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Part I : Introduction
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Goal of this talk

• What you will find in this talk
– A brief explanation of why loop transformations are useful
– An overview of most common loop & layout transformations
– A presentation of the key ideas used in polyhedral compilation
– Probably some typos ;)

• What you will NOT find in this talk
– An in-depth tutorial on the polyhedral model 

Got to http://labexcompilation.ens-lyon.fr/polyhedral-school/

• What you MAY find in this talk
– Some inspiration to try by yourself what state-of-the art 

polyhedral compilation are now capable of ...
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Multi-core processor architectures

• Nehalem : Intel Core i7
– Four processor core + shared L3 cache with coherency 

• Main programming model is thread level parallelism
– Using openMP, pthreads, …
– SIMD is handled by the compiler back-end

Source:Intel

• Simultaneous 
Multithreading (2 
threads/core)

• SIMD instruction set 
with 128 bits registers 
(SSE4)



ARCHI 2013 6/8427/3/2013

Program optimizations & performance

• Impact of optimizations on performance

• Origin of improvements
– Parallelism (thread x SIMD): 8x - Memory optimization: 5x-20x !

160x speed-
up !

Source [Spiral - CMU]

The so called 
“Ninja Performance Gap”
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SIMD short width vector instructions

• Expose vector level parallelism in the ISA
– Initially for regular (8bits, 16bits data) multimedia kernels
– Extended to support floating point (Intel SSE, AVX)
– Very challenging for compilers !

• Example from SSE : ADDPS xmm1, xmm2/m128
– m128 : 16 bytes aligned memory location, 
– xmm0-7 : 128 bit SSE registers

• Operation

D[31-0]  :=D[31-0]  +A[31-0];
D[63-32] :=D[63-32] +A[63-32];
D[95-64] :=D[95-64] +A[95-64];
D[127-96]:=D[127-96]+A[127-96];

A

D

D
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SIMD instructions : layout constraints

• SIMD memory access = only contiguous data in memory
– Unaligned accesses (64/128 bits) are not supported or cause 

performance penalties

0000
0008
0010
0018
0028
0030
0038
0040
0048

for(i=0;i<8;i++) {
for(j=0;j<8;j++) {

X[8*i+j]+=A[j]*Y[8*i+j];
}

}

for(i=0;i<8;i++) {
for(j=0;j<8;j++) {

X[8*i+j]+=A[j]*Y[8* j +i ];
}

}

f or(i=0;i<8;i++) {
for(j=0;j<8;j++) {

X[8*i+j]+=A[j]*Y[8* i +j+5 ];
}

}

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

0000
0008
0010
0018
0028
0030
0038
0040
0048

Efficient SIMD 
vectorization

No SIMD because 
of the Y[j][i] non 

contiguous
access pattern

Inefficient   
vectorization

(unaligned access)

X[][] Y[][]

How to transform loops (and possibly data organization) to 
enable efficient SIMD vectorization ? 
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for(i=0;i<N;i++) {

« sync »
}

Thread level parallelism (OpenMP)

• OpenMP = simple way to expose thread level parallelism
– Through coMPIler directives in the user source code (#pragma)
– Targeted toward shared memory machine models

• Example : #pragma omp parallel for

– Every j iteration can be executed by its own thread.
– Threads synchronize at the end of the loop.

for(i=0;i<N;i++) {
#pragma omp parallel for private(j)

for(j=0;j<M;j++) {
X[j]=X[j]+Z[j]*Y[i];

}
}

j=0 j=1 j=M

X
[0

]=
X

[0
]+

Z
[0

]*
Y

[i]
;

X
[M

]=
X

[M
]+

Z
[M

]*
Y

[i]
;

Parallel
execution
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for(i=0;i<N;i++) {

« synchronization »
}

Data race issues in thread level parallelism

• The relative execution order of threads is not known
– Dynamically determined by the OS scheduler

• The program execution may exhibit “data races”
– When thread x reads a memory cell written by thread y
– Read can happen before write (or the other way round)

for(i=0;i<N;i++) {
#pragma omp parallel for private(j)

for(j=0;j<M;j++) {
X[j]=X[ M-j ]+Z[j]*Y[i];

}
}

X
[M

]=
X

[0
]+

Z
[M

]*
Y

[i]
;

X
[0

]=
X

[M
]+

Z
[0

]*
Y

[i]
;

j=0

j=M

Ille
ga

l

sc
hed

ule

j=0

j=M

X
[M

]=
X

[0
]+

Z
[M

]*
Y

[i]
;

Illegal

schedule

X
[0

]=
X

[M
]+

Z
[0

]*
Y

[i]
;

How to guarantee the absence of 
data race in a OpenMP program ?

t
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Synchronization cost in Thread level parallelism

• The runtime forks threads and wait till their completion 
– This has obvious performance overhead.

• Need to expose « coarser grain » parallelism.
– Minimize the frequency of synchronization operations
– Partition the computations in large independent “chunks”.
– Pay attention to memory hierarchy (spatial/temporal locality)

for(i=0;i<N;i++) {
#pragma omp parallel for private(j)

for(j=0;j< 4;j++) {
X[j]=X[j]+Z[j]*Y[i];

}
}

The thread parallel version 
is very likely to be slower 
than the sequential one

How to perform (efficient) automatic parallelization ?
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Embedded many-core/MPSoC

• Power efficient heterogeneous parallel architecture 
– Various type of PEs interconnected through a network-on-a-Chip

• Distributed Scratchpad Memory programming model 
– Global shared memory with software managed local memories

[source RecoreSystems]

Hardware IP
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Distributed Scratchpad memory model

• Processors only work on local scratchpad memory 
– Global memory used to synchronize and exchange data
– Scratchpad content is managed by the programmer (DMA)

How to automatically generate 
(efficient) DMA code?

