

Une introduction à la synthèse de haut-niveau

(ou comment générer des architectures matérielles à partir du langage C)

Université de Bretagne-Sud Lab-STICC

Philippe COUSSY philippe.coussy@univ-ubs.fr

Productivity gap

Context

Context

Design methodologies

Synthesis and verification automation has always been key factors in the evolution of the design process

- Allow to explore the design space efficiently and rapidly
- Correct by construction design

Design methodologies

Software domain

- Machine code (binary sequence)
- 1950s: concept of assembly language (and assembler)
 - □ based on mnemonics
 - □ Maurice V. Wilkes de l'université de Cambridge
- Later: High-level languages and compilers
 - □ 1951: First compiler
 - (A-0 system) par Grace Hopper
 - □ Fortran 1954-1957: First high-level language
 - FORmula TRANslator
 - □ Cobol 1959, Basic 1964, C 1972, C++ 1983...

High-level language

- Platform independent
- Follow the rules of human language
 - □ with a grammar, a syntax and a semantic
- Provide flexibility and portability
 - □ by hiding details of the computer architecture

Design methodologies

Hardware domain

- 1960: IC were done by hand
 - □ designed, optimized and laid out
- 1970: Gate-level simulation
- end of 70: Cycle-based simulation
- 1980: Wide automation
 - place & route, schematic circuit capture, formal verification and static timing analysis
- Mid 1980: Hardware description language
 - □ 1986 Verilog, 1987 VHDL
- 1990: logic synthesis
 - □ VHDL and Verilog synthesizable subsets
- Mid 1990:
 - □ High-level synthesis (First gen),
 - Co-design, IP-core reuse...
- 2000 : Electronic System Level ESL
 - System level language
 - SystemC, SystemVerilog...,
 - Virtual prototyping, Transaction Level Modellin TLM ...

Design gap

SOC Design Cost Model

8/68

Electronic System Level Design (ESLD)

ESL Market

Outline

□ Lab-STICC

General context

□ High-Level Synthesis

- Brief introduction
- "In details"

- Overview
- Results
- **Conclusion**
- References

Typical HW design flow

Starting from a Register Transfer Level description, generate an IC layout

Typical HW design flow

Starting from a functional description, automatically generate an RTL architecture

High-level synthesis

Starting from a functional description, automatically generate an RTL architecture

Constraints

- Timing constraints: latency and/or throughput
- Resource constraints: #Operators and/or #Registers and/or #Memory, #Slices...

Objectives

- Minimization: area i.e. resources, latency, power consumption...
- Maximization: throughput

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

HLS steps: inputs

HLS steps: Compilation

Synthesis steps

Compilation

Generates a formal modeling of the specification

Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

Operator architecture

□ Full 1-bit adder : X + Y + Z

- X, Y are the operands
- Z is the input carry

Ripple Carry Adder

- Add two integers A and B
- Cascade of 1-bit adders => Ripple-Carry Adder

Operator architecture

Carry Look-ahead adder CLA

Uses a carry generator to compute all the carries concurrently
faster but also larger than the RCA

Library characterization

RTL architecture produced by HLS depends on the capabilities and characteristics of the operators

Library processing reads the available libraries and determines the functional, timing, and area characteristics of the available parts.

HLS steps: Selection

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

HLS steps: allocation

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

HLS steps: scheduling

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

HLS steps: binding

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

HLS steps: output

RTL Architecture

Controller

- FSM controller
- Programmable controller

Datapath components

- Storage components
- Functional units
- Connection components

Source :

Embedded System Design, © 2009, Gajski, Abdi, Gerstlauer, Schirner

Example

□ This architecture performs the following operations:

- store two variables coming from the port P1 in R1 and R2
- store one variable coming from the port P2 in R3
- add the variables stored in R1 and R3 and put the result in R4
- add the variables stored in R2 and R3 and put the result in R4
- connect either R1 or R2 to A1

□ the control unit manages this connection through M1

RTL architecture

Source : Embedded System Design, © 2009, Gajski, Abdi, Gerstlauer, Schirner

Problem examples and design flow

Resource constrained HLS

Limited number of resources

- e.g.: 2 multipliers, 3 adders
- Pseudo architecture

Schedule operations according to the available operators in the current control step

Objectives

Minimize the latency or maximize the throughput

□ based on operations mobility i.e. operations urgency

Resource constrained HLS

Limited number of resources

- e.g.: 2 multipliers, 3 adders
- Pseudo architecture

Schedule operations according to the available operators in the current control step

Objectives

Minimize the latency or maximize the throughput

□ based on operations mobility i.e. operations urgency

Allocation and then Scheduling
Time constrained HLS

Latency constraint

e.g. 5 clock cycles to process all the data

Throughput constraint

- Cadency, initiation interval...
- e.g. process each 5 cycles a new set of input data

Schedule operations by using operators as much as needed

Objective

Minimize the circuit area

Time constrained HLS

Latency constraint

e.g. 5 clock cycles to process all the data

Throughput constraint

- Cadency, initiation interval...
- e.g. process each 5 cycles a new set of input data

Schedule operations by using operators as much as needed

Objective

Minimize the circuit area

Scheduling and then Allocation

Design flows

And a lot of other problems...

□ Variable merging Storage Sharing

Operation merging Operator sharing

Connection merging

Bus sharing

Register merging

Register file...

Chaining

Several sequential operations in a cycle

Multi-cycling

One operation takes more than one clock cycle to execute

Pipelining

Pipelined Datapath, pipelined operator, pipelined controller

Chaining, multi-cycling

one clock cycle to execute

Outline

□ Lab-STICC

General context

□ High-Level Synthesis

- Brief introduction
- "In details"

- Overview
- Results
- **Conclusion**
- **References**

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

High-level synthesis goal

Starting from a functional description, automatically generate an RTL architecture

- Mathematic formula
- Matlab/Simulink
- C/C++/SystemC
- · . . .

