
E. Casseau - ARCHI09

1

Exploitation du parallélisme et
de la taille des données dans
la conception d'opérateurs :

Sub-Word Parallelism (SWP)

E. Casseau
INRIA / IRISA
Projet CAIRN

ARCHI 09
Ecole thématique

Pleumeur-Bodou 30 mars – 3 avril 2009

E. Casseau - ARCHI 09

2

Outline

� Introduction to Sub-Word Parallelism (SWP)

� SWP extensions for general purpose processors

� Basic SWP operator design
� adder
� multiplier

� Towards a multimedia dedicated operator

E. Casseau - ARCHI 09

3

Usual computing resources
� Conventional ALU :

� word size : - 32 bits

- 64 bits
…

� Basic units designed (optimized) for
word sizes: 32/64 bits

⇒ max. efficiency with 32/64-bit words

X register

64 bits

Y register

64 bits

64-bit adder

64 bits

Z register

E. Casseau - ARCHI 09

4

Usual computing resources
� Conventional ALU :

� word size : - 32 bits
- 64 bits
…

� Basic units designed (optimized) for word
sizes: 32/64 bits

⇒ max. efficiency with 32/64-bit words

� Audio/video/… processing :
� low precision data: 8/10/12/16-bits
� conventional ALU

� low efficiency : under utilization of
processor resources

� wasting: area, power, performance

X register Y register

64-bit adder

Z register

48 bits 16 bits 48 bits

48 bits 16 bits

48 bits 16 bits

E. Casseau - ARCHI 09

5

SWP: Sub Word Parallelism
� Goal: efficiency improvement

� ? : avoid wasting of word size resources

� Sub Word Parallelism SWP:
� subword : small data item contain within a word
� multiple subwords are packed into one word
� whole word is processed at the same time :

⇒ simultaneous parallel processing on subwords

X register

adder

Z register

X register Y register

E. Casseau - ARCHI 09

6

SWP: basic example

ADDER

� Ripple Carry adder
� based on half adders and full adders

E. Casseau - ARCHI 09

7

SWP: basic example

ADDER

� Ripple Carry adder
� based on half adder and full adder
� N-bit full adders are required to add two N-bit operands

E. Casseau - ARCHI 09

8

SWP: basic example

ADDER

� 16-bit SWP enabled ripple carry adder can
perform either (for example):

� Four 4-bit additions
� Two 8-bit additions

� One 16-bit additions

E. Casseau - ARCHI 09

9

SWP: basic example

ADDER

� 16-bit SWP enabled ripple carry adder can
perform either (for example):
� Four 4-bit additions
� Two 8-bit additions
� One 16-bit additions

� BUT: usually not so easy…

� can SWP be applied to
� the application ?
� the operator(s) ?

� complexity increase ?

E. Casseau - ARCHI 09

10

SWP

� SWP solves under utilization issues in processors (GPP, media processors, DSP)

� Rather than wasting word oriented datapath, use SWP

� Efficient and flexible solution for media applications

� More efficient use of memory as packed subwords move between memory and
processor

� Example: 64-bit word size and 8-bit subword size:
� 8 subwords a processed per computing cycle
� only some portions of the application can utilize SWP
� actual speedup : 8 ?

E. Casseau - ARCHI 09

11

� SWP utilizes data level parallelism

� k m-bit subwords are processed in parallel
k . m ≤ n n : word size

� SWP is sometimes called small scale SIMD

� Applications : low precision data applications (audio,
video, …)

� Subword sizes :
� size of subwords in a word can be different

but same subword sizes reduce complexity
(operator design & use (data management))

� more subwords leads to more parallelism but
increases area & delay

SWP

SWP
enabled
operator

X Y

Z

n bits n bits

n(+…) bits

Ctrl

E. Casseau - ARCHI 09

12

SWP oriented computations

x = a + b;
y = c * d;
z = a – d;

arithmetic
operator

register 3

register 1 register 2

k m-bit subwords

E. Casseau - ARCHI 09

13

SWP oriented computations

y = 0;
For (i =1, j<N+1, i+)

y = y + a[i] . b[i]; arithmetic
operator

register 3

register 1 register 2

k m-bit subwords

@ A
a8

a1a2a3a4

a5a6a7

a9
@ B

…

b8

b1b2b3b4

b5b6b7

b9…

∑
=

×=
N

i

ibiay
1

)()(

Max. efficiency with N = k . l , l: integer

E. Casseau - ARCHI 09

14

SWP oriented computations

arithmetic
operator

register 3

register 1 register 2

k m-bit subwords

Max. efficiency with N = k . l , l: integer

@ A

a00a01a02a03

@ B

Block matching
diff = 0;
For (i =0, i<N, i+)

