
1

Prediction and Speculation usage
in microarchitecture

André Seznec
IRISA/INRIA

2

• Prediction and Speculation are everywhere

• Branch prediction

• Revisiting Value Prediction

3

PREDICTION AND SPECULATION
ARE EVERYWHERE

4

Microarchitecture is about performance

• First implementation constraint:
 CORRECTNESS

• Then : PERFORMANCE
 In the respect of constraints:
 Silicon area
 Power/temperature constraints

5

Microarchitecture performance is about

• Technology

• Implementation:
 Minimize the critical path

• Prediction and Speculation

6

Prediction vs Speculation

• Prediction:
 Predict some events:
 Predict the direction of a branch
 Predict the address of a future load

• Speculation:
 Computes based on a prediction
 Fetch/decode/execute intructions

Necessitate repair if uncorrect

7

 Prediction/speculation everywhere

• Pipeline

• Out-of-order execution

• Branch prediction

• Cache memories

• Dependence/independence prediction

• Data prediction

• Coherence transaction prediction

• Confidence prediction

• SMT instruction allocation policies

8

Pipelining is already speculating

Predict that next
inst is PC+4

Read the registers,
just in case

Forward the results,
just in case

Predict that previous
instructions will finish

9

First principle

Predict that next
inst is PC+4

Predict that previous
instructions will finish

Favor the most frequent case,
and backtrack if false

10

Anticipate

Read the registers,
just in case

Forward the results,
just in case

11

Out-of-order execution

IF DC EX M CT wait wait
IF DC EX M

IF DC EX M CT
IF DC EX M CT

IF DC EX M CT
IF DC EX M CT

CT

An instruction may be fetched
100’s cycles before its validation

12 Out-of-order execution:
speculation at multiple levels

• 100’s of speculative instructions in flight
 Any instruction can abort due to:
 Exception
 Wrong instruction address
 Wrong instruction
 Wrong operand(s)

13

Exception

• An exception from time to time:
 1,000,000’s of cycles interval
 Who cares ?

 Speculate no exception
 Just ensure correctness:

– Flush the whole pipeline
 Apart TLB misses !!
 In some applications count by MPKI (miss

per kilo instructions)

14

Why wrong instruction address

• With pipelining already an issue
 PC of next instruction known late:
 Decode for non-branch instructions
 Execute for cond. branches or indirect

jumps

• Predict the instruction flow and speculatively
fetch/execute along the predicted instruction
flow

15 Instruction flow prediction:
predict the address of the next instruction block

1. Within current block predict branches and branches types

2. Predict for all branches:
1. Targets
2. Directions

3. Select the correct next block address

On Alpha EV8 processor (cancelled 2001):
Two 8-instruction blocks per cycle
Up to 16 branches predicted per cycle

16

Why wrong instruction

• Instruction is read on the I-cache:
 Needed ASAP for decode then verifying

target, type etc.

 read without tag check:
 Line predictor on Alpha EV8
 Way predictor on Sun UltraSparc

17

Wrong instruction repair

• Learned very early in the pipeline:
 at tag check (way prediction)
 end of instruction address generation (LP on

EV8)

• Just flush two or three pipeline stages and
resume fetching

18

Why wrong operands

• Many papers on reducing critical path in data
cache
 Way prediction on data cache
 Optimistic use on direct mapped cache

19

Optimistic cache result use
Tag Set Offset

Compare

Hit or Miss

Data out

Use before hit/miss detection

20

Optimistic cache result use
Tag Set Offset

Data out

Way
Pred

21 Why wrong operands:
the implicit hit prediction

Issue RF1 RF2 RF3 MEM2 MEM1 EX

Ld R1 Ld R1 Op R1R2

Op R1R6

Ld R1 Op R1R2

Op R1R6

Op R2R3

Op R8R9

Ld R1 Op R1R2

Op R1R6

Op R2R3

Op R8R9

Op R3R4

Op R8R7

Ld R1 Op R1R2

Op R1R6

Op R2R3

Op R8R9

Op R3R4

Op R8R7

Op R3R5

Op R0R6

Oops: miss

 Op R1R2

Op R1R6

Op R2R3

Op R8R9

Op R3R4

Op R8R7

Op R3R5

Op R0R6

22 Why wrong operand:
False (in)dependencies

Loads potentially dependent on any preceeding
store

On all processors, predict effective ld/st

(in)dependencies and repair if uncorrect

ld St St

? ?