Slaves

dma_cpy (&p, 1, src, …);
dma_cpy(&a, p.rows*NCA, src, …);
dma_cpy(&b, NCA*NCB, src, …);
for (k=0; k<NCB; k++)

for (i=0; i<p.rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

dma_cpy (&p, ..,, …);
dma_cpy(&c, p.rows*NCB, …, …);

Hardware IP

dma_cpy(&p, 1, src, …);
dma_cpy(&a, p.rows*NCA, src, …);
dma_cpy(&b, NCA*NCB, src, …);
for (k=0; k<NCB; k++)

for (i=0; i<p.rows; i++) {
c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

dma_cpy(&p, 1,, …);
dma_cpy(&c, p.rows*NCB,, …);

Need to determine accurately the 
slice of the data that needs to be 
read/written to global memory.
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High Level Synthesis

• Generating custom hardware from C/C++
– HLS tools help boosting designers productivity by up to 5x-10x !

void image(char in[M][N] , char out[M][N]) {
for(int i=1;i<N-1;i++) {

for(int j=0;j<M;j++) {
S0: Gx=in[i][j+1]+2*in[i-1][j+1]+in[i+1][j+1]+

in[i][j-1]+2*in[i-1][j-1]+in[i+1][j-1];
S1: Gy=in[i+1][j-1]+2*in[i+1][j]+in[i+1][j-1]+

in[i-1][j-1]+2*in[i-1][j]+in[i-1][j-1];
S2: out[i][j]= sqrt(Gx*Gy);

}
}

}

Sobel edge 
detector IP

M
-2

How to make automatically synthesized hardware as efficient 
as manually designed circuits ?
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Outline

1. Overall context
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2. Compiling for power-efficient embedded systems
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1. Shift, Interchange, Fusion/Fission, Skewing, Tiling, etc.
2. Array expansion, contraction, slicing, etc .

3. Wrapping up example
1. Image processing kernel example
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Loop transformations, what for ?

• Improve performance and/or energy efficiency by …

• Exposing additional parallelism !
– Thread level, SIMD, task level, etc …

• Improving the efficiency of the memory hierarchy
– Spatial & temporal locality for registers, caches, TLB, disks, …
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Loop shifting

• Delay an statement by a constant number of iterations
– Increase instruction level parallelism by allowing pipelining.
– Not always legal (must enforce data dependencies)

for(j=0;j<N;j++) {

S0:  Y[j]=foo(X[j]);

S1:  Z[j]=bar(Y[j]);

}

Y[0]=Y[0]+X[0];

for(j=1;j<N;j++) {

S0: Y[j]=Y[j]+X[j];

S1: Z[j-1]=a*Y[j-1];

}

Z[N-1]=a*Y[N-1];

The dependency was removed : 
S0 and S1 can run in parallel

There is a RAW dependency 
on Y[j] between S0 and S1.

shifting S0 by 1

i=2 i=2
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Loop fusion

• Merge several loops into a single one
– Improve temporal locality of memory accesses
– The transformation is not always possible

for(i=0;i<N;i++) {
f or(j=0;j< N;j++) {

S0: Y[i,j]=foo(X[i,j]);
}

}
for(i=0;i<N;i++) {

for(j=0;j< N;j++) {
S1: Z[i,j]=bar(Y[i,j]);

}
}

for(i=0;i<N;i++) {
for(j=0;j< N;j++) {

Y[i,j]=foo(X[i,j]);
Z[i,j]=bar(Y[i,j]);

}
}

fusion(S0,S1)

If Y[,] does not entirely fit in the 
cache, the second loop will suffer a 

~100% cache miss rate.

Y[i,j] is reused immediately 
after its production, we have 
very good temporal locality
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Loop distribution

• Split a single loop into several loops
– Can expose parallelism in one of the loop

• Remark :
– In general, there is a trade-off between parallelism and locality

for (i=1;i<1000;i++) {
S0: A[i]=A[i-1]+3;
}
#pragma omp parallel for 
f or (i=1;i<1000;i++) {
S1: C[i]=A[i]+5;
}

for( i=1;i<1000;i++){
S0: A[i]=A[i-1]+3
S1: C[i]=A[i]+5
}

distribute(S0,S1)

The iterations of the second 
loop are now fully parallel
(but we degraded locality)

The iterations of the loop 
are not fully parallel 

(RAW on A[i-1]�A[i])
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Loop interchange 

• Interchange two loop indices in a loop nest
– May be used to expose parallelism or to improve locality
– The transformation is not always possible

for(i=0;i<N;i++) {
f or( j =0;j< N;j++) {

X[i]=X[i]+Y[ i ]*Y[j];
}

}

f or(p=0;p<N;p++) {
for(q=0;q< N;q++) {

X[q][p]=a*X[ q][ p];
}

}

f or( j =0;j<N;j++) {
f or(i=0;i< N;i++) {

X[i]=X[i]+Y[ i ]*Y[j];
}

}

Interchange(i,j)

Interchange(i,j)
for(i=0;i<N;i++) {

for(j=0;j< N;j++) {
X[i][j]=a*X[ i ][ j ];

}
}

The new inner loop is parallel

X[i][j] has better spatial locality
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Loop strip-mining

• Breaks an innermost loop into chunks of constant size

#define N=128
float **A,**B,**C;
for(i=0;i<N;i++){

for(k=0;k<N;k++)
for(j=0;j<N;j++){

S0:   C[i,j]+=A[i, k ]*B[ k,j];
}

}

f or(i=0;i<N;i++) {
for(k=0;k< N;k++) {

for(jj=0;jj<N;jj+=8)
f or(j=0;j<8;j++)

S0:     C[i, j+jj ]+=A[i,k]*B[k, j+jj ];
}

}

f or(i=0;i<N;i++) {
for(k=0;k< N;k++) {

for(j=0;j<8;j++)
f or(jj=0;jj<N;jj+=8)

S0:     C[i, j+jj ]+=A[i,k]*B[k, j+jj ];
}

}

Unrolling the innermost will help 
vectorizing the code

The loop iterating over index j can be 
nicely distributed to 8 threads
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Loop tiling

