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• Prediction and Speculation are everywhere 

 

 

• Branch prediction 

 

 

• Revisiting Value Prediction 
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PREDICTION AND SPECULATION 
ARE EVERYWHERE 
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Microarchitecture is about performance 

• First implementation constraint: 
 CORRECTNESS 

 

• Then : PERFORMANCE 
 In the respect of constraints: 
 Silicon area 
 Power/temperature constraints 
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Microarchitecture performance is about 

• Technology 

 

• Implementation:  
 Minimize the critical path 

 

• Prediction and Speculation 
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Prediction vs Speculation 

• Prediction: 
 Predict some events: 
 Predict the direction of a branch 
 Predict the address of a future load 

• Speculation: 
 Computes based on a prediction 
 Fetch/decode/execute intructions 

Necessitate repair if uncorrect 
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 Prediction/speculation everywhere 

• Pipeline 

• Out-of-order execution  

• Branch prediction 

• Cache memories 

• Dependence/independence prediction 

• Data prediction 

• Coherence transaction prediction 

• Confidence prediction 

• SMT instruction allocation policies 
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Pipelining is already speculating 

Predict that next 
inst is PC+4 

Read the registers, 
just in case  

Forward the results, 
just in case 

Predict that previous 
instructions will finish 
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First principle 

Predict that next 
inst is PC+4 

Predict that previous 
instructions will finish 

Favor the most frequent case, 
and backtrack if false 
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Anticipate 

Read the registers, 
just in case  

Forward the results, 
just in case 



11 

Out-of-order execution  

IF DC EX M CT wait wait 
IF DC EX M 

IF DC EX M CT 
IF DC EX M CT 

IF DC EX M CT 
IF DC EX M CT 

CT 

An instruction may be fetched  
100’s cycles before its validation 



12 Out-of-order execution: 
speculation at multiple levels  

• 100’s of speculative instructions in flight 
 Any instruction can abort due to: 
 Exception 
 Wrong instruction address 
 Wrong instruction 
 Wrong operand(s) 
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Exception 

• An exception from time to time: 
  1,000,000’s of cycles interval 
 Who cares ? 

 Speculate no exception 
 Just ensure correctness: 

– Flush the whole pipeline  
 Apart TLB misses !! 
 In some applications count by MPKI (miss 

per kilo instructions) 
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Why wrong instruction address 

• With pipelining already an issue  
 PC of next instruction known late: 
 Decode for non-branch instructions 
 Execute for cond. branches or indirect 

jumps 

• Predict the instruction flow and speculatively 
fetch/execute along the predicted instruction 
flow 

 



15 Instruction flow prediction: 
predict the address of the next instruction block 

1. Within current block predict branches and branches types 

2. Predict for all branches: 
1. Targets 
2. Directions 

3. Select the correct next block address 

On Alpha EV8 processor (cancelled 2001):  
Two 8-instruction blocks per cycle 
Up to 16 branches predicted per cycle 
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Why wrong instruction 

• Instruction is read on the I-cache: 
 Needed ASAP for decode then verifying 

target, type etc. 

 read without tag check: 
 Line predictor on Alpha EV8 
 Way predictor on Sun UltraSparc 
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Wrong instruction repair 

• Learned very early in the pipeline: 
 at tag check (way prediction) 
 end of instruction address generation (LP on 

EV8) 
 

• Just flush two or three pipeline stages and 
resume fetching 
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Why wrong operands 

• Many papers on reducing critical path in data 
cache 
 Way prediction on data cache 
 Optimistic use on direct mapped cache 

 



19 

Optimistic cache result  use  
Tag Set Offset 

Compare 

Hit or Miss 

Data out 

Use before hit/miss detection 
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Optimistic cache result use 
Tag Set Offset 

