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Introduction

Future Architecture (ANR ARFU, good old days)

» Massively Manycore Chips: Network-on-Chip (NoC) Based, Shared
Memory

» Fault-tolerance issue: Handling permanent faults:

€ In manufacture

@ On the field (The chip has been integrated in the final equipment)

Fault-tolerance : On the field, Detection, Deactivation and
Reconfiguration (ODDR)

Detect each NoC component status
Deactivate the faulty ones

Reconfigure the NoC routing function




ODDR of NoC in MP2SoC

1 issue to solve:

Diagnose and locate the faulty/de-activated components.
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2D-Mesh NoC (DSPIN) & MP2SoC

DSPIN:

Distributed Scalable Predictable Interconnect Network

Designed by LIP6 laboratory and physically implemented by ST
Microelectronics

A typical 2D-Mesh NoC
MP2So0Cs architectures

GALS (Globally Asynchronous Locally Synchronous)
€ Each subsystem is a synchronous domain

@ Susbsytem= “cluster”




MP2SoC & Cluster

®Up to 4 Processor cores per cluster ®Embedded RAMs
®Network interface controller (NIC) ®[ ocal interconnect

®Two routers (command / response) ®]/O Ports
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X-First Path

Routing function: X-First
» X-First path between a couple of clusters, connects a couple (processor/target)
» X-First path is round trip path: “half” for command & “half” for response.

» A timer is attached to processor to support timeout.
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NoC Test Strategy

Detection and Deactivation
» Test process executes at each system reboot or chip power-on.

Each NoC component (router/channel) 1s tested in parallel & isolation.

>
» Faulty components are deactivated.
>

Deactivated components are configured as “Black Holes”
@ Discards any incoming packet

@ Produces no outgoing packet

Fault-free components are activated.
X-First routing enabled on activated routers

All faulty/deactivated components must be located




(%X) |, (Y,X+1)
FIFO-out '' FIFO-in

e




-

3
T :
[T+

Router
RoutingFunction _r-:B_f' il

]
4
:

: : |

N A B Crossbar o

e ; %. i

! | :

: : BN [

1 >

' i 1 /@
. S L

—

= [




Router test starts, Timer counts down

it is driven by local ATC
at router test

Test of all associated Timer counts down
channels starts. Each
channel test is driven by
a couple of ATG/ATA

Timeout occurs
t a channel tes

Channel is Channel is
activated deactivated

Router is || Router and all associted
activated|| channels are deactivated

[P, 25—
| Whatever the end states of components are

activated or deactivated, they keep their

istates until the next system reboot. The fault-:

System reboot
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Configuration Infrastructure
Objectives

» Determine a global configuration master
» Create a global configuration bus
» Identify the faulty/de-activated components of NoC

» Reconfigure the NoC routing function

» DCCI (Distributed Cooperative Configuration Infrastructure) is
proposed and used in our work




DCCI

» Every cluster has his own embedded BIOS, named CF (Configuration
Firmware)

» After NoC test, each cluster runs CF code to do software-based self-
test. Each faulty cluster 1s deactivated. Each fault-free cluster tries to
communicate with its neighbor clusters

Finally, a software-based communication tree, spanning and covering
all fault-free clusters, is created

The tree root 1s the configuration master, the tree itself 1s the
configuration bus

b

The tree root can load “black hole” detection software from external

memory

The tree root can send command, test, configuration orders to each
node




Black Hole Detection

The Black Hole detection is a distributed software application
DCCI Tree root loads the software from the external storage device
Tree root distributes the software to each node

Each node tests local X-First paths and marks fault-free NoC
components

Tree root gathers local results to achieve the global result
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Coverage of Black Hole Detection

» C program simulation
» MP2SoC with 4x4 clusters

» Simulated experiments
¢ One single fault injection
- one faulty channel
- one faulty router
¢ Multi faults injection
* 1 faulty channel + 1 faulty routers
* 2 faulty channels
2 faulty routers
1 faulty channel + 2 faulty routers
2 faulty channel + 1 faulty routers
2 faulty channel + 2 faulty routers

