/write turnaround penalty

Group accesses by direction

Caches

Have wide cache lines
(128B-256B)

Have few R/W ports

 44

Breakdown of memory access patterns

Vast majority: uniform or unit-strided

And even aligned vectors

Loads Stores

“In making a design trade-off, favor the frequent case over the infrequent case.” [HP06]

 45

Coalescing concurrent requests

Unit-strided detection (NVIDIA CC 1.0-1.1 coalescing)

1. Select one request,
consider maximal
aligned transaction

2. Identify requests that fall
in the same memory segment

3. Reduce transaction size
when possible and issue
transaction
4. Repeat with remaining
requests

→ One transaction

Unit-strided and
aligned requests

Non-unit-strided or
unaligned requests

→ Multiple transactions

Minimal coverage (NVIDIA CC 1.2 coalescing)

 46

Banked shared memory

Software-managed memory

Interleaved on a word-by-word basis
D

ecode r

PE
0

PE
1

PE
2

PE
3

Bank arbiter

Addresses

1 word/bank

Used in NVIDIA Tesla (2007)

Data

 47

Hardware-managed cache

Share one wide port to the L1 cache

Multiple lanes can read from the same cache line

Bottleneck: single-ported cache tags

D
ecode r

PE
0

PE
1

PE
2

PE
3

Arbiter

1 line

L1D
Cache
Array

Addresses:
cache lines

Data

D
ecode r

L1D
Cache
Tags

Used in NVIDIA Fermi (2010)

 48

Outline

Performance or efficiency?

Latency architecture

Throughput architecture

Execution units: efficiency through regularity

Traditional divergence control

Towards more flexibility

Memory access: locality and regularity

Some memory organizations

Dealing with variable latency

 49

Dealing with pipeline hazards

Bank conflicts

Lost arbitration

Cache misses

Conventional solution: stall execution pipeline until
resolved

 50

Preferred solution: in-order replay

Instruction replay

Keep pipeline running

Put back offending instruction in
instruction queue

With updated pred mask:
only replay threads that failed

ICache
FetchV

ot
e

B
ro

ad
ca

st

Match Exec

Match Exec

Match Exec

Match Exec B
an

k
ar

bi
tr

at
io

n

Data
Cache

Addresses

PC0

PC1

PCn

,

Insn
Queue

Replay (insn, mask)

Used in NVIDIA Tesla (2007)

 51

Dynamic Warp Subdivision

Consider Replay as a control-flow operation (or no-op)

Threads that miss are turned inactive until data arrives

Threads that hit ask for next instruction

Memory divergence = branch divergence

Both handled the same way

When one thread misses, no need to block the whole
warp

Tradeoff: more latency hiding, lower ALU utilization

Could counteract utilization loss with DIMT/NIMT?

J. Meng, D. Tarjan and K. Skadron. Dynamic warp subdivision for integrated branch and
memory divergence tolerance. ISCA'2010, 2010.

 52

Linked list traversal: without DWS
1: while(i != -1) {
2: i = l[i];
3: }

PC=2 PC=2

Thread 0 Thread 1 Thread 2 Thread 3

PC=2 PC=2MPC=2
2: i = l[i]; hit hitmiss miss

PC=1 PC=1
1: i != -1?
MPC=1

true true

PC=2PC=2MPC=2
2: i = l[i]; hitmiss

PC=1
1: i != -1?
MPC=1

false

PC=1
true

PC=1
false

PC=3PC=2
hit

PC=1

true

PC=1

true

PC=3

 53

Linked list traversal: with DWS
1: while(i != -1) {
2: i = l[i];
3: }

PC=2 PC=2

Thread 0 Thread 1 Thread 2 Thread 3

PC=2 PC=2MPC=2
2: i = l[i]; hit hitmiss miss

ready=0 ready=0
PC=1 PC=1

1: i != -1?
MPC=1

true true

PC=2PC=2MPC=2
2: i = l[i];

hit
miss

ready=0
PC=1

1: i != -1?
MPC=1

false

PC=3

ready=1

PC=1
true

ready=1

PC=1
false

PC=3PC=2
hit

MPC=2
2: i = l[i]; ready=1

PC=3
1: i != -1?
MPC=1 PC=1

true

PC=1

true

PC=3

 54

SIMT pipeline – memory instruction

ICache
FetchV

ot
e

B
ro

ad
ca

st

Match Exec
Write-back
Update PC

PC0

v0

Match Exec
PC1

v1

Match Exec
PCn

vn

Match Exec B
an

k
ar

bi
tr

at
io

n

Data
Cache

PC2

v2

Addresses
Data,
hit/miss

Bank conflictDivergenceHazards: Cache miss

PC0,v0

PC1, v1

PCn, vn

,

all cause PC and valid bit to be updated accordingly
A

C
K

/N
A

C
K

 55

Conclusion: the missing link

New range of architecture options between
Simultaneous Multi-Threading, Chip Multi-Threading
and SIMD

Exploits parallel regularity for higher perf/W

CMP

SMT

CMTSIMD
stack-based

SIMT
PC-based

SIMT

SIMD programming model Multi-thread programming model

Optimize for
regularity

Allow more
flexibility

 56

Perspectives: next challenges

Instruction fetch policy, thread scheduling policy:
objectives to balance

Instruction throughput

Memory-level parallelism

Fairness

Regularity — coherence

Detect control-flow reconvergence points

Cross-fertilization with ideas from “classical” multi-
threaded microarchitecture ?

Multi-threading or SIMD?
How GPU architectures exploit regularity

Caroline Collange
Arénaire, LIP, ENS de Lyon

caroline.collange@inria.fr

ARCHI'11
June 14, 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