For (i =0, j<N, j+)
diff = diff + abs(a[i,j] - b[i,j]);

a04a05a06a07

a10a11a12a13

a14a15a16a17

…

b00b01b02b03

b04b05b06b07

b10b11b12b13

b14b15b16b17

…

E. Casseau - ARCHI 09

15

SWP oriented computations

@ A

a00a01a02a03

@ B

Block matching
diff[0] = 0;
For (i =0, i<n, i+)

For (i =j, j<n, j+)
diff[i] = diff[i] + abs(a[i,j] - b[i,j]);

a04a05a06a07

a10a11a12a13

a14a15a16a17

…

b00b01b02b03

b04b05b06b07

b10b11b12b13

b14b15b16b17

…

BRef frame R

Current frame C

i

i

B

E. Casseau - ARCHI 09

16

SWP primitives

� Subword parallel primitives are required to exploit data parallelism

� SWP primitives include :

� basic arithmetic operations :
� Add, Subtract, Multiply, etc.

� data management :
� data alignment before and after certain operation
� subword arrangement
� expansion and contraction of data
� load multiple packed subwords from memory to registers
� etc.

E. Casseau - ARCHI 09

17

Loop coding with and without SWP

High-level language loop
Short x[200], y[200],z[200],w[200];
Int i;
For(i =0, i<200, i+) {

Z[i] = x[i] + y[i];
W[i] = x[i] – y[i];
}

Without SWP Instructions
ldi199, Ri

Loop: ldhs,ma 2(Raddrx),Rx
ldhs,ma 2(Raddry), Ry
add Rx, Ry, Rz
sub Rx, Ry, Rw
sths,ma Rz, 2(Raddrz)
sths,ma Rw,2(Raddrw)
addibf,< -1, Ri, loop

With SWP Instructions
ldi 49, Ri

Loop: ldds,ma 8(Raddrx),Rx
ldds,ma 8(Raddry), Ry
hadd Rx, Ry, Rz
hsub Rx, Ry, Rw
stds,ma Rz, 8(Raddrz)
stds,ma Rw,8(Raddrw)
addibf,< -1, Ri, loop

E. Casseau - ARCHI 09

18

Multimedia extensions for GPP
� 1990’s : optimization of image-processing programs

⇒ SWP …

� To take full advantages of SWP, SWP-dedicated instructions are required

� Instruction sets including SWP instructions :

� MAX-1 (1994) and MAX-2 (1996) added to HP’s PA-RISC

� MMX added to Intel Pentium (1997)(4x16bits) (floating point unit)

puis SSE, SSE-2,3,4 added to IA-32, IA-64 (floating point unit)

� VIS (1995) added to Sun’s Sparc V9 (UltraSparc, SPARC64)

� Altivec added to Motorola’s PowerPC (PPC G4 1999)

E. Casseau - ARCHI 09

19

Example: MAX-2 instruction set

� MAX-2 is multimedia acceleration extensions implemented in PA_RISC-2.0
(64 bits).

� MAX-2 supports subword sizes of 16-bits

multiplies subwords by
integer/fractional data

E. Casseau - ARCHI 09

20

MAX-2

• MIX interleaves subwords from 2 source registers

E. Casseau - ARCHI 09

21

MAX-2

• MIX of larger (32-bit) subwords

E. Casseau - ARCHI 09

22

MAX-2
� Matrix transpose : 4x4 matrices: 2 steps, 8 instructions

� n.n matrices : n.log(n) instructions

E. Casseau - ARCHI 09

23

MAX-2

• Permute instruction

E. Casseau - ARCHI 09

24

MAX-2
• Parallel subword Add/Sub: with modulo arithmetic or signed

saturation or unsigned saturation

Padd

Padd(Psub).ss

Padd(Psub).us

E. Casseau - ARCHI 09

25

MAX-2

• SAD using saturation arithmetic

E. Casseau - ARCHI 09

26

MAX-2

• Execution time speedup (PA8000 with MAX-2 vs without MAX-2)

E. Casseau - ARCHI 09

27

SWP in DSP chips: examples

� TigerSHARC (Analog Devices)
� combine VLIW and SIMD
� each of the two datapaths can processes :

� Eight 8-bit operations
� Four 16-bit operations
� Two 32-bit operations

� TMS320C64x (Texas Instruments)
� fixed point DSP
� 2 clusters

� dual 16-bit and quad 8-bit SIMD additions and comparisons
� dual 16-bit and quad 8-bit SIMD multiplications

E. Casseau - ARCHI 09

28

SWP multimedia operator design

� Conventional subword sizes :

� uniform arithmetic relation with subword sizes:

� 8, 16, 32-bits etc. (MAX-2, MMX, Altivec, ...)
� complexity of operators is less but under utilization of resources for multimedia

applications:
� pixel’s sizes: 8, 10, 12 and sometimes 16-bits

� ⇒ multimedia oriented subword sizes : 8, 10, 12, 16
� no uniform arithmetic relation with subword sizes