Black Hole detection coverage is 100%




Execution Time

» 4x4 MP2SoC architecture containing 16 processors, modeled
with the cycle-accurate [SoCLib] virtual prototyping platform

» One single fault

» The total time is 7.1x10° cycles (without hardware test process):
¢ Time for (DCCI) tree construction: 1:9x10° cycles
¢ Time for for test task distribution: 1:2x10° cycles

¢ Time for test execution: 3.5x10° cycles

¢ Time for test result centralization: 0.5x10° cycles

0.014 second at S00Mhz




Application Code Size

Application Code Size (for a MIPS32 processor):
» DCCI : 5 Kbytes
» Black Hole Detection : 2.5 Kbytes
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Conclusion

DCCI dynamically builds a software based communication
tree, covering all the nodes that have successfully passed the
local BIST.

« DCCI communication infrastructure is a distributed software
mechanism. The tree root is the configuration master.

* Relying on the DCCI tree, the configuration master can locate
100% of the faulty components (a point-to-point
communication channel, or a complete router), converted into
black holes.

« The same DCCI communication tree can be used to distribute
the resulting modified routing functions to the fault-free routers.

« The method proposed can be used in any shared memory
multi-core architecture with a 2D-Mesh NoC.




And don’t forget the interconnect...

The case for programmable on-chip interconnect

Francois Pécheux — UPMC/Lip6
Dumitru Potop-Butucaru — INRIA



Conclusion

* The future of computing is parallel
— Both embedded and high-performance
— Computing elements (CPUs) and interconnect are
equally important
— But:

e CPUs can be programmed (in C)

* Interconnect only provide limited configurability
(many approaches)

* Interconnect should allow better and more
standard « programmability »
— Especially in Systems-on-Chips

e Application mapping (compilers/OS) should
take into acount both CPUs and interconnect

(global optimization) )



Outline

* Multiprocessor embedded systems
— The mapping problem

* Playing with applications, architectures, and
mapping

* Conclusion: Field-Programmable Tile Arrays



Embedded systems

Cyber-Physical Systems - a Concept Map

http://CyberPhysicalSystems.org

See authors and contributors.
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Embedded systems

e Common features:

— Reactive systems: Execution is a priori infinite
— Non-functional requirements.

— Specification and implementation are complex by both
engineering and theoretical criteria

— Specification: Multiple languages/formalisms, both general-purpose (C,
Ada,UML) or domain-specific languages (DSLs like Simulink, SCADE,

AUTOSAR, AADL, SysMLL, etc.). Heavy use of program analysis techniques
(verification, simulation, platform exploration, etc.).

— Implementation: Custom hardware (micro-controllers with small speeds/
RAMs, FPGAs, specific buses, etc.), non-functional requirements.

— Safety-critical, errors are expensive (in either lives or
money)

* Functional determinism is often desired

* Consequences: Common needs in the development
process



Embedded systems

 Complex system-level non- functional requirements:

— Real-time 2N — Flexibility
* Efficiency e System evolution
* Predictability — Size

— Low-power : é) — Thermal

* Green computing

— Safety
* Fault tolerance A

— Security 2
* Application isolation %b
— Cost (money/time/...) __o
» platform/development/exploitation F




Embedded systems implementation

Functional Lol fliaieaige | Requirements
. r . o : Mentioned above
specification specification

Target architecture |
Processors (CPUs,
accelerators, etc.)
Interconnect (buses,
DMAs, NoCs, etc.)