Data out 

Way 
Pred 



21 Why wrong operands:  
the implicit hit prediction  

Issue RF1 RF2 RF3 MEM2 MEM1 EX 

Ld R1 Ld R1 Op R1R2 

Op R1R6 

Ld R1 Op R1R2 

Op R1R6 

Op R2R3 

Op R8R9 

Ld R1 Op R1R2 

Op R1R6 

Op R2R3 

Op R8R9 

Op R3R4 

Op R8R7 

Ld R1 Op R1R2 

Op R1R6 

Op R2R3 

Op R8R9 

Op R3R4 

Op R8R7 

Op R3R5 

Op R0R6 

Oops: miss 

  Op R1R2 

Op R1R6 

Op R2R3 

Op R8R9 

Op R3R4 

Op R8R7 

Op R3R5 

Op R0R6 



22 Why wrong operand: 
False  (in)dependencies 

Loads potentially dependent on any preceeding 
store 

 

 

 

On all processors, predict effective ld/st  

(in)dependencies and repair if uncorrect 

ld St St 

? ? 



23 

Bypassing the stores 

• At decode, allocate an entry in the load/store 
queue 

• At execution: 
 For loads check all the older stores with 

computed addresses:  
 if match then grab the data 

 For stores, check all the younger already 
executed loads  
 if match then repair 
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Bypassing the stores 

• Systematic bypass is  not performant: 
 Cost of repair  

 

• Dependence prediction: 
 i.e. bypassing when independence is 

predicted 
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Predicting dependencies 

• This load is dependent on a previous store 

 

 

 

• This load is dependent on THIS previous store 



26 Wrong data value prediction ? 
Lipasti et al, Gabbay and Mendelson 1996 

Basic idea: 
 Eliminate (some) true data dependencies through predicting 

instruction results 

I0 I1 I3 
      +2 +3 +1 

I4 I5 
+3 

I0 I1 I3 
      +2 +3 

I4 I5 
+3 



27 Value Prediction:  
 

• Large body of research 96-02 

 

• Quite efficient: 
 Surprisingly high number of predictable instructions 

 

• Not implemented so far: 
 High cost :  is it still relevant now ? 
 High penalty on misp.: don’t lose all the benefit 

 

 

 

 

       
         

   
    



28 Wrong operand:  
the selective repair issue 

• Realize  that an instruction has used a wrong 
operand 
 All dependent instructions have to be 

cancelled and reissued: 
 May be 10’s of instructions 
 Implemented but not very documented 
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Other prediction usages 

• Cache prefetching 

 

• Coherence transaction prediction 

 

• Confidence  estimation 

 

• SMT steering policies 
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Cache prefetching is no speculation 

• Bring a memory block (likely to be accessed) 
close to the processor core: 
 L1 cache ? L2 cache ? Prefetch buffer 

• Does not modify the memory block : 
  no action needed for repairing 
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Cache prefetching issues 

• Which block to prefetch ? 

 

• Aggressiveness: 
 How much to prefetch in advance ? 
 In-time or to late ? 

 Bandwidth wasting and/or demand miss 
delaying: 
 How to control  ? 
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Cache prefetching 

• Predicting the addresses of  next cache blocks 
to be touched 
 Next block prefetching 
 Stride prefetching 
 Stream prefetching 
 Markov prefetching 

• 100’s of propositions 

• Implemented in many processors 
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Next block prefetching 

• On a miss, prefetch next block: 
 (potentially) save one of two misses 

• On a hit on a prefetched block, prefetch 
 Create streams of prefetchs 

 

• Generally too late  on modern processors 
 Latency of several hundred cycles 
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Stream prefetching 

• Detect series of consecutive blocks 

 

• Prefetch the successors 
 

 Resolve the distance issue 
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Stride prefectching 

•  Accesses by the same load/store instruction: 
 A, A +S, A+ 2S,  A+ 3S, A+4S (probably) 

 

• Issues: 
 Seen only at L1 levels 
 Only on virtual address space 
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Markov prefetching 

• Series of coorelated misses: 
 Miss on B follows miss on A which follows 

miss on Z etc: 
 See miss on Z: prefetch A, prefetch B 

 

• Issue:  very memory demanding for storing 
patterns 
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General issue on prefetching 

 