� complexity of operators is increased but resource utilization for multimedia
applications is better

E. Casseau - ARCHI 09

29

SWP multimedia operator design
� Synopsys SIMD IPs :

� VHDL/Verilog signed or unsigned SIMD adder, SIMD adder with carry, SIMD
multiplier

no_confs : number of possible
configurations

conf : 2conf partitions of
size (width/2conf)

⇒ subword sizes : uniform arithmetic
relation
2 / 4 / 8 / 16 / 32 …

E. Casseau - ARCHI 09

30

SWP multimedia operator design

� ⇒ multimedia oriented subword sizes : 8, 10, 12, 16
� “good” choice : word size = 40-bits

� supported subword sizes: 8, 10, 12, 16-bits
� gives better efficiency for different pixel sizes

conventional(8/16/32) dedicated(8/10/12/16/40)

use ratio% # use ratio%

a(8) OP b(8) 4 100 5 100

a(10) OP b(10) 2 62 4 100

a(12) OP b(12) 2 75 3 90

a(16) OP b(16) 2 100 2 80

a(32) OP b(32) 1 100 1 80

a(40) OP b(40) 0 X 1 100

E. Casseau - ARCHI 09

31

ADD architectures
� Adders are used in:

� addition
� subtraction
� multiplication
� division

� Different types of adders:
� ripple carry adder
� carry look ahead adder
� carry save adder
� conditional sum adder

� Speed of the processing system heavily depends upon these fundamental
units.

E. Casseau - ARCHI 09

32

Ripple Carry Adder (RCA)

� Conventional way of adding two
numbers.

� N-bit full adders are required to
add two N-bit operands

� Slowest adder (carry ripples from
the LSB to MSB)

� Takes minimum area

� RCA is used when
� minimum hardware is required
� speed is not critical

� Speed is linear with word length
O(N)

E. Casseau - ARCHI 09

33

SWP enabled Ripple Carry Adder

� This example: 16-bit SWP
enabled ripple carry. It can
perform either:

� Four 4-bit additions
� Two 8-bit additions

� One 16-bit additions

E. Casseau - ARCHI 09

34

Carry Look Ahead adder (CLA)

� Speed of RCA get worst when
number of bits increases

� Remedy
� use Carry look ahead adder
� CLA calculate carries in advance

� Carry is calculated using:
� carry generate logic
� carry propagate logic

� Generation of all carries
simultaneously using CLA generator

E. Casseau - ARCHI 09

35

Carry Look Ahead adder

� Must generate carry when
� Ai = Bi = 1
� Gi=Ai Bi

� Carry propagate:
� Pi=Ai xor Bi
� carry-in will equal carry-out here

� Sum and Cout can be re-expressed
in terms of generate/propagate:
� Ci+1=Gi+ Pi Ci
� Si=Ci xor Pi

� Re-express the carry logic
� C1 = G0 + P0C0
� C2 = G1 + P1C1
� = G1 + P1(G0 + P0C0)
� = G1 + P1G0 + P0P1C0

Carry logic gets costly with the increase in
word length.

E. Casseau - ARCHI 09

36

SWP enabled CLA adder
� Implementation

� Multiple subword sizes can not be
easily combined :
� Separate implementation of blocks
� Sharing of components between

blocks is performed by the
synthesis tool

� This example: SWP enabled 16-bit CLA
which performs one of the following
operation:

� Four 4-bit additions
� Two 8-bit additions

� One 16-bit additions

E. Casseau - ARCHI 09

37

Group CLA adder

� Disadvantage of CLA:
� carry logic gets more complicated

for more than 4-bits

� Remedy:
� implement CLA adders as 4-bit

modules.

� Each 4-bit adder gives group
propagate (PG) and generate (GG)
signal:
� PG = P3.P2.P1.P0
� GG = G3 + P3G2 + P3.P2.G1 +

P3.P2.P1.G0

E. Casseau - ARCHI 09

38

SWP enabled group CLA adder

*RCA 4-bit adders

E. Casseau - ARCHI 09

39

SWP multimedia ADD operator
� Adders between the control logic can be:

� ripple carry adder RCA
� carry look ahead adder CLA

� Selected subword size determines the control bits :
� propagate/block the carry

E. Casseau - ARCHI 09

40

� Compared to SWP RCA:
� area of SWP CLA is more
� CP of SWP CLA is less
� efficiency of SWP CLA is less

SWP multimedia ADD operator

Synthesis tools:
Synopsys /

Mentor Graphics
Precision RTL

Subword sizes:
8,10,12,16(40) bits

E. Casseau - ARCHI 09

41

Multiplication

� Input:
� N-bit multiplier
� M-bit multiplicand

� Partial Products:
� generation of partial products
� left shift the partial products