Mapping + Storage (RAM)
In space (allocation)

In time (scheduling)
Computations and comm. Satisfy the
requirements

Preserve the
semantics

Running
implementation




Embedded systems development

* Mapping in space
— Where (by whom) is the operation performed

— Vocabulary:
 CPU/RAM: allocation, distribution
* Interconnect: routing

)

Acquisition()

\§ Carldentification()

Output()

EdgeDetect()

8



Embedded systems development

* Mappingin time
— When is the operation performed (timing and/or order)

» Resource allocation in concurrent systems
— Implementation-level concurrency, HW or SW

— Vocabulary:
* CPU: scheduling, sequencing

* Interconnect: arbitration, scheduling, sequencing

Acquisition()

EdgeDetect()

)

O

v

Q O Carldentification()

Output()



Embedded systems development

* Mapping complexity
— Optimal: NP-hard at best, untractable in practice

— Heuristics (experience-based techniques)
* Among them: classical scheduling policies (RM, EDF, etc.)
* May be optimal or formally characterized under restrictive hypotheses

e Classification of mapping techniques. Criterion 1:
— Offline/Static
* Mapping decisions are made before execution

— By extension, decisions (conditional execution) of the functional specification are often allowed.
* No timing/order imprecision (in some referential)
— Online/Dynamic
* Timing/order/etc. imprecision remains
* Mapping decisions depend on system aspects that are unspecified or not analyzed
off-line (too complex):
— Input event arrival dates

— Execution time variations
— Unknown/unobservable OS/HW internals, etc...



Embedded systems development

* Example on a piece of interconnect:

— Problem: transmit 2 pieces of data
— Static routing (X-first):

11



Embedded systems development

* Example on a piece of interconnect:
— Problem: transmit 2 pieces of data
— Dynamic routing (adaptive):

12



Embedded systems development

* Example on a CPU:
— Problem: cyclically execute functions f(), g()

— Dynamic scheduling:

Processl: Process2:
for(;;){ for(;;){ Launch the processes

f(); g(); under Linux
} }

— Static scheduling:

Constraints:

for*(f;(;)).{ - Periods will be equal
g( ); - Scheduling must satisfy

} dependencies



Scheduling/arbitration (classification)

e Basic single-processor scheduling algorithms (policies):
— Simplest: Fixed order, FIFO
— Fair policies
* (weighted) round robin

* (weighted) fair queuing, etc. . .
_ Priority-based Applicable online

* Static priorities: FP, RM, DM (low complexity)
* Dynamic priorities: EDF, LLF

— Off-line heuristics (or exact algorithms)
* Make off-line scheduling decisions that can be applied on-line

e Other choices:

— Event-driven vs. Time-triggered (what triggers decisions?)

— Preemptive vs. Non-preemptive (can we interrupt an operation?)

— Partitioned vs. Global scheduling (mono- and multi-processor)

— Single criticality vs. Mixed criticality

— Fault-tolerant or not, etc.



Scheduling on multiprocessor systems

* System mapping =
CPU mappings + interconnect mappings

— Performance bottleneck can be in either CPU or
interconnect, or in both
* Depends on HW, on the functionality, and on the mapping itself
(computation-intensive vs. communication-intensive).
— Different algorithms are needed in different contexts on
both CPUs and interconnect

* FIFO scheduling is simple/low-cost

* Fair algorithms are useful in soft real-time systems (e.g. signal
processing)

* Priority-based algorithms are useful when response time for
some tasks is more important

 Static scheduling is useful for regular processing (loop nests)
and for safety-critical systems, ... 15



Scheduling on multiprocessor systems

* There is however a major difference:

— CPUs are programmable
* CPUs can use any scheduling/allocation policy
* Much work on synchronizing CPU schedules/allocations

— Interconnect is (at best) configurable
* Interconnect scheduling = CPU control + configuration

e Configuration (choose one):

— Scheduling/routing tables, Priorities, Assigned throughputs (e.g. config for
weighted RoundRobin), etc.

 Little work on synchronizing CPUs and interconnect schedules
— More things on worst-case response time analysis (WCRT)

 Example:

— Embedded networks
* Fair arbitration (Ethernet), Priority-driven (CAN), static (TTA)

— On-chip networks are similar, but changing the interconnect
means changing the chip (expensive) 16



Scheduling on multiprocessor systems

e Qur thesis:

CPUs and interconnect should provide
a similar level of control

E

CPU= iInterconnect=

17



Scheduling on multiprocessor systems

e Qur thesis:

CPUs and interconnect should provide
a similar level of control

— Previous attempts:
e Scalar Operand Networks (MIT RAW, Waingold et al.)
— Programmed interprocessor communication
 Efficient Embedded Computing (Stanford ELM, Dally et al.)
— Programmed prefetching for energy efficiency
* Network Code (Fischmeister et al.)
— Programmable network interfaces for time-triggered scheduling

» Aethereal/CompSoC (Goossens et al.)
— Programming-based configuration of NoCs for fairness 18



Scheduling on multiprocessor systems

e Question:

— What is the good level of interconnect control?