• Break the loops into « tiles » or blocks
– Expose coarse grain parallelism & improve temporal data reuse
– Legal only if all loop are permutable (i.e. can be interchanged)
– Very effective parallelizing program transformation

• Classical example : the matrix product

float **A,**B,**C;
for(i=0;i<16;i++) {

f or(j=0;j<16;j++) {
for(k=0;k<16;k++)

S0:   C[i,j]+=B[i,k]*A[k,j];
}

}

f loat **A,**B,**C;
for(ii=0;ii<16;ii+=4)

for(jj=0;jj< 16;jj+=4)
for(kk=0;kk<16;kk+=4)

for(i=0;i<4);i++)
f or(j=0;j<4;j++)

for(k=0;k<4;k++)
S1:    C[i+ii,j+jj]+=

B[i+ii,k+kk]*A[k+kk,j+jj];

A 4x4x4 Tile

Best understood with an visual representation …
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ii

kk

jj

Loop Tiling

float **A,**B,**C;
for(ii=0;ii<16;ii+=4)

for(jj=0;jj< 16;jj+=4)
f or(kk=0;kk<16;kk+=4)

for(i=0;i< 4);i++)
f or(j=0;j< 4;j++)

f or(k=0;k< 4;k++)
S1:    C[i+ii,j+jj]+=

B[i+ii,k+kk]*A[k+kk,j+jj];

A 4x4x4 Tile

• Tiling helps improving spatial and temporal locality
– One chooses tile size such that all data fits into the cache

C[16][16]

A[16][16]

B[16][16]
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• Simple way of exposing coarse grain parallelism
– Tiles are executed as atomic execution units, there is no 

synchronization during a tile execution.

• Tiling enables efficient parallelization
– It improves locality and reduces synchronization overhead
– Finding the “right” tile size and shape is difficult (open problem)

Loop Tiling

float **A,**B,**C;
#pragma omp parallel for private(ii)
for(ii=0;ii<16;ii+=4)
#pragma omp parallel for private(jj)
for(jj=0;jj<16;jj+=4)

for(kk=0;kk<16;kk+=4)
for(i=0;i< 4);i++)

f or(j=0;j< 4;j++)
f or(k=0;k< 4;k++)

S1:    C[i+ii,j+jj]+=
B[i+ii,k+kk]*A[k+kk,j+jj];

A 4x4x4 Tile

float **A,**B,**C;
for(ii=0;ii<16;ii+=4)

for(jj=0;jj< 16;jj+=4)
f or(kk=0;kk<16;kk+=4)

for(i=0;i< 4);i++)
f or(j=0;j< 4;j++)

f or(k=0;k< 4;k++)
S1:    C[i+ii,j+jj]+=

B[i+ii,k+kk]*A[k+kk,j+jj];

ii

kk

jj
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Loop skewing

• Shift the innermost loop j by the outermost loop index I
– Changes array index expressions but not execution order

• Wait a minute, what’s the use of this transformation?
– None, unless used jointly with a loop interchange

for(i=0;i< N;i++) {
f or(j=0;j<N;j++)

S[i,j]=max(S[i-1,j-1]+A,
S[i,j-1]+B
S[i-1,j]+C);

}

for(i=0;i< N;i++) {
f or(j= i ;j<N +i ;j++)

S[i,j]= max(S[i-1,j -i -1]+A,
S[i,j -i -1]+B
S[i-1,j -i ]+C);

}

0

i

j

N

M
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Loop skewing + interchange

• Shift the innermost loop j by the outermost loop index i
• Then, interchange the innermost and outermost loops

0
j

i

N

M

Skewing

for(i=0;i< N;i++) {
f or(j=0;j<N;j++)

S[i,j]=max(S[i-1,j-1]+A,
S[i,j-1]+B
S[i-1,j]+C);

}

for(j=0;j< 2*N-1 ;j++)
f or(i= max(0,N-j) ;i< min(N,j) ;i++) 

S[i,j]=max(S[i-1,j-i-1]+A,
S[i,j-i-1]+B
S[i-1,j-i]+C);

}

No dependencies between different 
iterations of a given j loop !
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Data layout transformation, what for ?

• Optimizing memory size
– Reducing statically allocated array sizes whenever possible 

• Enabling parallel execution
– Allocate extra memory space to enable parallel execution

• Improving the efficiency of software caches
– Find which data set to move in a software controlled cache

• Communication synthesis in distrib. memory machines
– Derive the set of data that needs to be transmitted from one 

processor to another.
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Array privatization/expansion

• Motivating example

• Privatization = each parallel task owns a copy of the var.
– Remark : openMP supports privatization (private directive)

Parallel execution of the i loop lead to a 
data race on shared variable tmp.

The parallel execution becomes legal if 
each iteration j owns its value of tmp !

for(i=0;i<N;i++) {
S0:  tmp = …

for(j=0;j<= i ;j++) {
S1:    tmp=tmp+X[j]*C[i][j];

}
S3:  Y[i] = tmp;

}

// expansion of tmp as tmp[N]
for(i=0;i<N;i++) {

S0:  tmp [i] = …
f or(j=0;j<= i ;j++) {

S1:    tmp [i] =tmp [i] +X[j]*C[i][j];
S3:  Y[i] = tmp [i] ;

}

Which variables/array to privatize ? How much expansion is needed ?