• Multi- manycore era: 
 Memory hierarchy shared by many cores: 
 How to hande the sharing of bandwidth, 

memory hierarchy and so on 
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Coherence transaction prediction 

 

On coherent cache multiprocessors: 

• Try to learn pattern of the data usage: 
 Try to push the data towards its consumer 
 And avoid coherence traffic 
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A very particular prediction 

• Confidence estimation: 
 Predict whether the prediction is “likely” to be 

correct 
 For evaluating the potential tradeoff 

benefit/cost 
 Prefetch (benefit against wasting 

bandwidth) 
 Branch prediction (saving power ) 



40 Confidence estimation 
 

• Quite particular: 
 Each predictor needs its own adapted 

confidence estimation 
 Each usage requires its own confidence 

estimation level 
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SMT instruction steering policies 

• Share all the resources among several threads: 
 Functional units, caches, .. 

• Fetch for thread T0 or thread T1 

• Different strategies to “predict” the benefits: 
 Number of pending instructions 
 Number of low confidence branches 
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Many other  predictions 

• E.g. usage of hardware structures: 
 To save power: 
 Dynamic instruction window sizes 



43 

BRANCH PREDICTION 
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Why branch prediction ? 

• 10-30 % instructions are branches 

 

• 4 instructions per cycle 

 

• Direction and target known around cycle 20 
 Not possible to lose 20 cycles on each branch 
 PREDICT BRANCHES  
 and verify later !! 



45 Prediction through the PC 
Smith 1981 

• Most branches biased towards taken or not taken 

 

• Use a table to predict the branches: 
 Record the output  of the branch 
 Use the last behavior  
 + add some memory through a 2 bit counter 

45 



46 46 

The 2-bit counter automaton 

0 1 2 3 

NT NT NT NT 

T T T T 

Predict  NT Predict T 



47 47 global branch history 
Yeh and Patt 91, Pan, So, Rameh 92 

B1: if cond1 

B2: if cond2  

B3: if cond1 and cond2 

B1 and B2  outputs determine   B3 output 
 
Global history:  

vector of bits (T/NT) representing the past branches 
 
Table indexed by PC +  global history 
 
 



48 Exploiting local history 
Yeh and Patt 91 

48 

for (i=0; i<100; i++) 

     for (j=0;j<4;j++)  

         loop body 

Look at the 3 last occurrences: 

If all   loop backs then   loop exit  

otherwise:                     loop back 

•A local history per branch 
 

•Table of counters indexed with PC + local history 



49 Speculative history must be managed 
!? 

• Local history: 
 table of histories  (unspeculatively updated) 
 must maintain a speculative history per inflight 

branch: 
 Associative search, etc ?!?  

 
• Global history: 
 Append a bit on a single history register 
 Use of a circular buffer and just a pointer to 

speculatively manage the history 
 

 



50 Branch prediction: 
Hot research topic in the late 90’s 

• McFarling 1993:  
 Gshare (hashing PC and history) +Hybrid predictors 

 

• « Dealiased » predictors: reducing table conflicts impact 
 

 Bimode, e-gskew, Agree 1997 
 



51 EV8 predictor: (derived from) 2bc-gskew 
Seznec et al, ISCA 2002 (1999)  

      e-gskew 
Michaud et al 97 
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Retrospectively 

       For 64Kbits predictors on CBP-1 traces (2004) 
assuming 2 inst/cycle, 20-cycle misprediction penalty 

 
 2bit counters 1981: 8.55 misp/KI  671 cycles/KI 

 
 
 

 Gshare          1993:  5.30 misp/KI   606 cycles/KI 
 
 
 
 

 EV8-like  2002 (1999):  3.80 misp/KI  576 cycles/KI 
 
 
 

 

 

Hot topic,   heroic efforts: 
 win 28 % misp,  5 % perf   

No real work before 1991: 
win  37 % misp, 10 % perf 



53 Still worth to enhance branch prediction 
? 

Replacing  the branch predictor by a more accurate one 
 

 Improves directly the performance 
 
 