* Trade-off between:
— Programmability (control)
— Complexity of program synthesis (global: interconnect & CPU)
— Area
— Speed
— Low-power, thermal, etc.
* Lots of work on this:

— Tilera (5 networks), Kalray (Harrand and Durand’s patent), Fault
tolerance in NoCs, Precision Timed Architectures, etc.

e Let’s take some examples !

19
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PE,

PE,

Data-flow functional specification

f+——1h

MUX

PE,



PE,

PE,

Data-flow functional specification

(Infinite) cyclic execution

X
f+——1h
Z
g y

Execution cycle 1

X C
=
L
X
fcbﬁbh\
Z
g N

PE,

> h
e

y

Execution cycle 2

Execution cycle 3

>



PE,

every 800ms { a

f; X C >

send(x); = PE;
} b

every 800 ms {
PE, ; Le_cei"e(x);

every 800ms { _re.ceive(y);

9; '

send (y); }

}

Data-flow functional specification, fully allocated, scheduled on the PEs

23



B BEE
PE,
every 800ms { a
f; X C
send(x); =
} b
PE M
> | H--2nn
every 800ms {
g;
send (y);
}
Time PE, PE, PE;
100
200 SN N\
300 N\
400 NN
500 h
600
700 i
800

PE,

every 800 ms {
receive(x);
h;
receive(y);
I

}

24



PE,

every 650ms {
f;
send(x);

}

PE,

every 650ms {
g;
send (y);

}

Time PE,

PE,

PE;

MUX

0 f
100

200

300

400

500

600

/700

800

PE,

every 650 ms {
receive(x);
h;
receive(y);
I

}

25



B-BEE
PE, NN
A
every 650ms { a e '.. EEC ...‘
f x R
send(x); = PE;
} b
every 650 ms {
PE, TERTI— receive(x);
3 T | [y o
every 650ms { do N times grant(a) ; r?celve(y),
g; do N times grant(b) ; s
send (y); } }
}
Timd  PE, PE, PE, MUX
0 f g
100
200
300
400 h
500
600 i
700

In the general case, priority-based arbitration is not optimal, either.
- ASAP scheduling is not optimal



Can we/Should we program a NoC in
practice ?

* Does programming help?
— Efficiency issues

* |s the cost of programmability reasonable ?
— Circuit area

— Programming model changes
— Synthesis of the network programs

e Workbench: DSPIN 2D mesh NoC



Tiled MPSoC architectures in SoCLib

I_i"““—_l:i_““_“I:_““““_I:“""““: [ |
\ :: ::l :: : {Command} )
! — ' = ! — ' — i {NoC router}
N e N N P N
' 120 L2 (2] 23 .
N . SR . SR . JR . A
1T I S i it el it Sttt -~ {Responst}
1 ::. I:. ;:l i {NoC réuter}
I o ol
! i ! i I
=N ! Y - H
P1L0] L] 2] 3] I ]
I . . . i (Tilé)
T T CI T I N
L S S L S S
N = R - = !
: ] :: ] :: - :: :

[0.0] : A () | L [02] | L (03] !

" Distributed shared memory
- Global/local addresses
- Memory-mapped devices

Local
ROM

ti T4

Command
router

Local interconnect (ring,crossbar...)

Cache, (PLRU,
write-through) /0
2 (option)
M?;lsj:gz Response
( )| router

- Simple programming model & tools (gcc cross-compiler)

" VCI/OCP protocol (command and response networks)

" 2D mesh Network-on-Chip
- Wormhole packet switching
- Fair arbitration

- X-first/Y-first wormhole routing for commands/responses

® Simulation support: SystemC-compatible CABA models (http://www.soclib.fr) *



Tiled MPSoC architectures in SoCLib

T I N T " |
: l_, : : i _ : ! - : : — i {Command}
: ' ' ' i {NoC router}
A= R = N = R R
: [2.0] : P : "2 : "2.3] : .