Synthesizable models

C for the synthesis:

- No pointer
 - □ Statically unresolved
 - Arrays are allowed!
- No standard function call
 printf, scanf, fopen, malloc...
- Function calls are allowed
 Can be in-lined or not

Finite precision
 Bit accurate integers, fixed point, signed, unsigned...
 Based on SystemC or Mentor Graphics data types
 sc_int, sc_fixed
 ac_int, ac_fixed

Synthesizable models

C for the synthesis:

Finite precision

□ bit accurate integer, fixed point, signed, unsigned...

S/W C: Overflow checks everywhere.

unsigned int x, y, z, cy; z = x + y; if (0xFF..FF - x >= y) cy = 0; // bit 32 else cy = 1; // bit 32 H/W C: Check unnecessary.

Purely functional Example #1: a simple C code

#define N 16

```
int main(int data_in, int *data_out)
{ static const int Coeffs [N] = {98,-39,-327,439,950,-2097,-1674,9883,9883,-1674,-2097,950,439,-327,-39,98};
 int Values[N];
 int temp;
 int sample, i, j;
  sample = data_in;
  temp = sample * Coeffs[N-1];
  for(i = 1; i<=(N-1); i++){
          temp += Values[i] * Coeffs[N-i-1];
   }
  for(j=(N-1); j>=2; j=1){
     Values[j] = Values[j-1];
  }
  Values[1] = sample;
  *data_out=temp;
```

return 0;

}

Purely functional example #2: bit accurate C++ code

```
temp = sample * Coeffs[N-1];
for(int i = 1; i<=(N-1); i++){
    temp = Values [i] * Coeffs[N-i-1] + temp;
}</pre>
```

```
for(int j=(N-1); j>=2; j-=1){
    Values[j] = Values [j-1];
}
Values[1] = sample;
```

```
data_out=temp;
return 0;
```

}

Fixed-point

Fixed point:

Fixed point: rounding mode

SC_RND SC_TRN **Fixed point: overflow mode**

Bit accurate operation

□ Sign extension before the computation

Fixed point operation

High-level synthesis goal

Starting from a functional description, automatically generate an RTL architecture

- Algorithmic description
 no timing notion in the source code
- Behavioral description
 Notion of step / local timing constraints in the source code
 by using the wait statements of SystemC for example
- The description can be
 "RTL oriented" "Function oriented"

High-level synthesis

Starting from a functional description, automatically generate an RTL architecture

Algorithmic description
 No timing notion in the source code
 Mainly oriented toward data dominated application
 Highly processing algorithm like filters...
 Initial description can be
 "RTL oriented"
 "Function oriented"

Behavioral description

□ Notion of step / local timing constraints in the source code

- by using the wait statements of SystemC for example
- □ Can be used for both data and control dominated application

Interface controller, DMA...

Filters...

High-level synthesis

Starting from a functional description, automatically generate an RTL architecture

Algorithmic description

- □ No timing notion in the source code
- □ Mainly oriented toward data dominated application
 - Highly processing algorithm like filters...
- □ Initial description can be
 - "RTL oriented"
 - "Function oriented"

Behavioral description

- □ Notion of step / local timing constraints in the source code
 - by using the wait statements of SystemC for example
- **Can be used for both data and control dominated application**
 - Interface controller, DMA...
 - Filters...

Behavioral description

Behavioral description

□ Notion of step / local timing constraints in the source code

by using the wait statements of SystemC for example

Function v.s. RTL description

```
01:
    int OnesCounter(int Data) {
02:
    int Ocount = 0;
03:
    int Temp, Mask = 1;
04:
    while (Data > 0) {
05:
    Temp = Data & Mask;
06
    Ocount = Data + Temp;
07:
    Data >>= 1;
08:
09:
    return Ocount;
10:
    }
```

01: **while**(1) { 02: while (Start == 0); 03: Done = 0;04: Data = Input; 05: Ocount = 0;06: Mask = 1;07: while (Data>0) { 08: Temp = Data & Mask; 09: Ocount = Ocount + Temp; 10: Data >>= 1;11: } 12: Output = Ocount; 13: Done = 1; 14: }

Function-based C code

RTL-based C code

Source :

Embedded System Design, © 2009, Gajski, Abdi, Gerstlauer, Schirner

High-level transformations

No Unrolling 1 Adder shared for 4 additions Latency = 4 cycles

r[0] = a[0] + b[0]; r[1] = a[1] + b[1]; r[2] = a[2] + b[2]; r[3] = a[3] + b[3];

Unrolling = 4 (Full) 4 Adders in parallel Latency = 1 cycle

for (i = 0; i<32; i++)
{
a[i] = b[i] * c[i];
}
for (i = 0; i<16; i++)
{
z[i] = a[i] + x[i];
1

No Merging Loops execute sequentially Latency = 48 cycles

for (i = 0; i<32; i++)
{
 atmp = b[i] * c[i];
 if (i<16)
 z[i] = atmp + x[i];
}</pre>

Merging Enabled Loops execute in parallel Latency = 32 cycles

High-level transformations

Loops

- Loop pipelining,
- loop unrolling
 - □ None, partially, completely
- Loop merging
- Loop tiling
-

□ Arrays

- Arrays can be mapped on memory banks
- Arrays can be synthesized as registers
- Constant arrays can be synthesized as logic
- **...**

□ Functions

- Function calls can be in-lined
- Function is synthesized as an operator
 - Sequential, pipelined, functional unit...
- Single function instantiation
- **.**...

Compilation

Optimization

- Constant folding
- Dead code elimination
- Common sub-expression elimination
 Eliminate redundant operations
- · ...

