
ARCHI 2013 1/8427/3/2013

Le modèle polyédrique
“avec les mains”

Steven Derrien, Université de Rennes 1
(with contributions from A. Morvan and P. Quinton)

CAIRN research Group, IRISA/INRIA

ARCHI 2013 2/8427/3/2013

Part I : Introduction

ARCHI 2013 3/8427/3/2013

Outline

1. OveralI context
1. Compiling for multi-core machines
2. Compiling for power-efficient embedded systems

2. Loop and data-layout transformations
1. Shift, Interchange, Fusion/Fission, Skewing, Tiling, etc.
2. Array expansion, contraction, slicing, etc .

3. Wrapping up example
1. Image processing kernel example

ARCHI 2013 4/8427/3/2013

Goal of this talk

• What you will find in this talk
– A brief explanation of why loop transformations are useful
– An overview of most common loop & layout transformations
– A presentation of the key ideas used in polyhedral compilation
– Probably some typos ;)

• What you will NOT find in this talk
– An in-depth tutorial on the polyhedral model

Got to http://labexcompilation.ens-lyon.fr/polyhedral-school/

• What you MAY find in this talk
– Some inspiration to try by yourself what state-of-the art

polyhedral compilation are now capable of ...

ARCHI 2013 5/8427/3/2013 5

Multi-core processor architectures

• Nehalem : Intel Core i7
– Four processor core + shared L3 cache with coherency

• Main programming model is thread level parallelism
– Using openMP, pthreads, …
– SIMD is handled by the compiler back-end

Source:Intel

• Simultaneous
Multithreading (2
threads/core)

• SIMD instruction set
with 128 bits registers
(SSE4)

ARCHI 2013 6/8427/3/2013

Program optimizations & performance

• Impact of optimizations on performance

• Origin of improvements
– Parallelism (thread x SIMD): 8x - Memory optimization: 5x-20x !

160x speed-
up !

Source [Spiral - CMU]

The so called
“Ninja Performance Gap”

ARCHI 2013 7/8427/3/2013

SIMD short width vector instructions

• Expose vector level parallelism in the ISA
– Initially for regular (8bits, 16bits data) multimedia kernels
– Extended to support floating point (Intel SSE, AVX)
– Very challenging for compilers !

• Example from SSE : ADDPS xmm1, xmm2/m128
– m128 : 16 bytes aligned memory location,
– xmm0-7 : 128 bit SSE registers

• Operation

D[31-0] :=D[31-0] +A[31-0];
D[63-32] :=D[63-32] +A[63-32];
D[95-64] :=D[95-64] +A[95-64];
D[127-96]:=D[127-96]+A[127-96];

A

D

D

ARCHI 2013 8/8427/3/2013

SIMD instructions : layout constraints

• SIMD memory access = only contiguous data in memory
– Unaligned accesses (64/128 bits) are not supported or cause

performance penalties

0000
0008
0010
0018
0028
0030
0038
0040
0048

for(i=0;i<8;i++) {
for(j=0;j<8;j++) {

X[8*i+j]+=A[j]*Y[8*i+j];
}

}

for(i=0;i<8;i++) {
for(j=0;j<8;j++) {

X[8*i+j]+=A[j]*Y[8* j +i];
}

}

f or(i=0;i<8;i++) {
for(j=0;j<8;j++) {

X[8*i+j]+=A[j]*Y[8* i +j+5];
}

}

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

Efficient SIMD
vectorization

No SIMD because
of the Y[j][i] non

contiguous
access pattern

Inefficient
vectorization

(unaligned access)

X[][] Y[][]

How to transform loops (and possibly data organization) to
enable efficient SIMD vectorization ?

ARCHI 2013 9/8427/3/2013 9

for(i=0;i<N;i++) {

« sync »
}

Thread level parallelism (OpenMP)

• OpenMP = simple way to expose thread level parallelism
– Through coMPIler directives in the user source code (#pragma)
– Targeted toward shared memory machine models

• Example : #pragma omp parallel for

– Every j iteration can be executed by its own thread.
– Threads synchronize at the end of the loop.

for(i=0;i<N;i++) {
#pragma omp parallel for private(j)

for(j=0;j<M;j++) {
X[j]=X[j]+Z[j]*Y[i];

}
}

j=0 j=1 j=M

X
[0

]=
X

[0
]+

Z
[0

]*
Y

[i]
;

X
[M

]=
X

[M
]+

Z
[M

]*
Y

[i]
;

Parallel
execution

ARCHI 2013 10/8427/3/2013

for(i=0;i<N;i++) {

« synchronization »
}

Data race issues in thread level parallelism

• The relative execution order of threads is not known
– Dynamically determined by the OS scheduler

• The program execution may exhibit “data races”
– When thread x reads a memory cell written by thread y
– Read can happen before write (or the other way round)

for(i=0;i<N;i++) {
#pragma omp parallel for private(j)

for(j=0;j<M;j++) {
X[j]=X[M-j]+Z[j]*Y[i];

}
}

X
[M

]=
X

[0
]+

Z
[M

]*
Y

[i]
;

X
[0

]=
X

[M
]+

Z
[0

]*
Y

[i]
;

j=0

j=M

Ille
ga

l

sc
hed

ule

j=0

j=M

X
[M

]=
X

[0
]+

Z
[M

]*
Y

[i]
;

Illegal

schedule

X
[0

]=
X

[M
]+

Z
[0

]*
Y

[i]
;

How to guarantee the absence of
data race in a OpenMP program ?

t

ARCHI 2013 11/8427/3/2013 11

Synchronization cost in Thread level parallelism

• The runtime forks threads and wait till their completion
– This has obvious performance overhead.

• Need to expose « coarser grain » parallelism.
– Minimize the frequency of synchronization operations
– Partition the computations in large independent “chunks”.
– Pay attention to memory hierarchy (spatial/temporal locality)

for(i=0;i<N;i++) {
#pragma omp parallel for private(j)

for(j=0;j< 4;j++) {
X[j]=X[j]+Z[j]*Y[i];

}
}

The thread parallel version
is very likely to be slower
than the sequential one

How to perform (efficient) automatic parallelization ?