I [ T —1
] LT LT - 7 {Responsé}
1 | ; Fi N ) l ! {NoC duter}
ER=n R =N =N R =
: - |: |: — il [
L |10 L] (1) L IL3] DL
I . N . AN . i (Tilé)
. [ " igw [ " N }
L i LN il l
= i R R = - OB
: = | = | = |
Lo[00] ) [01] 1 102] 03] |

| | | |

" Tile architectural choices for
better speed
- Multi-bank RAM
- Separate program RAM/ROM

) =
Multi- (@)
ab &7

bank o E
RAM || & Z
oc

Lock unit

N

Ty 14

Local interconnect (crossbar)

171 L4 ity V1
Cache, (LRU, -
write-back) g <§t /0
CPU, :% [a) (option)
(MIPS32)

Command
router

Response
router

- Low-overhead hardware locks (instead of interrupt-based synchronization)
- Crossbar/logarithmic interconnect (reduced contentions)

- Write-back caches (and we also change them to LRU for predictability)

- DMAs with command buffers

- Increased number of CPUs/tile (16)

29



What’s in a DSPIN NoC router?

North

|E| /%\ Multi-
¥\ bank
West G East

RAM

Prog
RAM/ROM

Lock unit

N Tt

Command
router

Local interconnect (crossbar)

L -

Cache, (LRU,
write-back)

South

CPU,
(MIPS32)

vItd ¥1

Buffered
DMA

I/O
(option)

Response
router

" 1 NoC router = 5 modules

" 1 module =1 MUX + 1DEMUX + control logic
- Static (X-first) routing
- Fair arbitration
- No configuration possible

30



Adding programming to the NoC

North

,7?\1%\ Multi-
i bank
West 3 Gy

RAM

Prog
RAM/ROM

Lock unit

N Tt

Local interconnect (crossbar)

L -

Cache, (LRU,
write-back)

South

CPU,
(MIPS32)

-

vItd ¥1

Buffered
DMA

I/O
(option)

" Programmability is expensive (mostly in program memory)

* Network programs should be seen as equivalent to CPU programs

" Only the command router

* Transfers of data between tiles are performed with write operations
* Response network only transfers 2-flits acknowledge packets (negligible contentions)

" Only arbitration (not routing)
* Future work

Command
~-rouler
N\

Response
router
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Adding programming to the NoC

) =
Multi- (@)
ab &7

bank o E
RAM || & Z
oc

Lock unit

N Tt

Local interconnect (crossbar)

L -

Cache, (LRU,
write-back)

CPU,
(MIPS32)

-

it o1

Buffered
DMA

I/O
(option)

" Programmability is expensive (mostly in program memory)

* Network programs should be seen as equivalent to CPU programs

" Only the command router

* Transfers of data between tiles are performed with write operations
* Response network only transfers 2-flits acknowledge packets (negligible contentions)

" Only arbitration (not routing)
* Future work

Command
router

Response
router
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Adding programming to the NoC

S —>
E—>
W
L—

MUX

The North arbiter

" Programmability is expensive (mostly in program memory)

* Network programs should be seen as equivalent to CPU programs
" Only the command router

* Transfers of data between tiles are performed with write operations

* Response network only transfers 2-flits acknowledge packets (negligible contentions)
" Only arbitration (not routing)

* Future work
33



Adding programming to the NoC

S —>

E—> x

W = Program RAM (1k)

L —> loop {

Command(S/E/W/L/fair) do 11 times grant(L) ;

_ do 11 times grant(W) ;
Set }
Ack

The North arbiter

Local interconnect (crossbar)

" Programmability is expensive (mostly in program memory)

* Network programs should be seen as equivalent to CPU programs
" Only the command router