Formal model

- Inputs, outputs, and operations of the algorithm are identified
- Data and/or control dependencies are determined
- Intermediate representation is generated

Control-Flow Graph CFG

Exhibits operation sequences

Through control dependencies

The sequence of operations comes directly from the source code

- The sequence is kept unchanged
 - □ This limits the parallelism which should be limited if this representation is used to model control-oriented application

Example

1:
$$t = a+b$$
;
2: $u = a'-b'$;
3: *if* (av = t+c;
else
{
5: $w = u+c'$;
6: $v = w-d$;
}
7: $x = v+e$;
8: $y = v-e$;
8: $y = v-e$;

Source code

Graphical representation

Example (2)

Data Flow Graph DFG

Exhibits the parallelism between operations

Through data dependencies
 Variable node, operation node

Intermediate representation

 $O = ((n_{01}+n_{02})^*n_{12}) - (n_{21}+n_{22})$

CDFG => DFG

Exhibits the parallelism between operations

- Through data dependencies
 - □ Variable node, operation node

Loops are completely unrolled

Conditional assignments are transformed

■ i.e. *if/switch* constructs, are resolved by creating multiplexed values

Example

Example

(b') (a') **`C'** bu) a 1: t = a+b; 2: u = a'-b';3: *if* (a<b) 4: v = t+c;C W C else { 5: w = u + c';tmp1 tmp2 6: v = w+d;Cmux 7: x = v + e;8: y = v-e; e Source code

Data Flow Graph DFG

Scheduling

- Resource constrained
 - Latency minimization
 - List-Scheduling...

□ Throughput maximization

- Modulo scheduling (IMS, SMS...)
- Time constrained

Resource *minimization*

Force-directed scheduling, ILP...

Linear FSM controller

Worst execution time for the conditional assignments

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

Scheduling

Defines the execution date of each operation

□ Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

List-scheduling

Constraints

- 1 adder (1 cycle)
- 1 subtractor (1 cycle)
- 1 comparing component (1 cycle)
- No chaining

ASAP

List-scheduling

Constraints

- 1 adder (1 cycle)
- 1 subtractor (1 cycle)
- 1 comparing component (1 cycle)
- No chaining

Priority = 1/Mobility

List-scheduling

List-based scheduling

Scheduling under throughput constraint (cadency)

- First operator allocation that a priori support the required parallelism
 - In many HLS approach, an initial resource allocation is performed and subsequently modified during scheduling and/or binding => it is a lower bound
- The average parallelism is calculated separately for each type of operation of the DGF

$$avr_opr(type) = \left[\frac{nb_ops(type)}{\left\lfloor\frac{H}{T(opr)}\right\rfloor}\right]$$

With *II* the Initiation Interval (cadency) *nb_ops(type)* the number of operators of type *type T(opr)* the propagation time of the operator (in cycles)

List-based scheduling

Constraint

Throughput : one iteration each 3 cycles

Step3 Step4 Step5 Step6

Step2

Step1

Impact on the memory

Input : X[N] Constant : H[N] // in memory

Without memory constraints Iteration_period = 60ns Nb_opr(*) = 2 Nb_opr(+) = 1

The memory mapping has to be done by the user

Memory constraints

With memory constraints => 1 memory bank Iteration_period = 100ns Nb_opr(*) = 1 Nb_opr(+) = 1

The memory access is the bottleneck !

Latency(arch) = 90 ns

Impact on the I/O interface

Input : X[N] Constant : H[N] // in memory

Without I/O constraints Iteration_period = 60ns Nb_opr(*) = 2 Nb_opr(+) = 1

I/O timing constraints

0	10	20	30	40	50
H(0)		H(3)			
H(1)					
mul5		mul21			
X(1)				_	
X(0)		X(3)			
mul9					
	mul15				
	X(2)				
	H(2)				
		workshop_1			
		tmp			
		add11	add17	add23	
			tmp0001	tmp0002	
			workshop_1		
				workshop_1	
					sum

With I/O constraints 4 input data in parallel Latency = 50ns Iteration_period = 60ns Nb_opr(*) = 3 (and not 4) Nb_opr(+) = 1

I/O timing constraints

With I/O timing constraints 1 data per 4 cycles Latency (arch) = 150 ns

Iteration_period = 170ns Nb_opr(*) = 1 Nb_opr(+) = 1

=> 1 input port / 1 output port

Synthesis steps

Compilation

Generates a formal modeling of the specification

□ Selection

Chooses the architecture of the operators

□ Allocation

Defines the number of operators for each selected type

□ Scheduling

Defines the execution date of each operation

Binding (or Assignment)

- Defines which operator will execute a given operation
- Defines which memory element will store a data

□ Architecture generation

Writes out the RTL source code in the target language e.g. VHDL

Specification

Compilation => DFG

Scheduling

Timing information

 \mathbf{O}

Formal model for variable binding

(a) Data lifetimes

(b) Compatibility graph

Timing information and formal model

(c) Compatibility graph

Operation binding

017

Compatibility and conflict graphs

Clique partitioning : Binding based on a compatibility graph. Edge exists between two data which lifetimes are not overlapping: they can share the same register.

Compatibility graph

clique (sub-graph)

Graph coloring: Binding based on a conflict graph. Edge exists between two data which lifetimes are overlapping: they can not share the same register.

Incompatibility graph

Graph coloring

(weighted) Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two disjoint sets A and B such that every edge connects a vertex in A to one in B

Example

Goal: maximize the use of existing connections between operators (Muxes optimization) while minimizing their size weight = combination between the size and the number of connection

For each cycle (control step):

• Create a bipartite graph: free operators, operations to bind

Compute weights

Bipartite Weighted Matching

Maximum Weighted Bipartite Matching : Hungarian method (munkres algorithm)

91/68

Clique partitioning algorithm: Tseng's Algorithm

- 1. Group nodes which have the greatest common neighbor number
- 2. Repeat until all the edges are removed
- 3. Each clique corresponds to a storage unit

Data binding : the Left Edge algorithm

Data are ordered by increasing birth date

□ Leftmost data are bound to distinct registers

Data binding : the Left Edge algorithm

Data are ordered by increasing birth date

□ Leftmost data are bound to distinct registers

Data binding : the Left Edge algorithm

Left-edge algorithm does not take into account multiplexor cost

Resource Binding

Multiplexer and interconnect costs are significant.