#omp parallel for private i,j,tmp
for(i=0;i<N;i++) {

S0:  tmp = …
for(j=0;j<= i ;j++)

S1:    tmp=tmp+X[j]*C[i][j];
S3:  Y[i] = tmp;

}
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Array contraction

• For embedded systems with scarce memory resources
– Replace a temporary array by a smaller one
– We must find a new legal array size and addressing scheme 

• Very effective if combined with loop fusion !

for(i=0;i<N;i++) {
tmp[i,0]=foo(X[i]);
f or(j=1;j<N;j++) {

tmp[i,j]=foo(X[i,j]);
Z[i-1,j]=bar(tmp[i,j-1]);

}
Z[N-1,j]=bar(Y[N-1,j]);

}

f or(i=0;i<N;i++) {
tmp[ 0]=foo(X[i]);
for(j=1; j<N; j++) {

t mp[ j%2 ]=foo(X[i,j]);
Z[i-1,j]=bar(tmp[ (j-1)%2 ]);  

}
Z[N-1,j]=bar(Y[N-1,j]);

}

tmp is a NxN array tmp is now a 2x1 array
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Array slicing for scratchpad memory

• Scratchpad management require explicit copy operations
– The programmer/compiler must figure out which data to 

load/save to/from the scratchpad memory.

for(i=0;i<8;i++) {
for(j=0;j<i;i++) {

Z[i-j+3] = Y[2*i][2*j] +…;
}

}

// copy to scratchpad
for(i=0;i<8;i++) {

_z[i]=z[3+i];
for(j=0;j<i;i++) 

_y[i][j]=Y[2*i][2*j];
}
// run the computations
for(i=0;i<8;i++) 

f or(j=0;j< i ;j++) 
_z[i-j]=_y[i][j]+…;

// writeback to main memory
for(i=0;i<8;i++) {

z[3+i]=z[i];
for(j=0;j<i;i++) 

y[2*i][2*j]=_Y[i][j];
}y[16][16]z[16]
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Outline

1. Overall context
1. Compiling for multi-core machines
2. Compiling for power-efficient embedded systems

2. Loop and data-layout transformations 
1. Shift, Interchange, Fusion/Fission, Skewing, Tiling, etc.
2. Array expansion, contraction, slicing, etc .

3. Wrapping up example
1. Image processing kernel example
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• Image filtering with separable 2D convolution kernel
– Decomposed into a horizontal and a vertical 1D convolution

• A naïve implementation
void image( int M, int N, char in[M][N] , char out[M][N]) {

int tmp[M][N]; 
for (i=1;i<N-1;i++)

for (j=0;j<M;j++)
S0: tmp[i][j]=f1(in[i][j],in[i-1][j],in[i+1][j]);

for (i=1;i<N-1;i++)
for (j=1;j<M-1;j++)

S1: out[i][j]=f2(tmp[i][j],tmp[i][j-1],tmp[i][j+1]);
}

In[][] tmp[][] out[][]

i

Image processing pipeline example

Horizontal filter

Vertical filter

In[][] out[][]

i
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Image processing pipeline example

• Why not synthesizing the kernel as custom hardware ?
– By using a state of the art High Level Synthesis tool

• Results 
– 2.M.N clock cycles, O(MN) memory cost, 4.MN byte I/O mem access

– Considering  external I/O with 6 cycle access latency ⇒24M.N cycles

void image( int M,N, char **in ,char **out){
int tmp[M][N]; 
for (i=1;i<N-1;i++)

for (j=0;j<M;j++)
S0: tmp[i][j]=f1(in[i][j],

in[i-1][j],
in[i+1][j]);

for (i=1;i<N-1;i++)
for (j=1;j<M-1;j++)

S1: out[i][j]=f2(tmp[i][j],
tmp[i][j-1],
tmp[i][j+1]);

}
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void image( int M, int N, char in[M][N] , charr out[M][N]) {
int tmp[M][N]; // local memory

for (i=1;i<N-1;i++)
for (j=0;j<M;j++)

S0: tmp[i][j]=f(in[i][j],in[i-1][j],in[i+1][j]);

for (i=1;i<N-1;i++)
for (j=1;j<M-1;j++)

S1: out[i][j]=f(tmp[i][j],tmp[i][j-1],tmp[i][j+1]);
}

Image processing pipeline example

• Loop fusion (with shifting)
– Reduce clock cycle count from 2.M.N+ε to M.(N+1) +ε

• Array contraction
– Reduces local buffer size form M.N to 3 !

• Memory access merging (burst accesses of size B)
– Reduce the #I/O by B and limits impact of memory latency

• Final design
– x2 in #cycles, #I/O reduced by xB, local mem by xM.N/B

void image( int M, int N, int in[M][N] ,int out[M][N]) {
int tmp[M][N]; // local memory

for ( i = 1; i < N-1; i++)
for (j = 0; j < 2; j++)

S0: tmp[i][j] = f(in[i][j], in[i-1][j], in[1+i][j]);
for (j = 2; j < M; j++)

S0: tmp[i][j] = f(in[i][j], in[i-1][j], in[1+i][j]);
S1: out[i][j-1] = f( t mp[i][j] , tmp[i][j-2] , tmp[i][j-1] );
}

void image( int M, int N, int in[M][N] ,int out[M][N]) {
int tmp[ 3] ;  // local memory

for ( i = 1; i < N-1; i++)
for (j = 0; j < 2; j++)

if (j%8) buf = 
S0: tmp[ j%3 ] = f(in[i][j], in[i-1][j], in[1+i][j]);

for (j = 2; j < M; j++)
S0: tmp[ j%3 ] = f(in[i][j], in[i-1][j], in[1+i][j]);
S1: out[i][j-1] = f( t mp[ (j-1)%3 ] , t mp[ (j-2)%3 ] , t mp[ j%3 ] ) ;
}

All these transformations can now be fully automated
thanks to steady improvements in polyhedral coMPIlation

All these transformations can now be fully automated
thanks to steady improvements in polyhedral coMPIlation
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Part II : Hands-on !
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Outline

1. Representing & reasoning about loops in compilers
1. CDFG & Expanded Dependence Graph (loops)
2. The case for a compact instance wide representation

2. Polyhedral representation of Affine Control Loops
1. Statement Iteration domains as polyhedral sets 
2. Lexicographic ordering (aka multi-dimensional time)

3. Polyhedral program transformations
1. Loop transformations as affine transformations
2. Composability of loop transformations

4. Semantic preserving schedules
1. Dependence Analysis (memory vs value based) & PRDGs
2. Checking the legality of a schedule
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How to model loop nests in a coMPIler ?