23

Bypassing the stores

• At decode, allocate an entry in the load/store
queue

• At execution:
 For loads check all the older stores with

computed addresses:
 if match then grab the data

 For stores, check all the younger already
executed loads
 if match then repair

24

Bypassing the stores

• Systematic bypass is not performant:
 Cost of repair

• Dependence prediction:
 i.e. bypassing when independence is

predicted

25

Predicting dependencies

• This load is dependent on a previous store

• This load is dependent on THIS previous store

26 Wrong data value prediction ?
Lipasti et al, Gabbay and Mendelson 1996

Basic idea:
 Eliminate (some) true data dependencies through predicting

instruction results

I0 I1 I3
 +2 +3 +1

I4 I5
+3

I0 I1 I3
 +2 +3

I4 I5
+3

27 Value Prediction:

• Large body of research 96-02

• Quite efficient:
 Surprisingly high number of predictable instructions

• Not implemented so far:
 High cost : is it still relevant now ?
 High penalty on misp.: don’t lose all the benefit

28 Wrong operand:
the selective repair issue

• Realize that an instruction has used a wrong
operand
 All dependent instructions have to be

cancelled and reissued:
 May be 10’s of instructions
 Implemented but not very documented

29

Other prediction usages

• Cache prefetching

• Coherence transaction prediction

• Confidence estimation

• SMT steering policies

30

Cache prefetching is no speculation

• Bring a memory block (likely to be accessed)
close to the processor core:
 L1 cache ? L2 cache ? Prefetch buffer

• Does not modify the memory block :
 no action needed for repairing

31

Cache prefetching issues

• Which block to prefetch ?

• Aggressiveness:
 How much to prefetch in advance ?
 In-time or to late ?

 Bandwidth wasting and/or demand miss
delaying:
 How to control ?

32

Cache prefetching

• Predicting the addresses of next cache blocks
to be touched
 Next block prefetching
 Stride prefetching
 Stream prefetching
 Markov prefetching

• 100’s of propositions

• Implemented in many processors

33

Next block prefetching

• On a miss, prefetch next block:
 (potentially) save one of two misses

• On a hit on a prefetched block, prefetch
 Create streams of prefetchs

• Generally too late on modern processors
 Latency of several hundred cycles

34

Stream prefetching

• Detect series of consecutive blocks

• Prefetch the successors

 Resolve the distance issue

35

Stride prefectching

• Accesses by the same load/store instruction:
 A, A +S, A+ 2S,  A+ 3S, A+4S (probably)

• Issues:
 Seen only at L1 levels
 Only on virtual address space

36

Markov prefetching

• Series of coorelated misses:
 Miss on B follows miss on A which follows

miss on Z etc:
 See miss on Z: prefetch A, prefetch B

• Issue: very memory demanding for storing
patterns

37

General issue on prefetching

• Multi- manycore era:
 Memory hierarchy shared by many cores:
 How to hande the sharing of bandwidth,

memory hierarchy and so on

38

Coherence transaction prediction

On coherent cache multiprocessors:

• Try to learn pattern of the data usage:
 Try to push the data towards its consumer
 And avoid coherence traffic

39

A very particular prediction

• Confidence estimation:
 Predict whether the prediction is “likely” to be

correct
 For evaluating the potential tradeoff

benefit/cost
 Prefetch (benefit against wasting

bandwidth)
 Branch prediction (saving power)

40 Confidence estimation

• Quite particular:
 Each predictor needs its own adapted

confidence estimation
 Each usage requires its own confidence

estimation level

41

SMT instruction steering policies

• Share all the resources among several threads:
 Functional units, caches, ..

• Fetch for thread T0 or thread T1

• Different strategies to “predict” the benefits:
 Number of pending instructions
 Number of low confidence branches

42

Many other predictions

• E.g. usage of hardware structures:
 To save power:
 Dynamic instruction window sizes

43

BRANCH PREDICTION

44

Why branch prediction ?