 Does not affect the rest of the design 
 Can be considered for a new release of the 

processor 
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After 2000,  interest from  
computer architecture community faded 

THE MULTICORE ERA 
 

But .. 
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Perceptron predictor 
Jimenez and Lin 2001 

∑ 
Sign=prediction 

X 

signed 8-bit 
conters 

branch history  
as (-1,+1) 

Update on mispredictions or if |SUM| <  θ 
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Perceptron predictor 

• Not that accurate  

• High hardware complexity 

but 

• Sometimes better than classical predictors 

• Intellectually challenging 
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Back around 2003  

• 2bcgskew (EV8) state-of-the-art, but: 
  but was lagging behind neural inspired 

predictors on a few benchmarks 
• Just wanted to get best of both behaviors, plus 
 Reasonable implementation cost: 
 Use only global history  
 Medium number of tables 

 In-time response:  a taken branch per cycle 



58 The basis : A Multiple length global 
history predictor  

 

L(0) ? 

L(4) 

L(3) 
L(2) 

L(1) 

T0 
T1 

T2 
T3 

T4 

With a limited number of tables 
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Underlying idea 

• H and H’  two  history vectors equal on N bits, 
but differ on bit N+1 
 e.g. L(1)≤N<L(2) 

• Branches (A,H) and (A,H’)  
biased in opposite directions 

 
 

Table T2 should allow to discriminate 
between (A,H) and (A,H’) 



60 From  my “old experience”   
2bcgskew and EV8 

 

• Some applications benefit from 100+ bits 
histories 
 Generally only a few branches 

• Other don’t !! 
 And it is a  loss of storage 
 Should not “waste” too much space for 

long histories 
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GEometric History Length predictor 

 

L(i) = αi −1L(1)
0 L(0) =

The set of history lengths forms a geometric series 

{0, 2, 4, 8, 16, 32, 64, 128} 

What is important: L(i)-L(i-1) is drastically increasing         

Spends most of the storage for short history !! 
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Selecting between multiple predictions 

• Use of a meta predictor 
“wasting” storage !?! 

        chosing among 5 or 10 predictions ??  

 

• Neural inspired predictors: 
 Use an adder tree instead of a meta-predictor 
Jimenez and Lin 2001 

 

• Partial matching: 
 Use tagged tables and the longest matching history 
Chen et al 96,  Eden and Mudge 1998, Michaud 2005 

 

 

Poor storage  
efficiency 
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L(0) ∑ 

L(4) 

L(3) 
L(2) 

L(1) 

TO 
T1 

T2 
T3 

T4 

Prediction=Sign 

GEHL (2004)  
prediction  through an adder tree 



64 TAGE (2006) 
prediction  through partial match 

pc h[0:L1] 

 ctr u  tag 

=? 

 ctr u  tag 

=? 

 ctr u  tag 

=? 

prediction  

pc pc h[0:L2] pc h[0:L3] 

1 
1 1 1 1 1 1 

1 

1 

Tagless base  
predictor 



65 The Geometric History Length 
Predictors 

• Tree adder: 
 O-GEHL: Optimized GEometric History Length 

predictor 
 CBP-1, 2004, best practice award 

• Partial match: 
 TAGE: TAgged GEometric history length predictor 

 Inspired from PPM-like, Michaud 2004 
+ geometric length 
+ optimized update policy 

 Base of the CBP-2, 2006 winner 
 Base of the CBP-3, 2011 winner 
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GEHL  

• Geometric history length:  4 to 12 tables 
 

• Perceptron inspired threshold based update policy: 
 Perceptron-like threshold does not work  
 Experimentally: 

 The number of tables is a reasonable threshold 
 Dynamic threshold fitting  
 

• 4-bit or 5-bit counters (against 8-bit  on perceptron ) 
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     Dynamic update threshold fitting  
On an O-GEHL predictor, best threshold  depends on 
• the application  
• the predictor size  
• the counter width  
By chance,  
on most applications,  for the best fixed threshold,  
updates on mispredictions ≈ updates on correct predictions  