Cyclic inter-dependency exists between FU binding and register binding To minimize interconnection, one task needs the other's result to make accurate decision

Resource constraints: 2 FUs, 2 REGs

The inter-dependency is far more complicated in real designs

Use « manual allocation » to change FU binding arround the best point Use a metaHeuristic: Variable Neighborhood Search, simulated annealing or Tabu search

Resource Binding

Register files may be used to hide the multiplexers, which are replaced by dedicated decoders

Merge registers with non-overlapping access dates

Х

REG x

Outline

□ Lab-STICC

□ General context

□ High-Level Synthesis

- Brief introduction
- "In details"

- Overview
- Results
- **Conclusion**
- **References**

GAUT

□ An academic, free and open source HLS tool

Dedicated to DSP applications

- Data-dominated algorithm
 - □ 1D, 2D Filters
 - □ Transforms (Fourrier, Hadamar, DCT...)
 - □ Channel Coding, source coding algorithms

□ Input : bit-accurate C/C++ algorithm

bit-accurate integer and fixed-point from Mentor Graphics

Output : RTL Architecture

- VHDL
- SystemC
 - CABA: Cycle accurate and Bit accurate
 - □ TLM: Transaction level model
 - Compatible with both SocLib and MPARM virtual prototyping platforms
- Automated Test-bench generation
- Automated operators characterization

GAUT: Constraints

GAUT: Design flow

GAUT: Compilation

GAUT 2.4.3 build 17/02/2010 - Lab-STICC	., UBS University, Lorient (F	France)			
III 🥶 🖉 🎨 🗹 bitwidth i	aware Library: notech_16b				UMR 3/192
Opened file : C:\GAUT_2_4_3_testnew\test\idct_so C/C++ Compiler Graph	oclib\idct.c				
D 🕾 📲 🔮 🖻 🗅 👘 🖓	· 🖻 👗 🛍 🛛 👌	8 🖗 🗄	Arial	✓ 12 ✓	۵.
int main(const int32_t in[BLOCK_SIZE], /* uint8_t*/ in {	nt32_t ldct[BLOCK_SIZE])				^
#define Idct(i,j) Idct[8*i+j] int32_t Y[BLOCK_HEIGHT][BLOCK_WIDTH]; int row, column;					
for (row = 0; row < BLOCK_HEIGHT; row++) { for (column = 0; column < BLOCK_WIDTH; co Y[row][column] = SCALE(in[(row << 3) + colu idct_1d(Y[row],Y[row]); /* Result Y is scaled up by factor sqrt(8)*2^S_I }	olumn++) umn], S_BITS); BITS. */				
for (column = 0; column < BLOCK_WIDTH; colu int32_t Yc[BLOCK_HEIGHT];	ımn++) {				
for (row = 0; row < BLOCK_HEIGHT; row++) Yc[row] = Y[row][column];					
idct_1d(Yc,Yc); for (row = 0; row < BLOCK_HEIGHT; row++) {					
/* Result is once more scaled up by a factor int32_t r = 128 + DESCALE(Yc[row], S_BITS /* Clip to 8 bits unsigned: */ r = r > 0 ? (r < 255 ? r : 255) : 0;	r sqrt(8). */ 3 + 3);				=
lact(row, column) = r;					~
Warning : Variable idct_1d@rot@COS(0,1) is used but not generate cdfg file : idct.cdfg	t defined (constant ?) !!!				^
Bitwidth and Signed optimization End of analysis Time used for analysis: 844 me					
					~
					Line 1 Column 1

GAUT: DFG viewer

GAUT: Operators characterization

GAUT: Synthesis steps

GAUT: I/O and memory constraints

😫 GAUT 2.4.3 build 17/02/2010 - Lab-STICC, U	BS University, Lorient (France)								
🗐 📑 🔮 🔀 🖉 Di	itwidth aware								
Opened file : null		_							
Input/Output Constraints Memory Constraints Synthesis M	ulti Mode								
From PU point of view									
	Mode	Port	Time						
Name	Piode	Foit							
in(0)	Input	1							
in(1)	Input	1	5						
in(2)	Input	1	10						
in(3)	Input	1	15						
in(4)	Input	1	20						
in(5)	Input	1	25						
in(6)	Input	1	30						
In(7)	Input	1	35						
in(8)	Input	1	40						
in(9)	Input	1	45						
in(10)	Input	1	50						
in(11)	Input	1	55						
in(12)	Input	1	60						
in(13)	Input	1	65						
in(14)	Input	1	70						
in(15)	Input	1	75						
in(16)	Input	1	80						
in(17)	Input	1	85						
in(18)	Input	1	90						
in(19)	Input	1	95						
in(20)	Input	1	100						
in(21)	Input	1	105						
in(22)	Input	1	110						
in(23)	Input	1	115						
in(24)	Input	1	120						
in(25)	Input	1	125						
in(26)	Input	1	130						
in(27)	Input	1	135						
in(28)	Input	1	140						
in(29)	Input	1	145						
in(30)	Input	1	150 🗸						
<			>						
Time u	ised for creating io constraints table : 16 ms								