* Transfers of data between tiles are performed with write operations

* Response network only transfers 2-flits acknowledge packets (negligible contentions)
" Only arbitration (not routing)

* Future work
34



Adding programming to the NoC

S —>

E—> x

W = Program RAM (1k)

L —> loop {

Command(S/E/W/L/fair) do 11 times grant(L) ;

_ do 11 times grant(W) ;
Set }
Ack

The North arbiter

Local interconnect (crossbar)

// 11 Packets from LOCAL to NORTH
LOOP: LOADIMM R1 11

. . . LO: WRITE LOCAL

= Simple instruction set (5 opcodes) DEC R1

* Ease of implementation BNZ R1 LO

// 11 Packets from WEST to NORTH
* Compact code LOADIMM R1 11
* Can be optimized WO : WRITE WEST
. DEC R1

" No impact on speed BNZ R1 WO

* Load next “write” while the current is executed JUMP LOOP

= Simple extensions allows data-dependent control
* Inspection of packet header

35



Global view of the applications

: h()

X'Ang /
ifflo. | hL. /)(
, — s
PE(C g()

Application =
CPU programs + communication programs

// CODE AND DATA FOR TILE (0,0)
SmallDataType v_in_0_0 = v_init ;
bool v_in 0_0_lock = 0 ;

// 11 Packets from LOCAL to NORTH
LOOP: LOADIMM R1 11

LO: WRITE LOCAL
void main_0_0() { DEC R1
LargeDataType o_out ; ENZ R1 LO
LargeDataType x_out ; // 11 Packets from WEST to NORTH
do | T LOADIMM R1 11
f(v_in_0_0,&o_out, &x_out); WO: ggéT§1WEST
dma_send(o_out,o_in 1 1) ; o in_1 1 lock = 1 ; BRT 21 MO
dma_send(x_out,x_in_0_1) ; x_in 0_1 lock = 1 ; B L00B
while(!v_in 0_0_lock) ; v_in 0_0_lock = 0 ;
} while(1);
} Assembly code for the North36

C code for tile (0,0) MUX of cluster (0,1)



Area cost of NoC programmability

* Simple NoC router controllers

* Area cost due mainly to program memory

— lkbytes of program memory x 5 = 5kbytes
— 256kbytes RAM/tile

— Result: <2% area overhead

* Moreover:

— NoC program RAM contributes to the efficiency of
the application just like the regular program RAM.

37



Case study: the FFT

. . th adclpﬂ) ication
Existing FFT application , already mapped components
— Hand-coded Cooley-Tukey FFT el

implementation (1D, radix 2, 214-216 size
FFT on a 4x4 MPSoC with 1,2,4,8,16
CPUstltile)

v|v vl v

m (A EmiRR

FFT-dedicated area is just a part of a larger UL
MPSoC IV TV
Other NoC applications transit data through

the NoC of the FFT-dedicated area

Objective: Allowing NoC traffic not belonging to the FFT without slowing
down the FFT

How? Schedule external traffic packets in the time slots where the NoC is
free
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Understanding the FFT

® Succession of “butterfly” operations
= 2n data => n*2"1 butterfly operations

an operation of "butterfly" exchange

-

RO
Data in O i

Data in 1
Data in 2
Data in 3
Data in 4
Data in 5
Data in 6

Data in 7

\

_ 70

o‘(

Mu‘

s

Data out O
Data out 1
Data out 2
Data out 3
Data out 4
Data out 5
Data out 6

Data out 7



Understanding the FFT

® Succession of “butterfly” operations
= 2n data => n*2"1 butterfly operations

" Duration of one butterfly operation — 111 cycles, asymptotically

CPU-cycles/Operation-number

113
112
111
110
109
108
107
106
105
104
103

Duration of Butterfly Operation on Function of FFT Size

111 -

1

l 1 1 1 1 | 1 | |

24

25

26

27

28 29 210 211 212 213 214 215 216
Data Size of FFT
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Understanding the FFT