Monitor the difference  
and adapt the update threshold 

 
 



68 2004 Championship Branch Prediction 
O-GEHL  

• O-GEHL = GEHL + a trick 
 Dynamic history length fitting  
 Brings (marginal) extra accuracy, but complex logic 

cost for medium storage budgets 
 

NOT TO BE IMPLEMENTED 
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Evaluation framework 

 

1st Championship Branch Prediction traces: 
20 traces including system activity 
Floating point apps : loop dominated 
Integer apps: usual SPECINT 
Multimedia apps 
Server workload apps:  very large footprint 
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64 Kbits  configuration 
 2004 Championship Branch Prediction 

• 8 tables: 
 Medium number of tables 
 5 bit counters for T0 and T1, 4 bit counters otherwise 

 

 

• L(1) =3 and L(10)= 200 
 {0,3,5,8,12,19,31,49,75,125,200} 
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The O-GEHL predictor  

• 2nd at CBP: 2.82 misp/KI 
• Best practice award: 
 The predictor the closest to a possible hardware 

implementation 
 Does not use exotic features:  

 Various prime numbers, etc 
 Strange initial state 
 

• Very short warming intervals: 
 Chaining all simulations: 2.84 misp/KI 
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OGEHL predictor (in 2004 ) 

• State-of-the-art before CBP 
 1Mbit 2bcgskew (9,9,36,72): 3.19 misp/KI 
 1888 Kbits PBNP (58): 3.23 misp/KI 
 

• OGEHL 
 32Kbits (3,150): 3.41 misp/KI 
 1Mbits (5,300): 2.27 misp/KI 
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Robustness of  the OGEHL predictor  

 
• Robustness to variations of history lengths choices: 
 L(1) in [2,6],  L(10) in [125,300] 
  misp. rate  < 2.96 misp/KI  

 
• Geometric series: not a bad formula !! 
 best geometric L(1)=3, L(10)=223,  2.80  misp/KI 
 best overall  {0, 2, 4, 9, 12, 18, 31, 54, 114, 145, 266}  

2.78  misp/KI 
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OGEHL scalability  

 4 components — 8 components 
  64 Kbits:  3.02  -- 2.84 misp/KI 
 256Kbits:  2.59  -- 2.44 misp/KI 
 1Mbit:       2.40  -- 2.27 misp/KI 

 6 components — 12 components 
 48 Kbits: 3.02 – 3.03 misp/KI 
 768Kbits: 2.35 – 2.25 misp/KI 

4 to 12 components bring high accuracy  
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At CBP-1, all finalists  were using tree adders 
 apart  the PPM-like predictor: 3.24 misp/KI 
 
                           but .. 
  

The update policy was poor 
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TAGE 

• Partial tag match 
 almost .. 

 

• Geometric history length 

 

• Very effective update policy 
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=
? 

=
? 

=
? 

1 
1 1 1 1 1 1 

1 

1 

Hit 

Hit 

Altpred 

Pred 

Miss 
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Prediction computation 

• General case: 
 Longest matching component provides the prediction 

 
• Special case: newly allocated entries  

 Very high  misprediction rate  on : 
  weak Ctr :  42 % mispredictions  

In many cases, Altpred  more accurate than Pred 
 Property dynamically monitored through a single 4-bit counter:    

– weak Ctr: 34 % mispredictions 
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TAGE update policy 

• General principle:  
 
Minimize the  footprint of the prediction. 

   
 Just update the longest history 

matching component and allocate at 
most one entry on a misprediction 
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A tagged table entry 

• Ctr: 3-bit prediction counter 
• U: 2-bit useful counter 
 Was the entry recently useful ? 