GAUT: Gantt viewer

📴 GAUT 2.4.3 bi	uild 17/02/2	010 - Lab-S	TICC, UBS Un	niversity, Lo	rient (Franc	e)										
	31	🖷 🐠 Re 💋	✓ bitwidth	h aware 🛛	brary: notech	_16b						Lab <mark>·</mark> ST		X 5/ R 3192		
Opened file : C:\GAUT_2_4_3_testnew\test\idct_soclib\idct_UT.gantt Gantt																
	ka k															
	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	
slišsšsšsš1cvde.9	ell¢e¢e¢e¢1c			ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c		ell¢e¢e¢e¢1c		ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c	ell¢e¢e¢e¢1c	
register, 15	in(0)	in(1)	in(2)	in(3)	in(4)	in(5)	in(6)	in(7)	in(8)	in(9)	in(10)	in(11)	in(12)	in(13)	in(14)	1
constant.5	const 3	11(1)	11(2)	11(3)	11(1)	11(3)	in(o)	u1(7)	11(0)	11(3)	11(10)	"(11)	11(12)	11(13)	11(1)	
register, 16	consc_o	Y(0,0)					idet 1d SUB r								idet 1d SUB	
register, 18	1	1(0,0)	Y(0 1)				lucc_10_000_1			Y(1.0)					Y(1.5)	=
mul\$s\$s\$s\$2cvcle.6	-		1(0,1)	multetetetet		Y(0,0)	[5:30]			1(1,0)	multetetet		multotototo		multetetet	
constant, 13				idct 1d rot			maigogogogen				11010000000000		1101000000000		11014040404042111	
constant. 14				idct_1d_rot_n	•											
mul\$s\$s\$s\$2cvcle.7				mul\$s\$s\$s\$2				mul\$s\$s\$s\$2			mul\$s\$s\$s\$2		mul\$s\$s\$s\$2		mul\$s\$s\$s\$2	
register.20				Y(0.2)		Y(0,4)	Y(0.5)		Y(0.7)		Y(1,1)					
register.22					Y(0.3)		. (Y(0.6)			idct 1d SUB		Y(1.3)			
constant.3					const 23170			. (5757		•			.(2/2)			
mul\$s\$s\$s\$2cvde.8					mul\$s\$s\$s\$2			mul\$s\$s\$s\$2			mul\$s\$s\$s\$2		mul\$s\$s\$s\$2		mul\$s\$s\$s\$2	
add\$s\$s\$s\$1cvde.2						add\$s\$s\$s\$1				add\$s\$s\$s\$1			add\$s\$s\$s\$1	.add\$s\$s\$s\$1	add\$s\$s\$s\$1	
sub\$s\$s\$s\$1cvde.12						sub\$s\$s\$s\$1			sub\$s\$s\$s\$1	.sub\$s\$s\$s\$1	. sub\$s\$s\$s\$1	. sub\$s\$s\$s\$1.	sub\$s\$s\$s\$1	sub\$s\$s\$s\$1		
register.24						idct 1d rot				idct 1d rot			idct 1d rot		idct 1d rot	
constant.8						const 8192					•					
register.25						idct 1d rot	dct 1d CMU.		dct 1d CMU.	idct 1d rot			idct 1d rot		dct 1d CMU	
add\$s\$s\$s\$1cycle.0						add\$s\$s\$s\$1	add\$s\$s\$s\$1		add\$s\$s\$s\$1	.add\$s\$s\$s\$1	.add\$s\$s\$s\$1	.add\$s\$s\$s\$1.	add\$s\$s\$s\$1	.add\$s\$s\$s\$1	add\$s\$s\$s\$1	
add\$s\$s\$s\$1cvde.1						add\$s\$s\$s\$1		•	add\$s\$s\$s\$1	.add\$s\$s\$s\$1			add\$s\$s\$s\$1	.add\$s\$s\$s\$1.		
constant.2							const 14									
register.28							idct 2276			dct 1d ADD	. idct 2277			idct 2312	idct 2300	ic
register.30	1						idct 1d ADD	r in the second s						dct 1d ADD.		
sra\$s\$s\$s\$1cycle.11	1						sra\$s\$s\$s\$1				sra\$s\$s\$s\$1			sra\$s\$s\$s\$1	. sra\$s\$s\$s\$1	SI
sra\$s\$s\$s\$1cycle.10	1						sra\$s\$s\$s\$1	sra\$s\$s\$s\$1		sra\$s\$s\$s\$1	sra\$s\$s\$s\$1			sra\$s\$s\$s\$1	. sra\$s\$s\$s\$1	SI
register.29	1						idct_2278	idct_2282		idct_2284	dct_1d_ADD		idct_1d rot	idct 2303	dct_1d_ADD	
register.36	1						_	idct 1d rot							idct 1d rot	
register.35	1							idct 1d rot							idct 1d rot	
register.40	1								dct 1d CMU		dct 1d CMU	idct 1d rot .	idct 1d rot			ic
register.44	1									idct_1d_SUB		idct_1d_SUB				
constant.9	1										idct_1d_rot					
constant.10	1										idct_1d_rot					
constant.12	1										idct_1d_rot					
mul\$s\$s\$s\$2cycle.15	1										mul\$s\$s\$s\$2		mul\$s\$s\$s\$2		mul\$s\$s\$s\$2	-
register.51	1										idct_2274				dct_1d_ADD	~
	<														>	2
	(-)		_													

Time used for creating gantt diagram : 281 ms

GAUT: Interface synthesis

📴 GAUT 2	2.4.3 build	17/02/2010	- Lab-STICC, UBS	University, Lorient (France)							
		A 🖬 (👏 🦎 🔞 🕑 bitw	idth aware Library: notech_16b	6		UMR 3492				
Opened file ComGen	: C:\GAUT_2	2_4_3_testnew	/\test\idct_soclib\id	ct.cfg							
Configuration	ion #ucomgen -e idct -i "C:\GAUT_2_4_3_testnew\test\idct_soclib\idct.mem" -cfg "C:\GAUT_2_4_3_testnew\test\idct_soclib\idct.cfg" -b										
Graph: ide	Command line:										
Mem : idct			generate UCOM wi	thout IO Constraints							
Cfg : idct			parse C:\GAUT_2_4_ parse C:\GAUT_2_4_	3_testnew\test\idct_soclib\idct.cfgok 3_testnew\test\idct_soclib\idct.memok							
O Use Inc	out/Output Co	onstraints (Ioc)	check ports and IOs	ok							
Ŭ .		Due	generate VHDL idct_	ucom.vhdPort/Bus 1 has Input IO(s) : process it.	Interface	Televetification & events					
	-	Bus		Direction	Interface	Identification/Lengt					
	1			in out	FSL	auto	_				
	1			out	FSL	auto					
Performances of interfaces depend on data locality (data fetch penality, cache miss) Interface can be: - Ping pong buffer (scratch-pad on Local Memory Bus) - FIFO (i.e. FSL Fast Simplex Link from Xilinx)											
							~				
			<				>				
Status: St	arting	: ucomge	en -e idct	-i "C:\GAUT_2_4_3_testne	ew\test\idct_soclib\i	dct.mem" -cfg "C:\GAUT_2_4_	3_testnew\test\idct_socl				
GAUT: Test-bench generation