• 10-30 % instructions are branches

• 4 instructions per cycle

• Direction and target known around cycle 20
 Not possible to lose 20 cycles on each branch
 PREDICT BRANCHES
 and verify later !!

45 Prediction through the PC
Smith 1981

• Most branches biased towards taken or not taken

• Use a table to predict the branches:
 Record the output of the branch
 Use the last behavior
 + add some memory through a 2 bit counter

45

46 46

The 2-bit counter automaton

0 1 2 3

NT NT NT NT

T T T T

Predict NT Predict T

47 47 global branch history
Yeh and Patt 91, Pan, So, Rameh 92

B1: if cond1

B2: if cond2

B3: if cond1 and cond2

B1 and B2 outputs determine B3 output

Global history:

vector of bits (T/NT) representing the past branches

Table indexed by PC + global history

48 Exploiting local history
Yeh and Patt 91

48

for (i=0; i<100; i++)

 for (j=0;j<4;j++)

 loop body

Look at the 3 last occurrences:

If all loop backs then loop exit

otherwise: loop back

•A local history per branch

•Table of counters indexed with PC + local history

49 Speculative history must be managed
!?

• Local history:
 table of histories (unspeculatively updated)
 must maintain a speculative history per inflight

branch:
 Associative search, etc ?!?

• Global history:
 Append a bit on a single history register
 Use of a circular buffer and just a pointer to

speculatively manage the history

50 Branch prediction:
Hot research topic in the late 90’s

• McFarling 1993:
 Gshare (hashing PC and history) +Hybrid predictors

• « Dealiased » predictors: reducing table conflicts impact

 Bimode, e-gskew, Agree 1997

51 EV8 predictor: (derived from) 2bc-gskew
Seznec et al, ISCA 2002 (1999)

 e-gskew
Michaud et al 97

52

Retrospectively

 For 64Kbits predictors on CBP-1 traces (2004)
assuming 2 inst/cycle, 20-cycle misprediction penalty

 2bit counters 1981: 8.55 misp/KI 671 cycles/KI

 Gshare 1993: 5.30 misp/KI 606 cycles/KI

 EV8-like 2002 (1999): 3.80 misp/KI 576 cycles/KI

Hot topic, heroic efforts:
 win 28 % misp, 5 % perf

No real work before 1991:
win 37 % misp, 10 % perf

53 Still worth to enhance branch prediction
?

Replacing the branch predictor by a more accurate one

 Improves directly the performance

 Does not affect the rest of the design
 Can be considered for a new release of the

processor

54

After 2000, interest from
computer architecture community faded

THE MULTICORE ERA

But ..

55

Perceptron predictor
Jimenez and Lin 2001

∑
Sign=prediction

X

signed 8-bit
conters

branch history
as (-1,+1)

Update on mispredictions or if |SUM| < θ

56

Perceptron predictor

• Not that accurate

• High hardware complexity

but

• Sometimes better than classical predictors

• Intellectually challenging

57

Back around 2003

• 2bcgskew (EV8) state-of-the-art, but:
 but was lagging behind neural inspired

predictors on a few benchmarks
• Just wanted to get best of both behaviors, plus
 Reasonable implementation cost:
 Use only global history
 Medium number of tables

 In-time response: a taken branch per cycle

58 The basis : A Multiple length global
history predictor

L(0) ?

L(4)

L(3)
L(2)

L(1)

T0
T1

T2
T3

T4

With a limited number of tables

59

Underlying idea

• H and H’ two history vectors equal on N bits,
but differ on bit N+1
 e.g. L(1)≤N<L(2)

• Branches (A,H) and (A,H’)
biased in opposite directions

Table T2 should allow to discriminate
between (A,H) and (A,H’)

60 From my “old experience”
2bcgskew and EV8

• Some applications benefit from 100+ bits
histories
 Generally only a few branches

• Other don’t !!
 And it is a loss of storage
 Should not “waste” too much space for

long histories

61

GEometric History Length predictor

L(i) = αi −1L(1)
0 L(0) =

The set of history lengths forms a geometric series

{0, 2, 4, 8, 16, 32, 64, 128}

What is important: L(i)-L(i-1) is drastically increasing

Spends most of the storage for short history !!