• Tag: partial tag 
 Tag Ctr U 
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Update policy 

• Update the matching component 
 or the base predictor 

 

• Allocate at most one new entry on a 
misprediction: 
 A single entry 
 In place of an otherwise useless entry 

 



82  
Usefulness of an entry 

  
If (Altpred ≠ Pred) then 

• Pred = taken : U= U + 1         becomes useful 
 

Graceful aging: 
Periodic reset of 1 bit in all  counters 

Useful = avoided a misprediction quite recently 



83 Allocating a new entry  
on a misprediction 

 

• Find a single  useless entry (U=0) with a longer history: 
 Priviledge the smallest possible history 

 To minimize footprint 
 But not too much 

 To avoid ping-pong phenomena 
 

• Initialize Ctr as weak  and U as zero: 
 Can be replaced till it becomes useful 

(not so many entries become useful) 
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TAGE vs OGEHL 

8 comp. OGEHL 
 
64K:   2.84 misp/KI 
128K: 2.54 misp/KI 
256K: 2.43 misp/KI 
512K: 2.33 misp/KI 
1M :   2.27 misp/KI 

8 comp. TAGE 
 
64K:   2.58 misp/KI 
128K: 2.38 misp/KI 
256K: 2.23 misp/KI 
512K: 2.12 misp/KI 
1M:    2.05 misp/KI 

5 comp. TAGE 
 
64K:   2.70 misp/KI 
128K: 2.45 misp/KI 
256K: 2.28 misp/KI 
512K: 2.19 misp/KI 
1M:    2.12 misp/KI 

Same trend on other 
benchmark traces 



85 Partial tag matching is more effective 
than adder tree 

• At equal table numbers and equal history 
lengths for limited storage budgets ( <= 1 Mbit) 
 TAGE better than GEHL on each of the 20 

benchmarks 

 

• Accuracy limit ( with unlimited  storage budget) 
is higher on GEHL than TAGE 
 Shown in the limit study for CBP-2 
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Prediction computation time ? 

• 3 successive steps: 
 Index computation:  
 a  few entry XOR gate 

 Table read 
 Adder tree or (tag check + mux traversal)  

• Will not fit on a single cycle: 
 Overriding predictor  
 or can be ahead pipelined ! 



87 Ahead pipelining a global history 
branch predictor  

Ahead OGEHL or TAGE: 
8 // prediction computations 

bcd 

Ha 
 
A 

A B C D 



88 Ahead Pipelined 64 Kbits 
OGEHL or TAGE 

 
• 3-block ahead 64Kbits TAGE:   
 2.70 misp/KI vs 2.58 misp/KI 

• 3-block ahead 64Kbits OGEHL: 
 2.94 misp/KI vs 2.84 misp/KI 
 

 
 
 

Not such a huge accuracy loss  
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And indirect jumps ? 

TAGE principles  to indirect jumps: 
 
“A case for (partially) tagged branch 

predictors”, JILP Feb. 2006 
 
The 3 first ranked predictors at 3rd CBP in 

2011 were ITTAGE predictors 



90 Geometric History Length  predictors 
  

• state-of-the-art accuracy using  only global information: 
 Very long history: 200+ bits !! 

• can be ahead pipelined: in-time prediction 

• many effective design points  
 GEHL or TAGE  
 Nb of tables, history lengths: 

 Tradeoffs  on accuracy against complexity, power  

• prediction computation logic complexity is low 

(compared with concurrent predictors ) 
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Recent advances 

•  Storage free and efficient confidence estimator  
  HPCA 2011 

 

• Capturing some local history-based extra accuracy            

                  Micro 2011 
 for large predictors  
 512Kbits: 1.96 vs 2.12 MPKI 
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A BP research summary 
 2bit counters 1981: 8.55 misp/KI  671 cycles/KI 

 
 
 

 Gshare          1993:  5.30 misp/KI   606 cycles/KI 
 
 
 

 EV8-like  2002 (1999):  3.80 misp/KI  576 cycles/KI 
 
 
 

 TAGE  2006:         2.58 misp/KI    551 cycles/KI 
 
 

 

 

Hot topic,   heroic efforts: 
 win 28 %,  5 % perf   

No real work before 1991: 
win  37 % misp, 10 % perf 

Boring topic,   a very few actors: 
 win 33 %,  4 % perf   
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But what does real processors use ? 