GAUT 2.4.3 build 17/02/	/2010 - Lab-STICC, UBS University, Lorient (Frar	ice)			_ 7×
-JI.	📑 🍯 🍖 🔯 🗹 bitwidth aware Library: noted	ch_16b 🗧		Lab STICC	
Opened file : C:\GAUT_2_4_3_te	estnew/testlidct_soclib/idct.mem				
Configuration Mem : idct	- Compiling package idct_pack - Loading package idct_pack - Loading package idct_pack - Compiling antity idct_um - Compiling antitecture idct_um_arch of idct_um - Compiling architecture idct_top_arch of idct_top - Compiling architecture idct_stimuli - Compiling antitecture idct_stimuli_arch of idct_stimuli - Loading package textio - Compiling entity idct_probe - Compiling entity idct_probe_arch of idct_probe + Vision detables deta		Test-b Model	ench Generation Isim Script Generation	
Impl : bitwidth_notech	 Warning: testbench.vhd(1485): (vcom-1194) FILE declaratii Warning: testbench.vhd(1488): (vcom-1238) Shared variable Compiling entity idct_test Compiling entity idct_test 	n was written using VHDL1 Messa /idct_test/clk	-No Data-		
Simulate : PU 🔽	- Compiling architecture ldct_test_arch of ldct_test	<pre>/idct_test/rsth /idct_test/enable</pre>	-No Data- -No Data-		
Stimuli : FILE	#E:/modeltech_6.4f/win32/vsim -c -do script_compil.do => 0		-No Data- -No Data-	Control of the first of the fir	
Sti: idct	Reading E:/modeltech_6.4f/tol/vsim/pref.tcl # 6.4f # do script_compil.do # Loading project idct	 /idct_test/idct_top /idct_test/idct_top /idct_test/idct_top 	No Data- No Data- No Data-		
 ✓ Result File ✓ Warning 	#E:/modeltech_6.4f/win32/vsim -c -do script_modelsim.val -q	<pre>/idct_test/idct_top </pre>	No Data- No Data- No Data-	<u>s</u> (a) (a) (a) (b) (a) (b) (b) (b)	
Comp lib Choose vsim directory :	Reading E:/modeltech_6.4f/tol/vsim/pref.tol # 6.4f # vsim_do.script_modelsim_val_co.ou/jet work idot_test	<u>-</u> /idct_test/idct_top <u>-</u> /idct_test/idct_top <u>-</u> /idct_test/idct_top - /idct_test/idct_top	No Data- No Data- No Data-		
E:/modeltech_6.4f/win32/	# ** Note: (vsim-3812) Design is being optimized # // ModelSim SE 6.4f Oct 22 2009 # // # // Copyright 1991-2009 Mentor Graphics Corporation	 /idct_test/idct_top /idct_test/idct_top /idct_test/idct_top 	No Data- No Data- No Data-		
	# // All Rights Reserved. # // # // THIS WORK CONTAINS TRADE SECRET AND # // PROPRIETARY INFORMATION WHICH IS THE PROPER	<pre>//dct_test/idct_top //dct_test/idct_top //dct_test/idct_top</pre>	- No Data- No Data- No Data-		
Control Result	#// OF METTOR GRAPHICS CORPORTION OR ITS LICEN #// AND IS SUBJECT TO LICENSE TERMS. #//	<pre>//det_test/idet_top //det_test/idet_top //det_test/idet_top</pre>	No Data- No Data-		NAT
	# do sonpt_modelsim.val # 1	<pre>//dct_test/idct_top //dct_test/idct_top //dct_test/idct_top</pre>	No Data- No Data- No Data-		~
Status: You can see t	the results here or in the file		<u>-1% Data-</u> w 990 ns	C G BB PRG URBERGERGE Guilden auf and an and a second se	1000
		Cursor	1 <u>1021 ns</u>		1021 1

GAUT: more than 100 downloads each year

Outline

□ Lab-STICC

□ General context

□ High-Level Synthesis

- Brief introduction
- "In details"

- Overview
- Results
- **Conclusion**
- **References**

Experimental results: MJPEG decoding

Block Diagram of mjpeg baseline decoder

Function	Time ratio
IDCT	43,41%
yuv2rgb	15,07%
Entropy decoding	8,41%
DeQuantization	5,10%
others (each function is <5%)	28,01%

Execution time ratio for software MJPEG decoding *(by using gprof)*

Resource estimation for IDCT

Resource estimation for IDCT

SpeedUp = Logic Synthesis Time/HLS Synthesis Time

Synthesis results

Parallelism 1 (read/write 32 bits)									Parallelism 2 (read/write 64 bits)								
	Opera	Deperators Reg (1 bit flip flop) Mux 2:1 Area (slices) Latency Freq		С	perato	or		Reg (1 bit	Mux 2:1	Area (slices)	Latency	Freq					
add	mult	sra	sub				(0)0103)	(10112)	add	mult	sra	sub				(0)0103)	(10112)
2	3	1	1	2653	3236	7033	129	123,5	4	7	3	2	2904	2965	9409	97	126
2	2	1	1	2818	3525	6948	188	128,1	2	3	1	1	2942	3268	7863	156	120,2
1	2	1	1	3304	3905	6988	228	124	2	3	1	1	3112	3300	8101	196	128,9
1	1	1	1	2876	3858	6192	348	123,7	1	2	1	1	3429	3969	7529	316	128,4
1	1	1	1	2421	3938	6422	448	125,7	1	1	1	1	2880	3106	6498	416	121,9