ARCHI 2013 12/8427/3/2013

Embedded many-core/MPSoC

• Power efficient heterogeneous parallel architecture
– Various type of PEs interconnected through a network-on-a-Chip

• Distributed Scratchpad Memory programming model
– Global shared memory with software managed local memories

[source RecoreSystems]

Hardware IP

ARCHI 2013 13/8427/3/2013

Distributed Scratchpad memory model

• Processors only work on local scratchpad memory
– Global memory used to synchronize and exchange data
– Scratchpad content is managed by the programmer (DMA)

How to automatically generate
(efficient) DMA code?

Slaves

dma_cpy (&p, 1, src, …);
dma_cpy(&a, p.rows*NCA, src, …);
dma_cpy(&b, NCA*NCB, src, …);
for (k=0; k<NCB; k++)

for (i=0; i<p.rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

dma_cpy (&p, ..,, …);
dma_cpy(&c, p.rows*NCB, …, …);

Hardware IP

dma_cpy(&p, 1, src, …);
dma_cpy(&a, p.rows*NCA, src, …);
dma_cpy(&b, NCA*NCB, src, …);
for (k=0; k<NCB; k++)

for (i=0; i<p.rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

dma_cpy(&p, 1,, …);
dma_cpy(&c, p.rows*NCB,, …);

Need to determine accurately the
slice of the data that needs to be
read/written to global memory.

ARCHI 2013 14/8427/3/2013

High Level Synthesis

• Generating custom hardware from C/C++
– HLS tools help boosting designers productivity by up to 5x-10x !

void image(char in[M][N] , char out[M][N]) {
for(int i=1;i<N-1;i++) {

for(int j=0;j<M;j++) {
S0: Gx=in[i][j+1]+2*in[i-1][j+1]+in[i+1][j+1]+

in[i][j-1]+2*in[i-1][j-1]+in[i+1][j-1];
S1: Gy=in[i+1][j-1]+2*in[i+1][j]+in[i+1][j-1]+

in[i-1][j-1]+2*in[i-1][j]+in[i-1][j-1];
S2: out[i][j]= sqrt(Gx*Gy);

}
}

}

Sobel edge
detector IP

M
-2

How to make automatically synthesized hardware as efficient
as manually designed circuits ?

ARCHI 2013 15/8427/3/2013

Outline

1. Overall context
1. Compiling for multi-core machines
2. Compiling for power-efficient embedded systems

2. Loop and data-layout transformations
1. Shift, Interchange, Fusion/Fission, Skewing, Tiling, etc.
2. Array expansion, contraction, slicing, etc .

3. Wrapping up example
1. Image processing kernel example

ARCHI 2013 16/8427/3/2013

Loop transformations, what for ?

• Improve performance and/or energy efficiency by …

• Exposing additional parallelism !
– Thread level, SIMD, task level, etc …

• Improving the efficiency of the memory hierarchy
– Spatial & temporal locality for registers, caches, TLB, disks, …

ARCHI 2013 17/8427/3/2013

Loop shifting

• Delay an statement by a constant number of iterations
– Increase instruction level parallelism by allowing pipelining.
– Not always legal (must enforce data dependencies)

for(j=0;j<N;j++) {

S0: Y[j]=foo(X[j]);

S1: Z[j]=bar(Y[j]);

}

Y[0]=Y[0]+X[0];

for(j=1;j<N;j++) {

S0: Y[j]=Y[j]+X[j];

S1: Z[j-1]=a*Y[j-1];

}

Z[N-1]=a*Y[N-1];

The dependency was removed :
S0 and S1 can run in parallel

There is a RAW dependency
on Y[j] between S0 and S1.

shifting S0 by 1

i=2 i=2

ARCHI 2013 18/8427/3/2013

Loop fusion

• Merge several loops into a single one
– Improve temporal locality of memory accesses
– The transformation is not always possible

for(i=0;i<N;i++) {
f or(j=0;j< N;j++) {

S0: Y[i,j]=foo(X[i,j]);
}

}
for(i=0;i<N;i++) {

for(j=0;j< N;j++) {
S1: Z[i,j]=bar(Y[i,j]);

}
}

for(i=0;i<N;i++) {
for(j=0;j< N;j++) {

Y[i,j]=foo(X[i,j]);
Z[i,j]=bar(Y[i,j]);

}
}

fusion(S0,S1)

If Y[,] does not entirely fit in the
cache, the second loop will suffer a

~100% cache miss rate.

Y[i,j] is reused immediately
after its production, we have
very good temporal locality

ARCHI 2013 19/8427/3/2013

Loop distribution

• Split a single loop into several loops
– Can expose parallelism in one of the loop

• Remark :
– In general, there is a trade-off between parallelism and locality

for (i=1;i<1000;i++) {
S0: A[i]=A[i-1]+3;
}
#pragma omp parallel for
f or (i=1;i<1000;i++) {
S1: C[i]=A[i]+5;
}

for(i=1;i<1000;i++){
S0: A[i]=A[i-1]+3
S1: C[i]=A[i]+5
}

distribute(S0,S1)

The iterations of the second
loop are now fully parallel
(but we degraded locality)

The iterations of the loop
are not fully parallel

(RAW on A[i-1]�A[i])

ARCHI 2013 20/8427/3/2013

Loop interchange

• Interchange two loop indices in a loop nest
– May be used to expose parallelism or to improve locality
– The transformation is not always possible

for(i=0;i<N;i++) {
f or(j =0;j< N;j++) {

X[i]=X[i]+Y[i]*Y[j];
}

}

f or(p=0;p<N;p++) {
for(q=0;q< N;q++) {

X[q][p]=a*X[q][p];
}

}

f or(j =0;j<N;j++) {
f or(i=0;i< N;i++) {

X[i]=X[i]+Y[i]*Y[j];
}

}

Interchange(i,j)

Interchange(i,j)
for(i=0;i<N;i++) {

for(j=0;j< N;j++) {
X[i][j]=a*X[i][j];

}
}

The new inner loop is parallel

X[i][j] has better spatial locality

ARCHI 2013 21/8427/3/2013

Loop strip-mining

• Breaks an innermost loop into chunks of constant size

#define N=128
float **A,**B,**C;
for(i=0;i<N;i++){

for(k=0;k<N;k++)
for(j=0;j<N;j++){

S0: C[i,j]+=A[i, k]*B[k,j];
}

}

f or(i=0;i<N;i++) {
for(k=0;k< N;k++) {

for(jj=0;jj<N;jj+=8)
f or(j=0;j<8;j++)