62

Selecting between multiple predictions

• Use of a meta predictor
“wasting” storage !?!

 chosing among 5 or 10 predictions ??

• Neural inspired predictors:
 Use an adder tree instead of a meta-predictor
Jimenez and Lin 2001

• Partial matching:
 Use tagged tables and the longest matching history
Chen et al 96, Eden and Mudge 1998, Michaud 2005

Poor storage
efficiency

63

L(0) ∑

L(4)

L(3)
L(2)

L(1)

TO
T1

T2
T3

T4

Prediction=Sign

GEHL (2004)
prediction through an adder tree

64 TAGE (2006)
prediction through partial match

pc h[0:L1]

 ctr u tag

=?

 ctr u tag

=?

 ctr u tag

=?

prediction

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base
predictor

65 The Geometric History Length
Predictors

• Tree adder:
 O-GEHL: Optimized GEometric History Length

predictor
 CBP-1, 2004, best practice award

• Partial match:
 TAGE: TAgged GEometric history length predictor

 Inspired from PPM-like, Michaud 2004
+ geometric length
+ optimized update policy

 Base of the CBP-2, 2006 winner
 Base of the CBP-3, 2011 winner

66

GEHL

• Geometric history length: 4 to 12 tables

• Perceptron inspired threshold based update policy:
 Perceptron-like threshold does not work 
 Experimentally:

 The number of tables is a reasonable threshold
 Dynamic threshold fitting

• 4-bit or 5-bit counters (against 8-bit on perceptron)

67

 Dynamic update threshold fitting
On an O-GEHL predictor, best threshold depends on
• the application 
• the predictor size 
• the counter width 
By chance,
on most applications, for the best fixed threshold,
updates on mispredictions ≈ updates on correct predictions

Monitor the difference
and adapt the update threshold

68 2004 Championship Branch Prediction
O-GEHL

• O-GEHL = GEHL + a trick
 Dynamic history length fitting
 Brings (marginal) extra accuracy, but complex logic

cost for medium storage budgets

NOT TO BE IMPLEMENTED

69

Evaluation framework

1st Championship Branch Prediction traces:
20 traces including system activity
Floating point apps : loop dominated
Integer apps: usual SPECINT
Multimedia apps
Server workload apps: very large footprint

70

64 Kbits configuration
 2004 Championship Branch Prediction

• 8 tables:
 Medium number of tables
 5 bit counters for T0 and T1, 4 bit counters otherwise

• L(1) =3 and L(10)= 200
 {0,3,5,8,12,19,31,49,75,125,200}

71

The O-GEHL predictor

• 2nd at CBP: 2.82 misp/KI
• Best practice award:
 The predictor the closest to a possible hardware

implementation
 Does not use exotic features:

 Various prime numbers, etc
 Strange initial state

• Very short warming intervals:
 Chaining all simulations: 2.84 misp/KI

72

OGEHL predictor (in 2004)

• State-of-the-art before CBP
 1Mbit 2bcgskew (9,9,36,72): 3.19 misp/KI
 1888 Kbits PBNP (58): 3.23 misp/KI

• OGEHL
 32Kbits (3,150): 3.41 misp/KI
 1Mbits (5,300): 2.27 misp/KI

73

Robustness of the OGEHL predictor

• Robustness to variations of history lengths choices:
 L(1) in [2,6], L(10) in [125,300]
 misp. rate < 2.96 misp/KI

• Geometric series: not a bad formula !!
 best geometric L(1)=3, L(10)=223, 2.80 misp/KI
 best overall {0, 2, 4, 9, 12, 18, 31, 54, 114, 145, 266}

2.78 misp/KI

74

OGEHL scalability

 4 components — 8 components
 64 Kbits: 3.02 -- 2.84 misp/KI
 256Kbits: 2.59 -- 2.44 misp/KI
 1Mbit: 2.40 -- 2.27 misp/KI

 6 components — 12 components
 48 Kbits: 3.02 – 3.03 misp/KI
 768Kbits: 2.35 – 2.25 misp/KI

4 to 12 components bring high accuracy 

75

At CBP-1, all finalists were using tree adders
 apart the PPM-like predictor: 3.24 misp/KI

 but ..