• Control & Data Flow Dependence Graph
– Does not capture the “regularity“ present in most loop nests.
– Coarse dependency information between statements
– Inter-iteration analysis is quite difficult (we don’t “see” for loops)

for(i=1;i< 7;i++) {
f or(j=1;j<5;j++)

S[i,j]= max(
S[i-1,j-1]+A,
S[i,j-1]  +B,
S[i-1,j]  +C

);
}

i 1

i

+

S[i,j-1] A

+
S[i-1,j] A

+

S[i-1,j-1] A

+

max

S[i,j]

i 7

<

j 5

<

1

i

j 1

j

+
0

j

F

T

F T

RAW
RAW RAW

RAW
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How to model loop nests in a compiler ?

• Use a dependence graph as in previous slides ?
– Every iteration is represented as a vertex of the graph
– Data dependencies are modeled as edges in the graph

• Limitations
– Only for loop bounds known at compile time and not scalable

for(i=1;i< 7;i++) {
f or(j=1;j<5;j++)

S[i,j]=max(
S[i-1,j-1]+A,
S[i,j-1]+B,
S[i-1,j]+C

);
}

S[0,0] S[6,0]

S[0,4] S[6,4]
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What do we need ?

• We need a compact model which captures regularity
– Model size should be independent of loop iteration count 
– But it should not be restricted to simple/toy perfect loops

• We need instance wise dependency information
– Dependency information for each execution of a loop statement

All of these requirements are fulfilled by 
polyhedral representations of programs

All of these requirements are fulfilled by 
polyhedral representations of programs
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A short story of the polyhedral model

Pluto
(2008)

Cloog
(2003)

Polylib, PIP
(early 90s)

Multi-core

GPU

MPSoc

FPGA

VLSI

Automatic parallelization 
for shared and distributed 

memory machines

Multi-dimensional Process 
Networks for System Level Design

Loop transformations
for HLS

Multi-core era

Memory optimization for 
embedded multimedia

From a (very) subjective point of view …

Massively parallel 
Processor Arrays
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Loop iterators and parameters

• Loop iterator = indices of loops surrounding the statement
• Parameter = variable whose value does not change during the 

whole loop nest execution (example : size of an image).
L2:

for (i=1;i<=10;i+=1){
x[size_x-1]=i;

L3: for (j=1;j<= Z;j+=1){
z [j] = x[j] + x[j];

}
Z = … ;

}

L1:
for (i=1;i<=10;i+=1){

x[ P+i-1]=i;
for (j=1;j<= P;j+=1){

z[j] = x[j] + x[j];
}
…

}

Z is not a parameter for the 
loop nest L2 above

P is a parameter for the loop 
nest above

… but Z is a parameter in the 
context of the single loop L3 !
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Notion of polyhedral iteration domain

• Iteration domain : model of all iterations of a loop nest
– Modeled as a union of parameterized integer polyhedron

– Contraints bind together loop iterators and parameters

for(i=0;i<N;i++) {
for(j=0;j<N- i;j++) {

…
}

}

i<j

j≥0
i≥0

Integer polyhedron = convex domain defined by a 
conjunction of affine constraints

Integer polyhedron = convex domain defined by a 
conjunction of affine constraints

We can benefit from linear programming techniques !We can benefit from linear programming techniques !
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A few important definitions

• Statement
– Instruction/operation in the program source code. In a loop, a 

statement is executed several times.  

• Statement Iteration vector
– Vector made of the values of loop indices and parameters 

surrounding a statement execution (starting with outer loop).

• Statement instance
– A particular execution of a statement. A statement instance can 

be identified by its corresponding iteration vector.

• Statement domain 
– A union of polyhedron representing all instances of a given 

statement S. We write it DS.
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Statement Iteration domain

• Iteration set where a given statement Si is executed.
– Again modeled as a parameterized polyhedron using enclosing 

loop iterators and parameters as dimension indices.
– The polyhedron constraints are constructed out of enclosing loop

bounds and guards. 

• Example

i

j

i
i<N

for(i=0;i<N;i++) {
S0:  Y[i] = …

for(j=0;j<N;j++) {
if(j<N-i)

S1:      Y[i]=Y[i]*X[ i ][ j ];
}

}

j≥0
i≥0

i≥0 i<N

Loop iterators i ,j

Parameters : N j+i<N

j<N
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Notion of Lexicographical ordering

• Representing the set of iterations is not enough
– We must model in which order computations are performed

• We use lexicographic ordering (   ) over the index set
– Intuition : think of it as hours, minutes, seconds

• In the following, we will write 

S1(i,j) is executed after S1(i,j-1)

S1(i+1,j) is executed after S1(i,j’) for all j, j’  
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• Below, S1(i,0) is always executed after S0(i) 
– However we don’t have 

• To model such textual order, we add scalar dimensions
– They are artifact indices whose value are constants for a stmt

– Now we have                       enforced
• means a total order for all statement instances in the loop nest.

Notion of Lexicographical ordering

S0(i,0)

S1(i,1,j)

S0(i)

S1(i,j)
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Notion of statement schedule

• The expression used for lex. ordering is a schedule
– It gives a time instant for each instance of the statement

• Loop transformations can be seen as a change of schedule
– We will restrict to quasi-affine schedule transformations
– Quasi-affine schedule can express most loop transformations

• Also enables complex compositions of loop transformations

Statement S0 schedule is (i,0)
for(i=0;i<N;i++) {

S0:  Y[i] = …
for(j=0;j<= i ;j++) {

S1:    tmp=Y[i]*X[ i ][ j ];
S2:    Y[i]=…

}
S3:  res = Y[N-i] + Y[i]

}

Statement S1 schedule is (i,1,j,0)

Statement S3 schedule is (i,2)

Statement S2 schedule is (i,1,j,1)
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Notion of statement scheduling 