	Parallelism 4 (read/write 128 bits)								
0	Operator			Reg (1 bit	Mux 2:1	Area (slices)	Latency	Freq (Mhz)	
add	mult	sra	sub				(cycles)	(10112)	
9	15	6	5	3459	2694	12070	33	138,9	
3	4	2	2	3021	2947	9282	92	132,1	
2	3	1	1	2917	3091	7812	132	128,7	
1	2	1	1	3462	4257	7846	252	122,5	
1	1	1	1	2850	3314	6719	352	120,8	

IDCT

YUV2RGB

Parallelism 1 (read/write 32 bits)						
Reg (1 bit	Area (slices)	Latency	Freq			
flip flop)	Alea (Silces)	(cycles)	(Mhz)			
388	525	12	249,18			
362	524	13	282,11			
272	462	14	188,96			
238	460	15	188,96			

Synthesis results

	Parallelism 1 (read/write 32 bits)										Parallelism 2 (read/write 64 bits)									
	add	Opera <i>mult</i>	ators . <i>sra</i>	sub	Reg (1 bit flip flop)	Mux 2:1	Area (slices)	Latency (cycles)	Freq (Mhz)		O add	perato <i>mult</i>	or <i>sra</i>	sub	Reg (1 bit flip flop)	Mux 2:1	Area (slices)	Latency (cycles)	Freq (Mhz)	
4	2	3	1	1	2653	3236	7033	129	123,5		4	7	3	2	2904	2965	9409	97	126	
	2	2	1	1	2010	0525	6940	188	128,1		2	3	1	1	2942	3268	7863	156	120,2	
/	1	2	1	1	3304	3905	6988	228	124	ſ	2	3	1	1	3112	3300	8101	196	128,9	
	1	1	1	1	2876	3858	6192	348	123,7	ľ	1	2	1	1	3429	3969	7529	316	128,4	
	1	1	1	1	2421	3938	6422	448	125,7	[1	1	1	1	2880	3106	6498	416	121,9	

Virtual prototyping

IDCT

				Para	lelism 4 (read/wri	te 128 bits)		į	
	Operator				Reg (1 bit	Mux 2:1	Area (slices)	Latency (cycles)	Freq (Mhz)	
	add	muit sra sub		sup				(0) 0.00)	(101112)	
\leq	9	15	6	5	3459	2694	12070	33	138.9	
	3	4	2	2	3021	2947	9282	92	132,1	
	2	3	1	1	2917	3091	7812	132	128,7	
	1	2	1	1	3462	4257	7846	252	122,5	
	1	1	1	1	2850	3314	6719	352	120,8	

Hardware prototyping

	Parallelism 1 (read/write 32 bits)								
	Reg (1 bit flip flop)	Area (slices)	Latency (cvcles)	Freq (Mhz)					
	388	525	12	249,18					
10121(00	362	524	13	282,11					
	272	462	14	188,96					
	238	460	15	188,96					

SoCLib: a virtual prototyping platform

□ French National Research Project (ANR)

□ Free and open source virtual prototyping environment

- Library of SystemC simulation models
- Hardware components
 - □ CPUs, HW-ACCs, memories, busses
 - VCI/OCP interface protocol is used

Two types of model are available for each HW component

- □ CABA (Cycle Accurate / Bit Accurate)
- □ TLM-DT (Transaction Level Modeling with Distributed Time)

Software components

□ OS, API....

Associated tools

- Simulation, configuration, debug
- Automatic generation of simulation models

GAUT is used, to generate simulation models of HW-ACC CABA and TLM-DT

SoCLib: Design flow

Pure software implementation on a mono-processor architecture

Parallelized software implementation on a multiprocessor architecture

MJPEG Results

Execution time of the application (in cycles) to process 50 images of 48*48 pixels

IDCT generated by GAUT reduces the application latency by 14%

Parallelization of the application on 4 CPUs reduces the latency by 21%

MJPEG Results

The 4 HW IDCT in the multiprocessor architecture further reduce the latency by 10%

Execution time of the application (in cycles) to process 50 images of 48*48 pixels

MJPEG Results

125/68

MJPEG: Hardware prototyping

Real time decoding: 24 QCIF images/sec

- IDCT: maximum I/O bandwidth (4 parallel input ports) and the lower latency (33 cycles, Freq. 138,9Mhz)
- YUV2RGB: minimum latency (12 cycles, Freq. 249,18Mhz)

Compared to a pure SW implementation

- 10x speed-up for the IDCT function
- 5x speed-up for the yuv2rgb function

SoC design on a FPGA Xilinx Virtex 5 LX110 (XUPV5) board

Viola Jones: Hardware prototyping

Block Diagram of a Viola Jones Face detector

7x speed-up compared to a pure sw implementation

Rgb2gray

Contrast Enhancement

Noise Reduction

Canny Edge Detector

Face Detection

HLS for Hardware prototyping

Slope detection : acos (cordic) hwpu Texture detection: gaussian filter and square root hwpu SpeedUp >= 140Error <= 0.00006 Soc Leon3 interface (AHB, Grlib) SpeedUp 200 180 160 140 120 100 Error 80 SpeedUp 60 40 7,00E-05 20 6,00E-05 0 3,57E-01 4,08E-01 4,59E-01 5,10E-01 5,61E-01 1,02E-01 ,53E-01 5,00E-05 3E-01 0,00E+0C 5,10E-02 04E-01 ,55E-01 ,06E-01 ĺ2 Е-01 9,18E-01 9,69E-01 ,69E-01 65E-0 67E-0 4,00E-05 4 ω ര് ര് 3,00E-05 Error 2,00E-05 ieee754 acos(x) * For $|x| \le 0.5 \operatorname{acos}(x) = pi/2 - (x + x^{*}x^{2}R(x^{2}))$ 1,00E-05 * where 0,00E+00 ,10E-02 * $R(x^2)$ is a rational approximation 0,00E+00 ,02E-01 <u>Е-</u>01 <u>Е-</u>01 <u>Е</u>-01 <u>Е</u>-01 1-0-1-0-1-0-<u>Е</u>-01 Е-01 Щ-01 Щ 2,55E-01 ЧÓ ò ш Ò ш of $(asin(x)-x)/x^3$ 3,57E 9 3,061 4,08 591 10 6 4 8,67 ò * For x>0.5 4 ഹ് ശ് ശ * $a\cos(x) = pi/2 - (pi/2 - 2a\sin(sqrt((1-x)/2)))$ $2^{-n} \approx 0.00001 \le error \le 2^{-(n-2)} \approx 0.00006$ */ n =16, number of rotation