The update policy was poor

76

TAGE

• Partial tag match
 almost ..

• Geometric history length

• Very effective update policy

77

=
?

=
?

=
?

1
1 1 1 1 1 1

1

1

Hit

Hit

Altpred

Pred

Miss

78

Prediction computation

• General case:
 Longest matching component provides the prediction

• Special case: newly allocated entries

 Very high misprediction rate on :
 weak Ctr : 42 % mispredictions

In many cases, Altpred more accurate than Pred
 Property dynamically monitored through a single 4-bit counter:

– weak Ctr: 34 % mispredictions

79

TAGE update policy

• General principle:

Minimize the footprint of the prediction.

 Just update the longest history

matching component and allocate at
most one entry on a misprediction

80

A tagged table entry

• Ctr: 3-bit prediction counter
• U: 2-bit useful counter
 Was the entry recently useful ?

• Tag: partial tag
 Tag Ctr U

81

Update policy

• Update the matching component
 or the base predictor

• Allocate at most one new entry on a
misprediction:
 A single entry
 In place of an otherwise useless entry

82
Usefulness of an entry

If (Altpred ≠ Pred) then

• Pred = taken : U= U + 1 becomes useful

Graceful aging:
Periodic reset of 1 bit in all counters

Useful = avoided a misprediction quite recently

83 Allocating a new entry
on a misprediction

• Find a single useless entry (U=0) with a longer history:
 Priviledge the smallest possible history

 To minimize footprint
 But not too much

 To avoid ping-pong phenomena

• Initialize Ctr as weak and U as zero:
 Can be replaced till it becomes useful

(not so many entries become useful)

84

TAGE vs OGEHL

8 comp. OGEHL

64K: 2.84 misp/KI
128K: 2.54 misp/KI
256K: 2.43 misp/KI
512K: 2.33 misp/KI
1M : 2.27 misp/KI

8 comp. TAGE

64K: 2.58 misp/KI
128K: 2.38 misp/KI
256K: 2.23 misp/KI
512K: 2.12 misp/KI
1M: 2.05 misp/KI

5 comp. TAGE

64K: 2.70 misp/KI
128K: 2.45 misp/KI
256K: 2.28 misp/KI
512K: 2.19 misp/KI
1M: 2.12 misp/KI

Same trend on other
benchmark traces

85 Partial tag matching is more effective
than adder tree

• At equal table numbers and equal history
lengths for limited storage budgets (<= 1 Mbit)
 TAGE better than GEHL on each of the 20

benchmarks

• Accuracy limit (with unlimited storage budget)
is higher on GEHL than TAGE
 Shown in the limit study for CBP-2

86

Prediction computation time ?

• 3 successive steps:
 Index computation:
 a few entry XOR gate

 Table read
 Adder tree or (tag check + mux traversal)

• Will not fit on a single cycle:
 Overriding predictor
 or can be ahead pipelined !

87 Ahead pipelining a global history
branch predictor

Ahead OGEHL or TAGE:
8 // prediction computations

bcd

Ha

A

A B C D

88 Ahead Pipelined 64 Kbits
OGEHL or TAGE

• 3-block ahead 64Kbits TAGE:
 2.70 misp/KI vs 2.58 misp/KI

• 3-block ahead 64Kbits OGEHL:
 2.94 misp/KI vs 2.84 misp/KI

Not such a huge accuracy loss 

89

And indirect jumps ?

TAGE principles to indirect jumps:

“A case for (partially) tagged branch

predictors”, JILP Feb. 2006

The 3 first ranked predictors at 3rd CBP in

2011 were ITTAGE predictors

90 Geometric History Length predictors

• state-of-the-art accuracy using only global information:
 Very long history: 200+ bits !!