S0: C[i, j+jj]+=A[i,k]*B[k, j+jj];
}

}

f or(i=0;i<N;i++) {
for(k=0;k< N;k++) {

for(j=0;j<8;j++)
f or(jj=0;jj<N;jj+=8)

S0: C[i, j+jj]+=A[i,k]*B[k, j+jj];
}

}

Unrolling the innermost will help
vectorizing the code

The loop iterating over index j can be
nicely distributed to 8 threads

ARCHI 2013 22/8427/3/2013

Loop tiling

• Break the loops into « tiles » or blocks
– Expose coarse grain parallelism & improve temporal data reuse
– Legal only if all loop are permutable (i.e. can be interchanged)
– Very effective parallelizing program transformation

• Classical example : the matrix product

float **A,**B,**C;
for(i=0;i<16;i++) {

f or(j=0;j<16;j++) {
for(k=0;k<16;k++)

S0: C[i,j]+=B[i,k]*A[k,j];
}

}

f loat **A,**B,**C;
for(ii=0;ii<16;ii+=4)

for(jj=0;jj< 16;jj+=4)
for(kk=0;kk<16;kk+=4)

for(i=0;i<4);i++)
f or(j=0;j<4;j++)

for(k=0;k<4;k++)
S1: C[i+ii,j+jj]+=

B[i+ii,k+kk]*A[k+kk,j+jj];

A 4x4x4 Tile

Best understood with an visual representation …

ARCHI 2013 23/8427/3/2013

ii

kk

jj

Loop Tiling

float **A,**B,**C;
for(ii=0;ii<16;ii+=4)

for(jj=0;jj< 16;jj+=4)
f or(kk=0;kk<16;kk+=4)

for(i=0;i< 4);i++)
f or(j=0;j< 4;j++)

f or(k=0;k< 4;k++)
S1: C[i+ii,j+jj]+=

B[i+ii,k+kk]*A[k+kk,j+jj];

A 4x4x4 Tile

• Tiling helps improving spatial and temporal locality
– One chooses tile size such that all data fits into the cache

C[16][16]

A[16][16]

B[16][16]

ARCHI 2013 24/8427/3/2013

• Simple way of exposing coarse grain parallelism
– Tiles are executed as atomic execution units, there is no

synchronization during a tile execution.

• Tiling enables efficient parallelization
– It improves locality and reduces synchronization overhead
– Finding the “right” tile size and shape is difficult (open problem)

Loop Tiling

float **A,**B,**C;
#pragma omp parallel for private(ii)
for(ii=0;ii<16;ii+=4)
#pragma omp parallel for private(jj)
for(jj=0;jj<16;jj+=4)

for(kk=0;kk<16;kk+=4)
for(i=0;i< 4);i++)

f or(j=0;j< 4;j++)
f or(k=0;k< 4;k++)

S1: C[i+ii,j+jj]+=
B[i+ii,k+kk]*A[k+kk,j+jj];

A 4x4x4 Tile

float **A,**B,**C;
for(ii=0;ii<16;ii+=4)

for(jj=0;jj< 16;jj+=4)
f or(kk=0;kk<16;kk+=4)

for(i=0;i< 4);i++)
f or(j=0;j< 4;j++)

f or(k=0;k< 4;k++)
S1: C[i+ii,j+jj]+=

B[i+ii,k+kk]*A[k+kk,j+jj];

ii

kk

jj

ARCHI 2013 25/8427/3/2013

Loop skewing

• Shift the innermost loop j by the outermost loop index I
– Changes array index expressions but not execution order

• Wait a minute, what’s the use of this transformation?
– None, unless used jointly with a loop interchange

for(i=0;i< N;i++) {
f or(j=0;j<N;j++)

S[i,j]=max(S[i-1,j-1]+A,
S[i,j-1]+B
S[i-1,j]+C);

}

for(i=0;i< N;i++) {
f or(j= i ;j<N +i ;j++)

S[i,j]= max(S[i-1,j -i -1]+A,
S[i,j -i -1]+B
S[i-1,j -i]+C);

}

0

i

j

N

M

ARCHI 2013 26/8427/3/2013

Loop skewing + interchange

• Shift the innermost loop j by the outermost loop index i
• Then, interchange the innermost and outermost loops

0
j

i

N

M

Skewing

for(i=0;i< N;i++) {
f or(j=0;j<N;j++)

S[i,j]=max(S[i-1,j-1]+A,
S[i,j-1]+B
S[i-1,j]+C);

}

for(j=0;j< 2*N-1 ;j++)
f or(i= max(0,N-j) ;i< min(N,j) ;i++)

S[i,j]=max(S[i-1,j-i-1]+A,
S[i,j-i-1]+B
S[i-1,j-i]+C);

}

No dependencies between different
iterations of a given j loop !

ARCHI 2013 27/8427/3/2013

Data layout transformation, what for ?

• Optimizing memory size
– Reducing statically allocated array sizes whenever possible

• Enabling parallel execution
– Allocate extra memory space to enable parallel execution

• Improving the efficiency of software caches
– Find which data set to move in a software controlled cache

• Communication synthesis in distrib. memory machines
– Derive the set of data that needs to be transmitted from one

processor to another.

ARCHI 2013 28/8427/3/2013

Array privatization/expansion

• Motivating example

• Privatization = each parallel task owns a copy of the var.
– Remark : openMP supports privatization (private directive)

Parallel execution of the i loop lead to a
data race on shared variable tmp.

The parallel execution becomes legal if
each iteration j owns its value of tmp !

for(i=0;i<N;i++) {
S0: tmp = …

for(j=0;j<= i ;j++) {
S1: tmp=tmp+X[j]*C[i][j];

}
S3: Y[i] = tmp;

}

// expansion of tmp as tmp[N]
for(i=0;i<N;i++) {

S0: tmp [i] = …
f or(j=0;j<= i ;j++) {

S1: tmp [i] =tmp [i] +X[j]*C[i][j];
S3: Y[i] = tmp [i] ;

}

Which variables/array to privatize ? How much expansion is needed ?