• No precise disclosure 

 

• But : 
 
1st Intel Research Impact Medal  in 2012    

to André Seznec 



94 



95 

 
•See the limit study at CBP-2  
 

•Need other new ideas to go further 
•Information source ?? 

   

The End of Branch Prediction research ? 
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Revisiting Value Prediction 
(Ongoing Work)  

  

  with Arthur Pérais 
 
 



97 Value Prediction  
 

• Large body of research 96-02 

 
 

 

 

• Disappeared and was not implented 

But a new context: 
The multi-many core era 



98 The multicore era  
2002- ..  

GREAT !! 

<2002 2004 2008 



99 

And now ? 

Not that great:  
•Amdahl’s Law 
•Lots of codes still sequential 

2013 2016 ? 2020? 
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May be rather heterogeneous ? 

Resource of 10 current cores 
to one ultra complex core 

 

Objective:  

High sequential performance 

 

How: 

Why not value prediction ? 



101 Value prediction ? 
Lipasti et al, Gabbay and Mendelson 1996 

Basic idea: 
 Eliminate (some) true data dependencies through predicting 

instruction results 

I0 I1 I3 
      +2 +3 +1 

I4 I5 
+3 

I0 I1 I3 
      +2 +3 

I4 I5 
+3 



102 Value Prediction:  
 

• Large body of research 96-02 

 

• Quite efficient: 
 Surprisingly high number of predictable instructions 

 

• Not implemented so far: 
 High cost :  is it still relevant now ? 
 High penalty on misp.: don’t lose all the benefit 
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What is new ? 

• Billions of transistors: 
 And not worth to multiply cores 

• Better understanding of confidence issues 
 95 % accuracy not sufficient 
 >>99 % is the objective 

• Better understanding of branch prediction 
 Use it to predict general values 
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Different  value predictors 

• Context-based predictors: 
 Use (value) history to predict 
 Use (branch) history to predict 
 This presentation 
 

• Computational predictors: 
 Apply a function on the previous value(s) 
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Last Value Predictor 

• Just predict the last produced value 

 
 Set Associative Table 
 Use confidence counters 

 
Analogy with  PC-based branch prediction 
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Stride value predictor 

• Add last value  + (last difference) 

P
C + 

Analogy with stride predictor, but also with  loop predictor 
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Per-Path Stride 

+ 

P
C 

G
H 

 

⊕

Allows to capture nested loops (without inner body branch)  
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Finite Context Method predictors 

Use history of the last values  by the instruction 

 

 

P
C 

Analogy with local history branch predictor 
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Differential FCM predictor 

+ 

Local Difference 
Value History 

Last Value 

Difference 

Somekind of  hybrid computational/context  
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And global value history 

• Just no sense ! 
 Need the history of the last instructions 
 Too late !! 
 

• But global branch history !?! 
 ITTAGE is the state-of-the-art indirect branch 

predictor !! 
 And it predicts values ! 



111 Accuracy and Coverage 
(average) 

0,94

0,96

0,98

1

3bit
3bit-reset
3bit-Proba
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Issues on repair strategies 

• Flush the pipeline 

 

 

• Selective repair 
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Flush the pipeline 

• Branch misprediction like 
 Well understood 

 

• High misprediction cost 
 Need very high confidence accuracy 
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Selective repair 

• Repair and replay on the mispredicted 
instruction and its dependency chain 
 Complex implementation 
 Complex artefacts 

 

• But certainly already implemented 
 Hit/Miss L1 misprediction 

Other artefacts with Value Prediction 
 

 



115 Selective replay 
Possible cascade of mispredictions 

 

 Scenario:  

1. Several predictions inflights for Inst I 

2. A misprediction is repaired: 
 But the other chained predictions are not 

FCM,  strides 
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Conclusion 

• Fresh look at Value Prediction 
 Transpose branch prediction techniques 

• High accuracy with high coverage possible 

• Local Value Predictors: just unrealistic 

 

• Performance gain ? On going work 
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General conclusion 

Microarchitecture is about 
• correctness 
• prediction and speculation 
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