• can be ahead pipelined: in-time prediction

• many effective design points
 GEHL or TAGE 
 Nb of tables, history lengths:

 Tradeoffs on accuracy against complexity, power

• prediction computation logic complexity is low

(compared with concurrent predictors )

91

Recent advances

• Storage free and efficient confidence estimator
 HPCA 2011

• Capturing some local history-based extra accuracy

 Micro 2011
 for large predictors
 512Kbits: 1.96 vs 2.12 MPKI

92

A BP research summary
 2bit counters 1981: 8.55 misp/KI 671 cycles/KI

 Gshare 1993: 5.30 misp/KI 606 cycles/KI

 EV8-like 2002 (1999): 3.80 misp/KI 576 cycles/KI

 TAGE 2006: 2.58 misp/KI 551 cycles/KI

Hot topic, heroic efforts:
 win 28 %, 5 % perf

No real work before 1991:
win 37 % misp, 10 % perf

Boring topic, a very few actors:
 win 33 %, 4 % perf

93

But what does real processors use ?

• No precise disclosure

• But :

1st Intel Research Impact Medal in 2012

to André Seznec

94

95

•See the limit study at CBP-2

•Need other new ideas to go further
•Information source ??

The End of Branch Prediction research ?

96

Revisiting Value Prediction
(Ongoing Work)

 with Arthur Pérais

97 Value Prediction

• Large body of research 96-02

• Disappeared and was not implented

But a new context:
The multi-many core era

98 The multicore era
2002- ..

GREAT !!

<2002 2004 2008

99

And now ?

Not that great:
•Amdahl’s Law
•Lots of codes still sequential

2013 2016 ? 2020?

100

May be rather heterogeneous ?

Resource of 10 current cores
to one ultra complex core

Objective:

High sequential performance

How:

Why not value prediction ?

101 Value prediction ?
Lipasti et al, Gabbay and Mendelson 1996

Basic idea:
 Eliminate (some) true data dependencies through predicting

instruction results

I0 I1 I3
 +2 +3 +1

I4 I5
+3

I0 I1 I3
 +2 +3

I4 I5
+3

102 Value Prediction:

• Large body of research 96-02

• Quite efficient:
 Surprisingly high number of predictable instructions

• Not implemented so far:
 High cost : is it still relevant now ?
 High penalty on misp.: don’t lose all the benefit

103

What is new ?

• Billions of transistors:
 And not worth to multiply cores

• Better understanding of confidence issues
 95 % accuracy not sufficient
 >>99 % is the objective

• Better understanding of branch prediction
 Use it to predict general values

104

Different value predictors

• Context-based predictors:
 Use (value) history to predict
 Use (branch) history to predict
 This presentation

• Computational predictors:
 Apply a function on the previous value(s)

105

Last Value Predictor

• Just predict the last produced value

 Set Associative Table
 Use confidence counters

Analogy with PC-based branch prediction

106

Stride value predictor

• Add last value + (last difference)

P
C +

Analogy with stride predictor, but also with loop predictor

107

Per-Path Stride

+

P
C

G
H

⊕

Allows to capture nested loops (without inner body branch)

108

Finite Context Method predictors

Use history of the last values by the instruction

P
C

Analogy with local history branch predictor

109

Differential FCM predictor

+

Local Difference
Value History

Last Value

Difference

Somekind of hybrid computational/context

110

And global value history

• Just no sense !
 Need the history of the last instructions
 Too late !!

• But global branch history !?!
 ITTAGE is the state-of-the-art indirect branch

predictor !!
 And it predicts values !

111 Accuracy and Coverage
(average)

0,94

0,96

0,98

1

3bit
3bit-reset
3bit-Proba

112

Issues on repair strategies

• Flush the pipeline

• Selective repair

113

Flush the pipeline

• Branch misprediction like
 Well understood

• High misprediction cost
 Need very high confidence accuracy

114

Selective repair

• Repair and replay on the mispredicted
instruction and its dependency chain
 Complex implementation
 Complex artefacts

• But certainly already implemented
 Hit/Miss L1 misprediction

Other artefacts with Value Prediction

115 Selective replay
Possible cascade of mispredictions

 Scenario:

1. Several predictions inflights for Inst I

2. A misprediction is repaired:
 But the other chained predictions are not

FCM, strides

116

Conclusion

• Fresh look at Value Prediction
 Transpose branch prediction techniques

• High accuracy with high coverage possible

• Local Value Predictors: just unrealistic

• Performance gain ? On going work

117

General conclusion

Microarchitecture is about
• correctness
• prediction and speculation

	Prediction and Speculation usage �in microarchitecture
	Diapositive numéro 2
	PREDICTION AND SPECULATION ARE EVERYWHERE
	Microarchitecture is about performance
	Microarchitecture performance is about
	Prediction vs Speculation
	 Prediction/speculation everywhere
	Pipelining is already speculating
	First principle
	Anticipate
	Out-of-order execution
	Out-of-order execution:�speculation at multiple levels
	Exception
	Why wrong instruction address
	Instruction flow prediction:�predict the address of the next instruction block
	Why wrong instruction
	Wrong instruction repair
	Why wrong operands
	Optimistic cache result use
	Optimistic cache result use
	Why wrong operands: �the implicit hit prediction
	Why wrong operand:�False (in)dependencies
	Bypassing the stores
	Bypassing the stores
	Predicting dependencies
	Wrong data value prediction ?�Lipasti et al, Gabbay and Mendelson 1996
	Value Prediction: �
	Wrong operand: �the selective repair issue
	Other prediction usages
	Cache prefetching is no speculation
	Cache prefetching issues
	Cache prefetching
	Next block prefetching
	Stream prefetching
	Stride prefectching
	Markov prefetching
	General issue on prefetching
	Coherence transaction prediction
	A very particular prediction
	Confidence estimation�
	SMT instruction steering policies
	Many other predictions
	BRANCH PREDICTION
	Why branch prediction ?
	Prediction through the PC�Smith 1981
	The 2-bit counter automaton
	global branch history�Yeh and Patt 91, Pan, So, Rameh 92
	Exploiting local history�Yeh and Patt 91
	Speculative history must be managed !?
	Branch prediction:�Hot research topic in the late 90’s
	EV8 predictor: (derived from) 2bc-gskew�Seznec et al, ISCA 2002 (1999)
	Retrospectively
	Still worth to enhance branch prediction ?
	Diapositive numéro 54
	Perceptron predictor�Jimenez and Lin 2001
	Perceptron predictor
	Back around 2003
	Diapositive numéro 58
	Underlying idea
	From my “old experience” �2bcgskew and EV8
	GEometric History Length predictor
	Selecting between multiple predictions
	GEHL (2004) �prediction through an adder tree
	TAGE (2006)�prediction through partial match
	The Geometric History Length Predictors
	GEHL
	 Dynamic update threshold fitting
	2004 Championship Branch Prediction�O-GEHL
	Evaluation framework
	64 Kbits configuration� 2004 Championship Branch Prediction
	The O-GEHL predictor
	OGEHL predictor (in 2004)
	Robustness of the OGEHL predictor
	OGEHL scalability
	Diapositive numéro 75
	TAGE
	Diapositive numéro 77
	Prediction computation
	TAGE update policy
	A tagged table entry
	Update policy
	�Usefulness of an entry
	Allocating a new entry �on a misprediction
	TAGE vs OGEHL
	Partial tag matching is more effective than adder tree
	Prediction computation time ?
	Ahead pipelining a global history branch predictor
	Ahead Pipelined 64 Kbits�OGEHL or TAGE
	And indirect jumps ?
	Geometric History Length predictors�
	Recent advances
	A BP research summary
	But what does real processors use ?
	Diapositive numéro 94
	The End of Branch Prediction research ?
	����Revisiting Value Prediction�(Ongoing Work) �
	Value Prediction �
	The multicore era �2002- ..
	And now ?
	May be rather heterogeneous ?
	Value prediction ?�Lipasti et al, Gabbay and Mendelson 1996
	Value Prediction: �
	What is new ?
	Different value predictors
	Last Value Predictor
	Stride value predictor
	Per-Path Stride
	Finite Context Method predictors
	Differential FCM predictor
	And global value history
	Accuracy and Coverage�(average)
	Issues on repair strategies
	Flush the pipeline
	Selective repair
	Selective replay�Possible cascade of mispredictions
	Conclusion
	General conclusion