#omp parallel for private i,j,tmp
for(i=0;i<N;i++) {

S0: tmp = …
for(j=0;j<= i ;j++)

S1: tmp=tmp+X[j]*C[i][j];
S3: Y[i] = tmp;

}

ARCHI 2013 29/8427/3/2013

Array contraction

• For embedded systems with scarce memory resources
– Replace a temporary array by a smaller one
– We must find a new legal array size and addressing scheme

• Very effective if combined with loop fusion !

for(i=0;i<N;i++) {
tmp[i,0]=foo(X[i]);
f or(j=1;j<N;j++) {

tmp[i,j]=foo(X[i,j]);
Z[i-1,j]=bar(tmp[i,j-1]);

}
Z[N-1,j]=bar(Y[N-1,j]);

}

f or(i=0;i<N;i++) {
tmp[0]=foo(X[i]);
for(j=1; j<N; j++) {

t mp[j%2]=foo(X[i,j]);
Z[i-1,j]=bar(tmp[(j-1)%2]);

}
Z[N-1,j]=bar(Y[N-1,j]);

}

tmp is a NxN array tmp is now a 2x1 array

ARCHI 2013 30/8427/3/2013

Array slicing for scratchpad memory

• Scratchpad management require explicit copy operations
– The programmer/compiler must figure out which data to

load/save to/from the scratchpad memory.

for(i=0;i<8;i++) {
for(j=0;j<i;i++) {

Z[i-j+3] = Y[2*i][2*j] +…;
}

}

// copy to scratchpad
for(i=0;i<8;i++) {

_z[i]=z[3+i];
for(j=0;j<i;i++)

_y[i][j]=Y[2*i][2*j];
}
// run the computations
for(i=0;i<8;i++)

f or(j=0;j< i ;j++)
_z[i-j]=_y[i][j]+…;

// writeback to main memory
for(i=0;i<8;i++) {

z[3+i]=z[i];
for(j=0;j<i;i++)

y[2*i][2*j]=_Y[i][j];
}y[16][16]z[16]

ARCHI 2013 31/8427/3/2013

Outline

1. Overall context
1. Compiling for multi-core machines
2. Compiling for power-efficient embedded systems

2. Loop and data-layout transformations
1. Shift, Interchange, Fusion/Fission, Skewing, Tiling, etc.
2. Array expansion, contraction, slicing, etc .

3. Wrapping up example
1. Image processing kernel example

ARCHI 2013 32/8427/3/2013

• Image filtering with separable 2D convolution kernel
– Decomposed into a horizontal and a vertical 1D convolution

• A naïve implementation
void image(int M, int N, char in[M][N] , char out[M][N]) {

int tmp[M][N];
for (i=1;i<N-1;i++)

for (j=0;j<M;j++)
S0: tmp[i][j]=f1(in[i][j],in[i-1][j],in[i+1][j]);

for (i=1;i<N-1;i++)
for (j=1;j<M-1;j++)

S1: out[i][j]=f2(tmp[i][j],tmp[i][j-1],tmp[i][j+1]);
}

In[][] tmp[][] out[][]

i

Image processing pipeline example

Horizontal filter

Vertical filter

In[][] out[][]

i

ARCHI 2013 33/8427/3/2013

Image processing pipeline example

• Why not synthesizing the kernel as custom hardware ?
– By using a state of the art High Level Synthesis tool

• Results
– 2.M.N clock cycles, O(MN) memory cost, 4.MN byte I/O mem access

– Considering external I/O with 6 cycle access latency ⇒24M.N cycles

void image(int M,N, char **in ,char **out){
int tmp[M][N];
for (i=1;i<N-1;i++)

for (j=0;j<M;j++)
S0: tmp[i][j]=f1(in[i][j],

in[i-1][j],
in[i+1][j]);

for (i=1;i<N-1;i++)
for (j=1;j<M-1;j++)

S1: out[i][j]=f2(tmp[i][j],
tmp[i][j-1],
tmp[i][j+1]);

}

ARCHI 2013 34/8427/3/2013

void image(int M, int N, char in[M][N] , charr out[M][N]) {
int tmp[M][N]; // local memory

for (i=1;i<N-1;i++)
for (j=0;j<M;j++)

S0: tmp[i][j]=f(in[i][j],in[i-1][j],in[i+1][j]);

for (i=1;i<N-1;i++)
for (j=1;j<M-1;j++)

S1: out[i][j]=f(tmp[i][j],tmp[i][j-1],tmp[i][j+1]);
}

Image processing pipeline example

• Loop fusion (with shifting)
– Reduce clock cycle count from 2.M.N+ε to M.(N+1) +ε

• Array contraction
– Reduces local buffer size form M.N to 3 !

• Memory access merging (burst accesses of size B)
– Reduce the #I/O by B and limits impact of memory latency

• Final design
– x2 in #cycles, #I/O reduced by xB, local mem by xM.N/B

void image(int M, int N, int in[M][N] ,int out[M][N]) {
int tmp[M][N]; // local memory

for (i = 1; i < N-1; i++)
for (j = 0; j < 2; j++)

S0: tmp[i][j] = f(in[i][j], in[i-1][j], in[1+i][j]);
for (j = 2; j < M; j++)

S0: tmp[i][j] = f(in[i][j], in[i-1][j], in[1+i][j]);
S1: out[i][j-1] = f(t mp[i][j] , tmp[i][j-2] , tmp[i][j-1]);
}

void image(int M, int N, int in[M][N] ,int out[M][N]) {
int tmp[3] ; // local memory

for (i = 1; i < N-1; i++)
for (j = 0; j < 2; j++)

if (j%8) buf =
S0: tmp[j%3] = f(in[i][j], in[i-1][j], in[1+i][j]);

for (j = 2; j < M; j++)
S0: tmp[j%3] = f(in[i][j], in[i-1][j], in[1+i][j]);
S1: out[i][j-1] = f(t mp[(j-1)%3] , t mp[(j-2)%3] , t mp[j%3]) ;
}

All these transformations can now be fully automated
thanks to steady improvements in polyhedral coMPIlation

All these transformations can now be fully automated
thanks to steady improvements in polyhedral coMPIlation

ARCHI 2013 35/8427/3/2013

Part II : Hands-on !

ARCHI 2013 36/8427/3/2013

Outline

1. Representing & reasoning about loops in compilers
1. CDFG & Expanded Dependence Graph (loops)
2. The case for a compact instance wide representation

2. Polyhedral representation of Affine Control Loops
1. Statement Iteration domains as polyhedral sets
2. Lexicographic ordering (aka multi-dimensional time)

3. Polyhedral program transformations
1. Loop transformations as affine transformations
2. Composability of loop transformations

4. Semantic preserving schedules
1. Dependence Analysis (memory vs value based) & PRDGs
2. Checking the legality of a schedule

ARCHI 2013 37/8427/3/2013

How to model loop nests in a coMPIler ?