Succession of “butterfly” operations

2" data => n*2"1 butterfly operations

Duration of one butterfly operation — 111 cycles, asymptotically

Duration of data transmissions — 2.69 cycles/data(dword), asymptotically

Duration of FFT Communication

16 i I I | I I I I I I I 2[69 I
IS Communication ———
N
a 14
5
e 12 +
)
L 10 |
(3}
&
D 8
jaw
S 6
= -
=
s 4
—
=
Q 2 |

2»1 25 26 27 28 29 210 211 212 213 214 215 216
Data Size of FFT
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Understanding the FFT

Succession of “butterfly” operations
2" data => n*2"1 butterfly operations
Duration of one butterfly operation — 111 cycles, asymptotically
Duration of data transmissions — 2.69 cycles/data(dword), asymptotically
Parallelisation: FFT of size 2"*1, parallelized on 2k*1 processors = 2 FFTs of
size 2" on 2k processors each, followed by 2"*1 butterflies (parallelized)
" Attention to communications
" |n practice: doubling of the number of CPUs => ~1.8x acceleration If
data is large enough
Long computation phases separated by global synchronizations

sama CABN
sama SdBM
=s=s a8

O0—0 OO

Stage O Stage 1 Sth
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Understanding the FFT

Succession of “butterfly” operations
2" data => n*2"1 butterfly operations
Duration of one butterfly operation — 111 cycles, asymptotically
Duration of data transmissions — 2.69 cycles/data(dword), asymptotically
Parallelisation: FFT of size 2"*1, parallelized on 2k*1 processors = 2 FFTs of
size 2" on 2% processors each, followed by 2" butterflies (parallelized)

= Attention to communications

" |n practice: doubling of the number of CPUs => ~1.8x acceleration If

data is large enough

Long computation phases separated by | other application

components
Traffic injection: N AL LI
£ >
€ >
— e =
TUTUNM T




Case study: the FFT

" Does traffic injection slow down the FFT?

YES
(significantly)

Parallel Speedup

214 gize FFT Simulation

48.08

39.17

FFT alone —+——
FFT+trafﬁc s e

Ixdx1 4Ax4x2 4Ax4x4 4x4x8 4x4x16

18.53%

Configuration of Platform (Height x Width x CPU /tile)



Case study: the FFT

" Does traffic injection slow down the FFT?

216 size FFT Simulation

YES

(significantly) 79.62
63.22

20.59%

Parallel Speedup

FFT alone ——
FFT+traffic -

Ax4x] 4x4x2 4x4x4 4x4x8 4x4x16
Configuration of Platform (Height x Width x CPU /tile)




Case study: the FFT

" Programming removes slow-down ? YES (fully)
" Cost in permeability? SMALL

CPUltile | Non-programmed | Programmed | Loss
Data Size of FFT (2'%)

1 98.51% 97.47% 1.04%
2 97.36% 95.33% 2.02%
4 95.97% 92.45% 3.52%
8 94.94% 89.95% 4.98%
16 95.18% 90.10% 5.08%
Data Size of FFT (2%°)
1 98.58% 97.60% 0.99%
2 97.51% 95.62% 1.89%
4 95.97% 92.44% 3.53%
8 94.54% 89.14% 5.41%
16 94.01% 87.33% 6.69%
Data Size of FFT (2'°)
1 98.76% 97.91% 0.86%
2 97.80% 96.15% 1.65%
4 96.43% 93.38% 3.04%
8 94.81% 89.78% 5.03%
16 93.80% 86.97% 6.83%



. . . . a.k.a. Y-chart,
Automatic application mapping platform-based

design, AAA
CPU, X

C fI—1h z
et y \:
CPU, g l

(NoC-based MPSoCs) (timing , allocation ...) (Clocked Graph)

e R

Mapping tool: The Lopht distributing compiler
Temporal (scheduling) + Spatial (allocation)

{ Hardware model } [ Non-functional specification } { Dataflow specification }

Offline (static) scheduling
(conditional scheduling tables)

|

Application =
CPU programs + Router programs

47



Automatic application mapping

* Worst-case/Exact-case allocation
— Real-time guarantees

Timg  PE, PE, PE, MUX

0 f g
100

200
300
400 h

500
600 i
700
800

— Speed gains on very regular applications
e But: Few fully regular algorithms
— Variable-duration operations (e.g. multiplications)

— Fine-grain control

— Intrinsically dynamic algorithms (ray tracing, sparse
representations, etc.)