• Transforming a loop = rescheduling its stmt instances
– We map every instance S(x)  to a new index space S(x’=theta(x))
– The mapping is expressed using affine functions

• Scheduling = “affine” transformation of the domain

is the scheduling (or scattering) function for is the scheduling (or scattering) function for 

i’

j’
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Scheduling and code generation

• We must regenerate code for the transformed index set !
– Sequence of loops which scans the transformed domains 
– Known as the polyhedron scanning problem

• Example : ClooG code generator [1]

for (i=1;i<=8;i++) { 
f or (j=i-1;j<=7;j++) 

S1(i,j); 
if ((i>=2)&&(i<=6)) { 

for (j=0;j<=4;j++) 
S2(i,j); 

} 
} 

for (i=1;i<=8;i++) { 
for (j=i-1;j<=7;j++) 

S1(i,j); 
if ((i>=2)&&(i<=6)) { 

for (j=0;j<=4;j++) 
S2(i,j); 

} 
} 

for (j=0;j<=7;j++) S1(1,j);
f or (i=2;i<=5;i++) {

for (j=0;j<=i-2;j++) S2(i,j)
for (j=i-1;j<=4;j++) {

S1(i,j);
S2(i,j) ;

}
for (j=5;j<=7;j++) S1(i,j);

}
for (j=0;j<=4;j++) S2(6,j) ;
for (j=5;j<=7;j++) S1(6,j);
for (i=7;i<=8;i++)

for (j=i-1;j<=7;j++) 
S1(i,j);

for (j=0;j<=7;j++) S1(1,j);
for (i=2;i<=5;i++) {

for (j=0;j<=i-2;j++) S2(i,j)
for (j=i-1;j<=4;j++) {

S1(i,j);
S2(i,j) ;

}
for (j=5;j<=7;j++) S1(i,j);

}
for (j=0;j<=4;j++) S2(6,j) ;
for (j=5;j<=7;j++) S1(6,j);
for (i=7;i<=8;i++)

for (j=i-1;j<=7;j++) 
S1(i,j);

[1] Cedric Bastoul, Code Generation in the Polyhedral Model Is Easier Than You 
Think. In Proceedings of the 13th International Conference on Parallel 
Architectures and Compilation Techniques, 2004

optimized for code size

optimized for control
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Polyhedral loop transformation in a nutshell

for(i=0;i<4;i++) {
S0:  X[i]=…;

for(j=0;j< 4-i ;j++) {
S1:    X[i]=…;

}
}

for(i=0;i<4;i++) {
for(j=0;j< i+1 ;j++)

S1:    X[i-j]=…;
}
f or(j=0;j< i+1 ;j++) {

S1:    X[3-j]=…;
S0:    X[j]=…;

}
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Scheduling & loop transformations

• Loop shifting
– Shift a statement by some constant along a domain dimension

• Loop reversal
– Negates a loop index expression in the schedule
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• Loop distribution
– Distributes statements in distinct loops using a scalar dimension

• Loop fusion
– merge scalar dimensions to fuse/merge successive loops

Scheduling & loop transformations

j

i

j

i
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Scheduling & loop transformations

• Statement interchange
– Rearrange statements textual ordering in a loop body

• Loop interchange
– Index swapping in the schedule to change loop indices depths

j

i
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Composing transformations

• With this formalism we can compose transformations
– Simply by composing the statement scheduling functions

0
i

j

N

M

Skewing + Interchange

Skewing

0
i

j

N

M

Interchange
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How to model parallel execution ?

• By scheduling statement instances at a same timestamp

• Parallel loop = all its iterations have the same schedule
– We ignore some dimension of the schedule when checking for 

legality, but keep them for code generation.

for(i=1;i< 7;i++) {
S0:    X[i]= …;
S1:    Y[i]= …;

}

for(i=1;i< 7;i++) {
/ / in parallel
Y[i]= … ; X[i]= …;

}

S0 (i,0) → (i)

S1 (i,1) → (i)

All these iterations have  
the same schedule

Parallel schedule for legality check Full schedule for code generation
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for(i=0;i<N;i++) {
S0: x[i] = … ;
S1: … = x[i+1]

}

Statement vs instance level dependencies

• Name based dependency analysis
– Performed at the statement and array object level, not at the 

array cell level (modifying one cell � modifying the whole array)

• Array based dependency
– Performed the statement and array cell level (S0 and S1 are 

dependant if one execution of S0,S1 writes/reads to a same cell)

We find a RAW dependency although S0
and S1 never write/read to the same cell 
of the array x[…].

for(i=0;i<N;i++) {
S0: x[0] = … ;
S1: … = x[i]

}

We find a RAW dependency although S0
and S1 write/read to the same array cell 
only once in the loop (for i=0)

Can’t we really do better than this ? 



ARCHI 2013 57/8427/3/2013

Notion of memory access functions

• How to model memory access more accurately ?
– We know that every access has an enclosing iteration domain

• We know the set of iterations where this access occurs

– We can also model the set of array cells accessed in a statement

• We handle only certain type of memory accesses
– If index expressions = affine expressions of iterators+parameters
– This set of index expression defines an access function

for(i=0;i<N;i++) {
f or(j=0;j<= i ;j++) {

S0:   tmp[i-j]=…;
}

}

Access function for tmp[i-j] in S0 :
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• We propose to reason at the statement instance-level

• We will consider two different type of dependency analysis
– Memory based dependency analysis, 

• Looks for constraints enabling RAW, WAR and WAW dependencies 
enforcement at the memory cell level.

• Does not question original program memory allocation choice

– Value based dependency analysis 
• Looks for the underlying value producer/consumer relations
• More accurate, but may involve a memory expansion step

Instancewise dependency information

We want to relate statement instances         and          rather 
than simply relating     and
We will hence write                     when          depends on
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Example : RAW memory dependency

• There is a RAW dependency between S(i,j) and S(I’,j’)if
– S(i)  is executed after S’(j) in the original program (                   ) 
– S(i)  contains a read operation to a memory cell written by S’(j).