• Control & Data Flow Dependence Graph
– Does not capture the “regularity“ present in most loop nests.
– Coarse dependency information between statements
– Inter-iteration analysis is quite difficult (we don’t “see” for loops)

for(i=1;i< 7;i++) {
f or(j=1;j<5;j++)

S[i,j]= max(
S[i-1,j-1]+A,
S[i,j-1] +B,
S[i-1,j] +C

);
}

i 1

i

+

S[i,j-1] A

+
S[i-1,j] A

+

S[i-1,j-1] A

+

max

S[i,j]

i 7

<

j 5

<

1

i

j 1

j

+
0

j

F

T

F T

RAW
RAW RAW

RAW

ARCHI 2013 38/8427/3/2013

How to model loop nests in a compiler ?

• Use a dependence graph as in previous slides ?
– Every iteration is represented as a vertex of the graph
– Data dependencies are modeled as edges in the graph

• Limitations
– Only for loop bounds known at compile time and not scalable

for(i=1;i< 7;i++) {
f or(j=1;j<5;j++)

S[i,j]=max(
S[i-1,j-1]+A,
S[i,j-1]+B,
S[i-1,j]+C

);
}

S[0,0] S[6,0]

S[0,4] S[6,4]

ARCHI 2013 39/8427/3/2013

What do we need ?

• We need a compact model which captures regularity
– Model size should be independent of loop iteration count
– But it should not be restricted to simple/toy perfect loops

• We need instance wise dependency information
– Dependency information for each execution of a loop statement

All of these requirements are fulfilled by
polyhedral representations of programs

All of these requirements are fulfilled by
polyhedral representations of programs

ARCHI 2013 40/8427/3/2013

A short story of the polyhedral model

Pluto
(2008)

Cloog
(2003)

Polylib, PIP
(early 90s)

Multi-core

GPU

MPSoc

FPGA

VLSI

Automatic parallelization
for shared and distributed

memory machines

Multi-dimensional Process
Networks for System Level Design

Loop transformations
for HLS

Multi-core era

Memory optimization for
embedded multimedia

From a (very) subjective point of view …

Massively parallel
Processor Arrays

ARCHI 2013 41/8427/3/2013

Loop iterators and parameters

• Loop iterator = indices of loops surrounding the statement
• Parameter = variable whose value does not change during the

whole loop nest execution (example : size of an image).
L2:

for (i=1;i<=10;i+=1){
x[size_x-1]=i;

L3: for (j=1;j<= Z;j+=1){
z [j] = x[j] + x[j];

}
Z = … ;

}

L1:
for (i=1;i<=10;i+=1){

x[P+i-1]=i;
for (j=1;j<= P;j+=1){

z[j] = x[j] + x[j];
}
…

}

Z is not a parameter for the
loop nest L2 above

P is a parameter for the loop
nest above

… but Z is a parameter in the
context of the single loop L3 !

ARCHI 2013 42/8427/3/2013

Notion of polyhedral iteration domain

• Iteration domain : model of all iterations of a loop nest
– Modeled as a union of parameterized integer polyhedron

– Contraints bind together loop iterators and parameters

for(i=0;i<N;i++) {
for(j=0;j<N- i;j++) {

…
}

}

i<j

j≥0
i≥0

Integer polyhedron = convex domain defined by a
conjunction of affine constraints

Integer polyhedron = convex domain defined by a
conjunction of affine constraints

We can benefit from linear programming techniques !We can benefit from linear programming techniques !

ARCHI 2013 43/8427/3/2013

A few important definitions

• Statement
– Instruction/operation in the program source code. In a loop, a

statement is executed several times.

• Statement Iteration vector
– Vector made of the values of loop indices and parameters

surrounding a statement execution (starting with outer loop).

• Statement instance
– A particular execution of a statement. A statement instance can

be identified by its corresponding iteration vector.

• Statement domain
– A union of polyhedron representing all instances of a given

statement S. We write it DS.

ARCHI 2013 44/8427/3/2013

Statement Iteration domain

• Iteration set where a given statement Si is executed.
– Again modeled as a parameterized polyhedron using enclosing

loop iterators and parameters as dimension indices.
– The polyhedron constraints are constructed out of enclosing loop

bounds and guards.

• Example

i

j

i
i<N

for(i=0;i<N;i++) {
S0: Y[i] = …

for(j=0;j<N;j++) {
if(j<N-i)

S1: Y[i]=Y[i]*X[i][j];
}

}

j≥0
i≥0

i≥0 i<N

Loop iterators i ,j

Parameters : N j+i<N

j<N

ARCHI 2013 45/8427/3/2013

Notion of Lexicographical ordering

• Representing the set of iterations is not enough
– We must model in which order computations are performed

• We use lexicographic ordering () over the index set
– Intuition : think of it as hours, minutes, seconds

• In the following, we will write

S1(i,j) is executed after S1(i,j-1)

S1(i+1,j) is executed after S1(i,j’) for all j, j’

ARCHI 2013 46/8427/3/2013

• Below, S1(i,0) is always executed after S0(i)
– However we don’t have

• To model such textual order, we add scalar dimensions
– They are artifact indices whose value are constants for a stmt

– Now we have enforced
• means a total order for all statement instances in the loop nest.