Automatic application mapping

* So, what you would need is something mixt:
predefined patterns + priorities

| I =

;
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Lopht distributing compiler : input specification

= MPSoC hardware model:
— Computation resources: MPSoC tile = one CPU (x.,y)

— Communication resources: Command NoC router output ports (MUXes)

= Dataflow : Clocked Graphs [Potop et al. EMSOFT’09]

— Non-hierarchic synchronous dataflow
— Separation between dataflow and control

* Clocks on blocks and dataflow arcs replace classical blocks such as when, current, condact

= Non-functional constraints
— Allocation constraints (“function f must be executed on either CPU1 or CPU2”)

— Durations of computations (“executing f on CPUI1 takes 10000 cycles in the worst case”)

S0
50



Lopht distributing compiler : scheduling heuristic

= List scheduling on dataflow blocks, optimize allocation and scheduling for

each block

* Communication scheduling

— Communication path = set of MUXes along the path, reserved together for a

transmission

— Paths are reserved as a whole = packets cannot be blocked in the NoC.

* Pipelined scheduling, to improve throughput
— Successive execution cycles can overlap
* Generated code for CPUs and Routers:
— Communicating sequential processes: One sequential program per CPU or router
output port
— Locality: All computations of a dataflow block are done on local tile data
— Inter-tile data transfers are realized by the producer

— Synchronization through locks and active wait mechanisms 51



LoPhT: currrent status

« Works on small examples and on an
embedded application model (CyCab)

« Work in progress to add:
— Multiple CPUs per tile

* more memory banks

- memory allocation on these banks ensuring absence of
temporal interference

— Regular applications (A. Cohen)
— WCET of parallel code (I. Puaut, Rennes)

e« Case studies needed

1114



Conclusion

* First, what we started from
— 4 CPUs/tile

* Then, what the archi looks like

— Caches: write-back or prefetch engine
— RAM: multi-bank

— Sync: predictible, no interrupts (cost of one
uncached RAM access)



Field Programmable Tile Array



NoC avec routeurs programmables,
tables de routage

______________

* Lesrouteurs, déja
modifiés pour la
robustesse,
deviennent
programmables

* SortieN,S,EW, L
en fct de la table
de routage
programmeée
localement

* Contours
qguelconques

e Confinement
précis des
ressources
défectueuses




NoC avec multiplexeurs de sortie
programmables : déterminisme fin

Le NoC prend encore
plus d'importance en
permettant de réguler
les échanges (NoC-
Centric)

lI6ts fonctionnels
autonomes
déterministes, IPs(x,y)




FPGA EEE EE EE B

= \Long lines

\_Sinqle length
[ ]

- - - Input/Output Block (IOB)

':‘-”:: - Configurable logic block (CLB)

- Switch matrix

] FIGURE 629
Xilinx® XC2000™ FPGA Structure (Adapted with Permission of Xilinx, Inc.)
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Field Programmable Tile Array

Déterminisme

Best Effort

Fully deterministic

Synthése logique

Software IPs

* Modéle de programmation/d’utilisation calqué
sur celui des FPGA, VBA
* Notion de sous-graphe d’application préplacé
avec communications préprogrammées (Soft-
Ips), avec facteur de forme et référenceXY
* Fonctionnement nominal garanti
* Ips réalisées par des spécialistes
* Exemplesd’lps:
* Pipeline rendu 3D,
* Son2.1,51,7.1
*  Moteur physique
* Macro-processeur
* Macro-mémoire

FPTA

Placement des threads par
I'OS

Placement des threads a la
main dans le facteur de

forme, programmation des
routeurs
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Carefully cut out the 5
shapes on this page.
Use a hobby knife to slit
the white lines

labeled with letters.

Tape and glue are not
necessary. Thicker paper is
recommended.
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