• Example 

• Same approach for WAR and WAW dependencies

for(i=0;i<N;i++) {
for(j=0;j<= 5;j++) {

S0: tmp[j] =tmp[i-j] +x[i];
}

}

i

j

For                              we have
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Value based dependency analysis

• Memory based dependency analysis is conservative
– It can hide some obvious parallelization opportunities

• Example
for(i=0;i<N;i++) {

S0:  tmp = 0;
for(j=0;j<=M;j++) {

S1:    tmp=tmp+X[j]*C[i][j];
S3:  Y[i] = tmp;

}

RAW dependency

S(i,j) depends on all previous iterations of the loop, no parallelization seems 
possible. But, when looking at the algorithm, it is obvious that each Y[i] can 
be computed on a different thread (with tmp privatized) 
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Value based dependency analysis

• To see this we must look at the value flow in the program
– Focus on values production/consumption relations
– These relations are a subset of RAW dependencies.

• How to obtain this value flow relation ?
– Given a RAW dep.          , we look for the statement 

instance S’(x’) which produced the value used at S(x).

– This statement instance is the last one (i.e. the lexicographical 
maximum of all            preceding  S(x)   )

for(i=0;i<N;i++) {
S0:  tmp = …

for(j=0;j<= i ;j++) {
S1:    tmp=tmp+X[j]*C[i][j];
S3:  Y[i] = tmp;

}

i



ARCHI 2013 62/8427/3/2013

Value based dependency analysis

• Finding the last preceding write to a given array cell ?
– This write instance is the lexicographical maximum of all 

preceding producers candidates [2].
– Found through Parametric Integer Programming [1], the solution is 

in the form of a piecewise affine function.

1. P. Feautrier. Parametric Integer Programming. RAIRO Recherche Opérationnelle, 1988. 

2. P. Feautrier. Dataflow Analysis of Scalar and Array References, IJPD, 1991 

for(i=0;i<N;i++) {
S0:  tmp = …

for(j=0;j<= i ;j++) {
S1:    tmp=tmp+X[j]*C[i][j];
S3:  Y[i] = tmp;

}

i
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Polyhedral Reduced Dependence Graph

• We use a PRDG to model dependencies in a loop nest
– Statements domains form the vertices of the graph
– Dependency information form the edges of the graph

• Example 
– We assume that dependency information is obtained through  a 

value based dependency instead of a memory based analysis

for(i=0;i<N;i++) {
S0:  tmp = …

for(j=0;j<= i ;j++) {
S1:    tmp=tmp+X[j]*C[i][j];
S2:  Y[i] = tmp;

}

S0

S1
S2
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Loop transformation legality

• The schedule must enforce dependency constraints
– If statement instance S(   ) depends on S(   ), the schedule must be 

such that S(   ) is scheduled after S(  )  , or more formally 

• We can deduce the set of violated dependencies
– All pair of point not enforcing the dependency constraints

– With

Verifying loop transformation legality amounts to check the emptiness  
of a union of integer polyhedron.
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Loop transformation legality

• Example
– Kernel 

– Transformation 

This clause does obviously not hold, and there is a dependency violation for all (i,j) !!!

for(i=1;i< 7;i++) {
f or(j=0;j<5;j++)

S0:  X[i,j]=max(X[i-1,j-1]+A,
X[i,j-1]+B
X[i-1,j]+C);

}

In general, one have to use an ILP/SMT solver to prove a schedule
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Part III : scheduling & parallelization
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Outline

1. Finding one dimensional schedules
1. For a simple case (uniform dependencies)
2. For affine dependencies by quantifier elimination
3. The vertex and Farkas approaches

2. Finding multi-dimensional schedules
1. Feautrier Greedy heuristic
2. Iterative polyhedral compilation
3. Locality aware parallelization
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But how to find a good/legal schedule ?

• Pick schedules randomly and see if they are correct ?
– Very low chance to find a legal schedule for a given try
– Legality checks are costly (polyhedron of a pressburger

formula)

• Find some constraints over schedule coefficients
– s.t. when enforced, the schedule is guaranteed to be legal.
– How to derive these constraints ?

• In the following, we will start by studying 1D schedules
– 1D schedules map every statement instance to a simple 

timestamp.
– The timestamp is an affine function of the statement index
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A (too) simple example

• Searching for a 1D schedule for our example

• The scheduling function is written as

• To be legal, it must enforce all dependencies

for(i=1;i< 6;i++) {
f or(j=0;j< 4;j++)

S0:    X[i,j]=max(X[i-1,j-1]+A,
X[i,j-1]+B
X[i-1,j]+C);

}

The RAW dependencies are
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A (too) simple example

• We can now inject ΘS1 definition in the constraints

• And derive constraints over the coefficients τi

One legal schedule
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A (less) simple example

• With non uniform dependencies

• The constraints over the τi become

• The constraints now involve iteration domain indices …
– The scheduling legality depends on the iteration domain shape !!

for(i=1;i< 6;i++) {
f or(j=0;j< 4;j++)

S0:    X[i,j]=max(X[i,j-1]+A,
X[ i-1, 3-j ]+C);

}
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Quantifier elimination

• How to get rid of iteration indices in the constraints ?
– Obtain an equivalent quantifier free expression (i.e. involving 

only scheduling coefficients) for constraints such as 

• Two approach can be used
– The first one by Quinton et al. is known as the vertex method [1]
– The second one by Feautrier leverages the Farkas lemma [2].

[1] Patrice Quinton, Vincent Van Dongen: The mapping of linear recurrence 
equations on regular arrays. VLSI Signal Processing 1(2): 95-113 (1989) 

[2] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem, I, 
One Dimensional Time. Int. Journal of Parallel Programming, 21(5):313--348, 
October 1992
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The vertex method (oversimplified)

• Background : a polyhedron has two representations
– The Chernikova algorithm permit to change from one 

representation to the other (very costly)

• Main trick 
– A scheduling legal for all vertices of D is legal for all points inside 

the domain D.
– Let’s use the vertex position to derive quantifier free constraints !