Notion of Lexicographical ordering

S0(i,0)

S1(i,1,j)

S0(i)

S1(i,j)

ARCHI 2013 47/8427/3/2013

Notion of statement schedule

• The expression used for lex. ordering is a schedule
– It gives a time instant for each instance of the statement

• Loop transformations can be seen as a change of schedule
– We will restrict to quasi-affine schedule transformations
– Quasi-affine schedule can express most loop transformations

• Also enables complex compositions of loop transformations

Statement S0 schedule is (i,0)
for(i=0;i<N;i++) {

S0: Y[i] = …
for(j=0;j<= i ;j++) {

S1: tmp=Y[i]*X[i][j];
S2: Y[i]=…

}
S3: res = Y[N-i] + Y[i]

}

Statement S1 schedule is (i,1,j,0)

Statement S3 schedule is (i,2)

Statement S2 schedule is (i,1,j,1)

ARCHI 2013 48/8427/3/2013

Notion of statement scheduling

• Transforming a loop = rescheduling its stmt instances
– We map every instance S(x) to a new index space S(x’=theta(x))
– The mapping is expressed using affine functions

• Scheduling = “affine” transformation of the domain

is the scheduling (or scattering) function for is the scheduling (or scattering) function for

i’

j’

ARCHI 2013 49/8427/3/2013

Scheduling and code generation

• We must regenerate code for the transformed index set !
– Sequence of loops which scans the transformed domains
– Known as the polyhedron scanning problem

• Example : ClooG code generator [1]

for (i=1;i<=8;i++) {
f or (j=i-1;j<=7;j++)

S1(i,j);
if ((i>=2)&&(i<=6)) {

for (j=0;j<=4;j++)
S2(i,j);

}
}

for (i=1;i<=8;i++) {
for (j=i-1;j<=7;j++)

S1(i,j);
if ((i>=2)&&(i<=6)) {

for (j=0;j<=4;j++)
S2(i,j);

}
}

for (j=0;j<=7;j++) S1(1,j);
f or (i=2;i<=5;i++) {

for (j=0;j<=i-2;j++) S2(i,j)
for (j=i-1;j<=4;j++) {

S1(i,j);
S2(i,j) ;

}
for (j=5;j<=7;j++) S1(i,j);

}
for (j=0;j<=4;j++) S2(6,j) ;
for (j=5;j<=7;j++) S1(6,j);
for (i=7;i<=8;i++)

for (j=i-1;j<=7;j++)
S1(i,j);

for (j=0;j<=7;j++) S1(1,j);
for (i=2;i<=5;i++) {

for (j=0;j<=i-2;j++) S2(i,j)
for (j=i-1;j<=4;j++) {

S1(i,j);
S2(i,j) ;

}
for (j=5;j<=7;j++) S1(i,j);

}
for (j=0;j<=4;j++) S2(6,j) ;
for (j=5;j<=7;j++) S1(6,j);
for (i=7;i<=8;i++)

for (j=i-1;j<=7;j++)
S1(i,j);

[1] Cedric Bastoul, Code Generation in the Polyhedral Model Is Easier Than You
Think. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques, 2004

optimized for code size

optimized for control

ARCHI 2013 50/8427/3/2013

Polyhedral loop transformation in a nutshell

for(i=0;i<4;i++) {
S0: X[i]=…;

for(j=0;j< 4-i ;j++) {
S1: X[i]=…;

}
}

for(i=0;i<4;i++) {
for(j=0;j< i+1 ;j++)

S1: X[i-j]=…;
}
f or(j=0;j< i+1 ;j++) {

S1: X[3-j]=…;
S0: X[j]=…;

}

ARCHI 2013 51/8427/3/2013

Scheduling & loop transformations

• Loop shifting
– Shift a statement by some constant along a domain dimension

• Loop reversal
– Negates a loop index expression in the schedule

ARCHI 2013 52/8427/3/2013

• Loop distribution
– Distributes statements in distinct loops using a scalar dimension

• Loop fusion
– merge scalar dimensions to fuse/merge successive loops

Scheduling & loop transformations

j

i

j

i

ARCHI 2013 53/8427/3/2013

Scheduling & loop transformations

• Statement interchange
– Rearrange statements textual ordering in a loop body

• Loop interchange
– Index swapping in the schedule to change loop indices depths

j

i

ARCHI 2013 54/8427/3/2013

Composing transformations

• With this formalism we can compose transformations
– Simply by composing the statement scheduling functions

0
i

j

N

M

Skewing + Interchange

Skewing

0
i

j

N

M

Interchange

ARCHI 2013 55/8427/3/2013

How to model parallel execution ?

• By scheduling statement instances at a same timestamp

• Parallel loop = all its iterations have the same schedule
– We ignore some dimension of the schedule when checking for

legality, but keep them for code generation.

for(i=1;i< 7;i++) {
S0: X[i]= …;
S1: Y[i]= …;

}

for(i=1;i< 7;i++) {
/ / in parallel
Y[i]= … ; X[i]= …;

}

S0 (i,0) → (i)

S1 (i,1) → (i)

All these iterations have
the same schedule

Parallel schedule for legality check Full schedule for code generation

ARCHI 2013 56/8427/3/2013

for(i=0;i<N;i++) {
S0: x[i] = … ;
S1: … = x[i+1]

}

Statement vs instance level dependencies

• Name based dependency analysis
– Performed at the statement and array object level, not at the

array cell level (modifying one cell � modifying the whole array)

• Array based dependency
– Performed the statement and array cell level (S0 and S1 are

dependant if one execution of S0,S1 writes/reads to a same cell)

We find a RAW dependency although S0
and S1 never write/read to the same cell
of the array x[…].

for(i=0;i<N;i++) {
S0: x[0] = … ;
S1: … = x[i]

}

We find a RAW dependency although S0
and S1 write/read to the same array cell
only once in the loop (for i=0)

Can’t we really do better than this ?

ARCHI 2013 57/8427/3/2013

Notion of memory access functions

• How to model memory access more accurately ?
– We know that every access has an enclosing iteration domain

• We know the set of iterations where this access occurs

– We can also model the set of array cells accessed in a statement

• We handle only certain type of memory accesses
– If index expressions = affine expressions of iterators+parameters
– This set of index expression defines an access function

for(i=0;i<N;i++) {
f or(j=0;j<= i ;j++) {

S0: tmp[i-j]=…;
}

}

Access function for tmp[i-j] in S0 :

ARCHI 2013 58/8427/3/2013

• We propose to reason at the statement instance-level

• We will consider two different type of dependency analysis
– Memory based dependency analysis,

• Looks for constraints enabling RAW, WAR and WAW dependencies
enforcement at the memory cell level.

• Does not question original program memory allocation choice

– Value based dependency analysis
• Looks for the underlying value producer/consumer relations
• More accurate, but may involve a memory expansion step

Instancewise dependency information

We want to relate statement instances and rather
than simply relating and
We will hence write when depends on

ARCHI 2013 59/8427/3/2013

Example : RAW memory dependency

• There is a RAW dependency between S(i,j) and S(I’,j’)if
– S(i) is executed after S’(j) in the original program ()
– S(i) contains a read operation to a memory cell written by S’(j).