Prototyping platform

Sundance platform

Mother board

Daughter boards DSP C62 C67 (Texas Instrument) FPGA Virtex 1000E (Xilinx)

Interconnection matrix *Point to point links : Com Port (CP, up to 20 Mbytes/sec) and Sundance Digital Bus (SDB, up to 200 Mbytes/sec)*

DVB-DSNG receiver architecture mapping

DVB-DSNG receiver

- Synchronization and interleaving : Sw : C62 DSP
- Viterbi and Reed Solomon decoders : Hw : Virtex-1000E FPGA
- 4 SDB links
- 26 Mbps throughput (limited by the synchronization bloc...C64 for higher throughputs)

Viterbi decoding

• functional/application parameters : state number, throughput

State Number	8	16	32	64	128
Throughput (Mbps)	44	39	35	26	22
Synthesis Time (s)	1	1	3	9	27
Number of logic elements	223	434	1130	2712	7051

• DVB-DSNG standard : throughput : 1.5 to 72 Mbps, 64 states Viterbi decoder

Reed Solomon decoding

• functional/application parameters : number of input symbols, data symbols, throughput

• DVB-DSNG standard : 1.5 to 72 Mbps, RS (204/188) decoder

MPARM Architecture

Luca Benini, Andrea Marongiu, Paolo Burgio, University of Bologna

138/68

Target architecture

139/68

HWPU Integration

Interface de communication

- Maître / Esclave
- Registres de configuration
 - Nombre d'entrées
 - □ Nombre de sorties
 - Emplacements des entrées
 - **Emplacements des sorties**

 - **Etat du HWPU**
 - Démarrage
- Les registres de configuration peuvent être doublés
 - **Recouvrement de la configuration et du calcul**

□ Interface de programmation

Function name	Brief description
bool acc_busy ()	Returns TRUE if no programming channel is available
void acc_reset ()	Once a channel has been granted resets programming registers
<pre>void acc_set_input_count (int count)</pre>	Sets number of inputs
<pre>void acc_set_output_count (int count)</pre>	Sets number of outputs
<pre>void acc_set_in_addrs (int addr)</pre>	Sets current input parameter's address
<pre>void acc_set_out_addrs (int addr)</pre>	Sets current input parameter's address
void acc_trigger ()	Initiates execution
void acc_wait ()	Waits for the HWPU to complete execution

Example

```
void foo()
{
    int A, B, C;
    #pragma omp accelerate input(A, B) output(C)
    C = A + B;
}
```

Example

Example

Results

2 core

4 core

1 core

1 core

2 core

4 core

8 core

8 core
GAUT 4 (not yet available, but soon...)

□ An open source HLS tool

For both data and control-dominated algorithms (CDFG)

Input :

- C/C++ bit-accurate integer sand fixed-points from Mentor Graphics
- SystemC : C and C++ lack the constructs and semantics to represent design hierarchy, timing, synchronization/concurrency
- Floating point

Output : RTL Architecture

- VHDL , Verilog
- SystemC (CABA + TLM)
- Resource and timing estimation
- Automated Test-bench generation
- Automated operators characterization
- Automated interface generation
 - AXI, AHB, FSL, ...

GAUT 4 (not yet available, but soon...)

Constraints

Clock, I/O protocols, loop transformations (unrolling, merging, loop pipelining with Initiation Interval), memory mapping, function inlining, resource constraints

Objectives

- Minimization: area i.e. resources, latency, power consumption...
- Maximization: throughput

Keys features

- □ Used robust and state of the art compilation technology to extract instruction-level (Vectorization) and loop level parallelism (Polyhedral model: graphite for GCC, Polly for LLVM)
- □ Many scheduling strategies : modulo scheduling (SMS,IMS) , Force Directed List Scheduling (FDLS), System of difference constraint (SDC)...
- Memory analysis and optimizations: automatic partitioning of array elements to reduce conflicts and increase throughput
- □ Pattern mining for efficient resource sharing
- □ Hierarchy synthesis and function level parallelism/pipelining
- Design Space Exploration with directives (Loop transformation, memory partitionning) and constraints (script): one body of code, many hardware outcomes

Conclusion

HLS allows to automatically generate several RTL architectures

From an algorithmic/behavioral description and a set of constraints

□ HLS allows to generate

- VHDL models for synthesis purpose
- SystemC simulation models for virtual prototyping

HLS allows to explore the design space of

- Hardware accelerators
- MPSoC architectures including HW accelerators

GAUT is free downloadable at

http://lab-sticc.fr/www-gaut

References

HIGH-LEVEL SYNTHESIS

Introduction to Chip and System Design

folited by

Daniel D. Gajski

High Level Synthesis of ASICs Under Timing and Synchronization Constraints

David C. Ku Giovanni De Micheli

Kluwer Academic Publishers

References

Academic tools

- **Streamroller (Univ. Mich.)**
- **SPARK (UCSD)**
- **xPilot (UCLA)**
- □ UGH (TIMA+LIP6)
- □ MMALPHA (IRISA+CITI+...)
- **ROCCC (UC Riverside)**
- □ GAUT (UBS / Lab-STICC)

Commercial tools

CatapultC (Mentor Graphics => Calypto)

- PICO (Spin-off HP => Synfora => Synopsys)
- **Cynthecizer (Forte design)**
- **Cyber (NEC)**
- AutoPilot (AutoESL => Xilinx)
- **C** to Silicon (Candence)
- Synphony (Synopsys)

Une introduction à la synthèse de haut-niveau

(ou comment générer des architectures matérielles à partir du langage C)

Université de Bretagne-Sud Lab-STICC

Philippe COUSSY philippe.coussy@univ-ubs.fr