Using constraints Using vertices (and rays)
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The vertex method (oversimplified)

• Back to the example

• In practice things may be slightly more complicated
– For more details, read the paper !

i

j

+
Vertices : (i=0, j=0 ), (i=5, j=0 )

(i=0, j=3 ), (i=5, j=3 )

t=4t=1

(from slide 68) 
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The Farkas algorithm (oversimplified)

• Farkas lemma
– Given a polyhedron D defined by affine constraints C.x+b>=0

– An affine function is positive for all points in D iff it can be written 
as a (positive) combination of constraints Ci.x+bi

– The (positive) coefficients of this linear combination are called 
Farkas multipliers (µi)

• How to use this ?
– Write the schedule constraint as a (positive) linear combination

of the statement domain constraints

– We obtain a new system of constraints involving only Farkas
multipliers (µi) and scheduling coefficient (τi).

with
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The Farkas approach (example)

• Scheduling constraint from slide 68 

Gauss

elimination

projection

Identification
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Limitations of 1D scheduling functions

• Consider a parameterized version of our example loop

• The scheduling now follows 
– This leads to the following constraint system

for(i=1;i< 6;i++) {
f or(j=0;j< M;j++)

S0:    X[i,j]=max(X[i,j-1]+A,
X[ i-1, M-j-1 ]+C);

}
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The Farkas approach (example)

• Scheduling constraint from previous slide

Identification

which contradicts 

There is no scheduling solution able to satisfy the constraints 
for both dependencies !
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Limitations of 1D scheduling functions

• But, there must be a legal schedule for the loop nest 
– Indeed, we can write the initial program schedule as 

• This schedule is however not an affine schedule
– The product M;j is not affine as M is not a constant

M-1

0
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Multidimensional schedules

• Not all loop nests admit one-dimensional schedules
– Even when they do, this might not be the best schedule

• We can instead use multidimensional schedules
– But how to derive legal schedules ?

• Several approaches have been proposed
– A greedy algorithm by Feautrier (1992) [1]
– A framework for polyhedral iterative compilation (2008) [2]
– A locality aware parallelization algorithm (2008) [3]

[1] Paul Feautrier: Some efficient solutions to the affine scheduling problem. Part 
II. Multidimensional time. International Journal of Parallel Programming, 1992
[2] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, John Cavazos: Iterative 
optimization in the polyhedral model: part ii, multidimensional time. PLDI 2008
[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, P. Sadayappan: A 
practical automatic polyhedral parallelizer and locality optimizer. PLDI 2008
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Feautrier’s greedy algorithm

• Based on the idea of weakly satisfied dependency
– A dependency                      is weakly satisfied at a depth d, for a 

schedule ΘSi, when, given  

– A weakly satisfied dependency at a depth d can still be strongly 
satisfied at dimensions k>d.

• Intuition
– By allowing weakly satisfied dependencies we “leave slack” to 

the scheduler and postpone the problem to later stage.

[1] Paul Feautrier: Some efficient solutions to the affine scheduling problem. Part II. 
Multidimensional time. International Journal of Parallel Programming, 1992.

We have
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Feautrier’s greedy algorithm

• Uses a greedy algorithm
– Focus on strongly connected components in the PRDG
– Starts by the outermost dimension, proceeds to the innermost
– At every dimension d, find a partial schedule that :

• makes sure all dependencies at weakly satisfied at depth d

• maximizes the number of fully satisfied dependencies

– The algorithm stops when all dependencies are satisfied

• The algorithm maximizes parallelism
– Here parallelism means the number of inner parallel loop
– Does not consider memory access locality
– Little practical use “as is”

[1] Paul Feautrier: Some efficient solutions to the affine scheduling problem. Part II. 
Multidimensional time. International Journal of Parallel Programming, 1992.
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Iterative polyhedral compilation

• Enable fast exploration of many legal programs
– Build a convex set of multidimensional legal schedules for 

bounded [-1,1] schedule coefficients.
– Explore this set to find the most profitable transformation.

[2] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, John Cavazos: Iterative 
optimization in the polyhedral model: part ii, multidimensional time. PLDI 2008
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This tiling is not 
possible as tiles 

have cyclic 
dependencies

A locality aware parallelization algorithm

• Tiling is a widely used parallelizing transformation
– It is usually applied as a post-scheduling optimization
– We need to make sure the transformed program can be tiled
– Reminder : in a tiled program, tiles are executed atomically

[3] Uday Bondhugula, Albert Hartono, J. Ramanujam, P. Sadayappan: A practical 
automatic polyhedral parallelizer and locality optimizer. PLDI 2008
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Scheduling for Tilability

• Must ensure an unidirectional flow of data after transfo. 
– This constraint can be applied to some innermost loop index 

• Then only this set of innermost can be tiled.

– Tilability often prevents loop fusion (parallelism/locality trade-off)

• The constraint is formalized as follow

j

i

This tiling is legal 
(no cycles)
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• Searches multi-dimensional schedules retaining tilability
– Heuristic to find the maximum number of tilable loops
– Try to minimize reuse distance to improve temporal locality

• Implemented in the Pluto source-to-source compiler
– http://pluto-compiler.sourceforge.net/ with openMP and Cuda back-end 

The Pluto algorithm
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Part IV

Current/open research topics
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Current/open research topics

• Improving it efficiency
– Taking advantage of hardware specificities (GPU, Many-Core)

• Making it mainstream  ! 
– Polly in LLVM, Graphite/Gcc, Pluto, PolyRose, etc.
– Putting it to work in real production compilers

• Go beyond affine control loop and affine array accesses
– How to deal with data-dependant behavior ?
– How to use speculative polyhedral parallelization ?

• Make it more scalable
– The full polyhedral hammer is often overkill, one may use 

simpler abstractions while retaining efficiency.
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Questions ?