• Example

• Same approach for WAR and WAW dependencies

for(i=0;i<N;i++) {
for(j=0;j<= 5;j++) {

S0: tmp[j] =tmp[i-j] +x[i];
}

}

i

j

For we have

ARCHI 2013 60/8427/3/2013

Value based dependency analysis

• Memory based dependency analysis is conservative
– It can hide some obvious parallelization opportunities

• Example
for(i=0;i<N;i++) {

S0: tmp = 0;
for(j=0;j<=M;j++) {

S1: tmp=tmp+X[j]*C[i][j];
S3: Y[i] = tmp;

}

RAW dependency

S(i,j) depends on all previous iterations of the loop, no parallelization seems
possible. But, when looking at the algorithm, it is obvious that each Y[i] can
be computed on a different thread (with tmp privatized)

ARCHI 2013 61/8427/3/2013

Value based dependency analysis

• To see this we must look at the value flow in the program
– Focus on values production/consumption relations
– These relations are a subset of RAW dependencies.

• How to obtain this value flow relation ?
– Given a RAW dep. , we look for the statement

instance S’(x’) which produced the value used at S(x).

– This statement instance is the last one (i.e. the lexicographical
maximum of all preceding S(x))

for(i=0;i<N;i++) {
S0: tmp = …

for(j=0;j<= i ;j++) {
S1: tmp=tmp+X[j]*C[i][j];
S3: Y[i] = tmp;

}

i

ARCHI 2013 62/8427/3/2013

Value based dependency analysis

• Finding the last preceding write to a given array cell ?
– This write instance is the lexicographical maximum of all

preceding producers candidates [2].
– Found through Parametric Integer Programming [1], the solution is

in the form of a piecewise affine function.

1. P. Feautrier. Parametric Integer Programming. RAIRO Recherche Opérationnelle, 1988.

2. P. Feautrier. Dataflow Analysis of Scalar and Array References, IJPD, 1991

for(i=0;i<N;i++) {
S0: tmp = …

for(j=0;j<= i ;j++) {
S1: tmp=tmp+X[j]*C[i][j];
S3: Y[i] = tmp;

}

i

ARCHI 2013 63/8427/3/2013

Polyhedral Reduced Dependence Graph

• We use a PRDG to model dependencies in a loop nest
– Statements domains form the vertices of the graph
– Dependency information form the edges of the graph

• Example
– We assume that dependency information is obtained through a

value based dependency instead of a memory based analysis

for(i=0;i<N;i++) {
S0: tmp = …

for(j=0;j<= i ;j++) {
S1: tmp=tmp+X[j]*C[i][j];
S2: Y[i] = tmp;

}

S0

S1
S2

ARCHI 2013 64/8427/3/2013

Loop transformation legality

• The schedule must enforce dependency constraints
– If statement instance S() depends on S(), the schedule must be

such that S() is scheduled after S() , or more formally

• We can deduce the set of violated dependencies
– All pair of point not enforcing the dependency constraints

– With

Verifying loop transformation legality amounts to check the emptiness
of a union of integer polyhedron.

ARCHI 2013 65/8427/3/2013

Loop transformation legality

• Example
– Kernel

– Transformation

This clause does obviously not hold, and there is a dependency violation for all (i,j) !!!

for(i=1;i< 7;i++) {
f or(j=0;j<5;j++)

S0: X[i,j]=max(X[i-1,j-1]+A,
X[i,j-1]+B
X[i-1,j]+C);

}

In general, one have to use an ILP/SMT solver to prove a schedule

ARCHI 2013 66/8427/3/2013

Part III : scheduling & parallelization

ARCHI 2013 67/8427/3/2013

Outline

1. Finding one dimensional schedules
1. For a simple case (uniform dependencies)
2. For affine dependencies by quantifier elimination
3. The vertex and Farkas approaches

2. Finding multi-dimensional schedules
1. Feautrier Greedy heuristic
2. Iterative polyhedral compilation
3. Locality aware parallelization

ARCHI 2013 68/8427/3/2013

But how to find a good/legal schedule ?

• Pick schedules randomly and see if they are correct ?
– Very low chance to find a legal schedule for a given try
– Legality checks are costly (polyhedron of a pressburger

formula)

• Find some constraints over schedule coefficients
– s.t. when enforced, the schedule is guaranteed to be legal.
– How to derive these constraints ?

• In the following, we will start by studying 1D schedules
– 1D schedules map every statement instance to a simple

timestamp.
– The timestamp is an affine function of the statement index

ARCHI 2013 69/8427/3/2013

A (too) simple example

• Searching for a 1D schedule for our example

• The scheduling function is written as

• To be legal, it must enforce all dependencies

for(i=1;i< 6;i++) {
f or(j=0;j< 4;j++)

S0: X[i,j]=max(X[i-1,j-1]+A,
X[i,j-1]+B
X[i-1,j]+C);

}

The RAW dependencies are

ARCHI 2013 70/8427/3/2013

A (too) simple example

• We can now inject ΘS1 definition in the constraints

• And derive constraints over the coefficients τi

One legal schedule

ARCHI 2013 71/8427/3/2013

A (less) simple example

• With non uniform dependencies

• The constraints over the τi become

• The constraints now involve iteration domain indices …
– The scheduling legality depends on the iteration domain shape !!

for(i=1;i< 6;i++) {
f or(j=0;j< 4;j++)

S0: X[i,j]=max(X[i,j-1]+A,
X[i-1, 3-j]+C);

}

ARCHI 2013 72/8427/3/2013

Quantifier elimination

• How to get rid of iteration indices in the constraints ?
– Obtain an equivalent quantifier free expression (i.e. involving

only scheduling coefficients) for constraints such as

• Two approach can be used
– The first one by Quinton et al. is known as the vertex method [1]
– The second one by Feautrier leverages the Farkas lemma [2].

[1] Patrice Quinton, Vincent Van Dongen: The mapping of linear recurrence
equations on regular arrays. VLSI Signal Processing 1(2): 95-113 (1989)

[2] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem, I,
One Dimensional Time. Int. Journal of Parallel Programming, 21(5):313--348,
October 1992

ARCHI 2013 73/8427/3/2013

The vertex method (oversimplified)

• Background : a polyhedron has two representations
– The Chernikova algorithm permit to change from one

representation to the other (very costly)

• Main trick
– A scheduling legal for all vertices of D is legal for all points inside

the domain D.
– Let’s use the vertex position to derive quantifier free constraints !

Using constraints Using vertices (and rays)

ARCHI 2013 74/8427/3/2013

The vertex method (oversimplified)

• Back to the example

• In practice things may be slightly more complicated
– For more details, read the paper !

i

j

+
Vertices : (i=0, j=0), (i=5, j=0)

(i=0, j=3), (i=5, j=3)

t=4t=1

(from slide 68)

ARCHI 2013 75/8427/3/2013

The Farkas algorithm (oversimplified)

• Farkas lemma
– Given a polyhedron D defined by affine constraints C.x+b>=0

– An affine function is positive for all points in D iff it can be written
as a (positive) combination of constraints Ci.x+bi

– The (positive) coefficients of this linear combination are called
Farkas multipliers (µi)

• How to use this ?
– Write the schedule constraint as a (positive) linear combination

of the statement domain constraints

– We obtain a new system of constraints involving only Farkas
multipliers (µi) and scheduling coefficient (τi).

with

ARCHI 2013 76/8427/3/2013

The Farkas approach (example)

• Scheduling constraint from slide 68

Gauss

elimination

projection

Identification

ARCHI 2013 77/8427/3/2013

Limitations of 1D scheduling functions

• Consider a parameterized version of our example loop

• The scheduling now follows
– This leads to the following constraint system

for(i=1;i< 6;i++) {
f or(j=0;j< M;j++)

S0: X[i,j]=max(X[i,j-1]+A,
X[i-1, M-j-1]+C);

}

ARCHI 2013 78/8427/3/2013

The Farkas approach (example)

• Scheduling constraint from previous slide

Identification

which contradicts

There is no scheduling solution able to satisfy the constraints
for both dependencies !

ARCHI 2013 79/8427/3/2013

Limitations of 1D scheduling functions

• But, there must be a legal schedule for the loop nest
– Indeed, we can write the initial program schedule as

• This schedule is however not an affine schedule
– The product M;j is not affine as M is not a constant

M-1

0

ARCHI 2013 80/8427/3/2013

Multidimensional schedules

• Not all loop nests admit one-dimensional schedules
– Even when they do, this might not be the best schedule

• We can instead use multidimensional schedules
– But how to derive legal schedules ?

• Several approaches have been proposed
– A greedy algorithm by Feautrier (1992) [1]
– A framework for polyhedral iterative compilation (2008) [2]
– A locality aware parallelization algorithm (2008) [3]

[1] Paul Feautrier: Some efficient solutions to the affine scheduling problem. Part
II. Multidimensional time. International Journal of Parallel Programming, 1992
[2] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, John Cavazos: Iterative
optimization in the polyhedral model: part ii, multidimensional time. PLDI 2008
[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, P. Sadayappan: A
practical automatic polyhedral parallelizer and locality optimizer. PLDI 2008

ARCHI 2013 81/8427/3/2013

Feautrier’s greedy algorithm

• Based on the idea of weakly satisfied dependency
– A dependency is weakly satisfied at a depth d, for a

schedule ΘSi, when, given

– A weakly satisfied dependency at a depth d can still be strongly
satisfied at dimensions k>d.

• Intuition
– By allowing weakly satisfied dependencies we “leave slack” to

the scheduler and postpone the problem to later stage.

[1] Paul Feautrier: Some efficient solutions to the affine scheduling problem. Part II.
Multidimensional time. International Journal of Parallel Programming, 1992.

We have

ARCHI 2013 82/8427/3/2013

Feautrier’s greedy algorithm

• Uses a greedy algorithm
– Focus on strongly connected components in the PRDG
– Starts by the outermost dimension, proceeds to the innermost
– At every dimension d, find a partial schedule that :

• makes sure all dependencies at weakly satisfied at depth d

• maximizes the number of fully satisfied dependencies

– The algorithm stops when all dependencies are satisfied

• The algorithm maximizes parallelism
– Here parallelism means the number of inner parallel loop
– Does not consider memory access locality
– Little practical use “as is”

[1] Paul Feautrier: Some efficient solutions to the affine scheduling problem. Part II.
Multidimensional time. International Journal of Parallel Programming, 1992.

ARCHI 2013 83/8427/3/2013

Iterative polyhedral compilation

• Enable fast exploration of many legal programs
– Build a convex set of multidimensional legal schedules for

bounded [-1,1] schedule coefficients.
– Explore this set to find the most profitable transformation.

[2] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, John Cavazos: Iterative
optimization in the polyhedral model: part ii, multidimensional time. PLDI 2008

ARCHI 2013 84/8427/3/2013

This tiling is not
possible as tiles

have cyclic
dependencies

A locality aware parallelization algorithm

• Tiling is a widely used parallelizing transformation
– It is usually applied as a post-scheduling optimization
– We need to make sure the transformed program can be tiled
– Reminder : in a tiled program, tiles are executed atomically

[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, P. Sadayappan: A practical
automatic polyhedral parallelizer and locality optimizer. PLDI 2008

ARCHI 2013 85/8427/3/2013

Scheduling for Tilability

• Must ensure an unidirectional flow of data after transfo.
– This constraint can be applied to some innermost loop index

• Then only this set of innermost can be tiled.

– Tilability often prevents loop fusion (parallelism/locality trade-off)

• The constraint is formalized as follow

j

i

This tiling is legal
(no cycles)

ARCHI 2013 88/8427/3/2013

• Searches multi-dimensional schedules retaining tilability
– Heuristic to find the maximum number of tilable loops
– Try to minimize reuse distance to improve temporal locality

• Implemented in the Pluto source-to-source compiler
– http://pluto-compiler.sourceforge.net/ with openMP and Cuda back-end

The Pluto algorithm

ARCHI 2013 89/8427/3/2013

Part IV

Current/open research topics

ARCHI 2013 90/8427/3/2013

Current/open research topics

• Improving it efficiency
– Taking advantage of hardware specificities (GPU, Many-Core)

• Making it mainstream !
– Polly in LLVM, Graphite/Gcc, Pluto, PolyRose, etc.
– Putting it to work in real production compilers

• Go beyond affine control loop and affine array accesses
– How to deal with data-dependant behavior ?
– How to use speculative polyhedral parallelization ?

• Make it more scalable
– The full polyhedral hammer is often overkill, one may use

simpler abstractions while retaining efficiency.

ARCHI 2013 91/8427/3/2013

Questions ?