� Final Product:
� addition of shifted partial

products
� (N+M) bit final product

y15 y14 … … y0

E. Casseau - ARCHI 09

42

Implementation principle of a basic
SWP multiplier

� Word size: 8 bits
� Subword size: 4-bits

� Multiplier
� a_low & a_high = 4-bits

� Multiplicand
� b_low & b_high = 4-bits

� Subword size = 4
� 1st partial product
� 4th partial product

� Word size = 8
� addition of all PPs

E. Casseau - ARCHI 09

43

Implementation principle of a basic
SWP multiplier

� Word size: 8 bits
� Subword size: 4-bits

� Multiplier
� a_low & a_high = 4-bits

� Multiplicand
� b_low & b_high = 4-bits

� Subword size = 4
� 1st partial product
� 4th partial product

� Word size = 8
� addition of all PPs

E. Casseau - ARCHI 09

44

Booth recoding
� Basic idea: reduce the number of partial products to reduce the number of

accumulations
� Radix-2 : partial product = (multiplicand) x {0, 1}

� Radix-4 : partial product = (multiplicand) x {00, 01, 10, 11}
� Instead of multiplying with single bit, we multiply with two bits hence

making partial products half

E. Casseau - ARCHI 09

45

SWP enabled multiplier
� SWP enabled booth multiplier design :

� Multiple subword sizes can not be easily combined :
� separate implementation of blocks
� blocks share components when possible

� Synthesis results for both ASIC and FPGA technologies

� Basic multiplier :

Nand gates (CLB) CP Nand gates x CP

without SWP x1 x1 1
with SWP x1,7 x1,05 1,8

� Booth multiplier :

Nand gates (CLB) CP Nand gates x CP

without SWP x0,7 x1,6 1,12
with SWP x1,2 x1,65 2

E. Casseau - ARCHI 09

46

SWP multiplier by Krithivasan & Schulte

[] S. Krithivasan, M.J. Schulte, Multiplier Architectures for Media
Processing, Asilomar Conference on signals, systems and
computers, vol.2, pp 2193-2197, 2003.

� Avoids the detection an suppression of carries across subword
boundaries

� Designed to perform in parallel:
� One 32 X 32
� Two 16 X 16
� Four 8 X 8

� Supports operands in both:
� unsigned
� 2’s complement

E. Casseau - ARCHI 09

47

SWP multiplier by Krithivasan & Schulte

Ex.: word size: 8-bits, no subword

� Fig (a) shows PPs for unsigned :

� Fig (b) shows PPs for 2’s complement :
� 2n-2 PPs bits are inverted
� ‘1’ added in column n
� ‘1’ added in column 2n-1

� Fig (c) supports both using control bit ‘t’ :
� t = ‘1’ (2’s complement multiplication)
� t = ‘0’ (unsigned multiplication)

E. Casseau - ARCHI 09

48

SWP multiplier by Krithivasan & Schulte

Ex.: word size : 32-bits, subword: 8-bit

� When subword size is 8:
� four 8 X 8 unsigned multiplications
� lot of PP are set to ‘0’

� To set unwanted PPs to ‘0’
� AND gates are required

E. Casseau - ARCHI 09

49

Ex.: word size : 32-bits, subwords: 8,16 bits

� Fig (a) : two 16 X 16 unsigned
multiplications

� Z16 regions are set to zero

� Fig (b) : four 8 X 8 unsigned multiplications

� Z16 and Z8 regions are set to zero

SWP multiplier by Krithivasan & Schulte

E. Casseau - ARCHI 09

50

SWP multiplier by Krithivasan & Schulte
� e.g. when doing two 8X8 :

� ‘t’ are added to column 8 and 24
� PPs bits formed by a7 or b7 and a15 or b15 are inverted
� Product bits p7 and p15 are inverted.

(t)

Ex.: word size : 16-bits
subwords: 4,8 bits

E. Casseau - ARCHI 09

51

SWP multiplier

� SWP control logic is small compared to multiplier complexity
� maximum area overhead on ASIC is 5%
� maximum CP overhead on ASIC is 22%

� Coordination between ASIC and FPGA results:

� in FPGA resources are CLBs rather than gates (AND, NOT…)

� based on Krithivasan & Schulte’s multiplier but word size is 40-bits and
subword sizes are 8,10,12,16-bits

E. Casseau - ARCHI 09

52

Reconfigurable SWP operator
� Operator word size : 40-bits

� subword sizes : 8, 10, 12, 16-bits.

� Basic arithmetic operations:
� (ai ± bi) Signed data
� |ai ± bi| Signed data
� (ai x bi) Signed/unsigned data
� |ai – bi| Unsigned data
� (ai + bi) Unsigned data

� Complex operations:
� ∑(ai ± bi) Signed data
� ∑ |ai ± bi| Signed data
� ∑(ai x bi) Signed/unsigned data
� ∑ |ai – bi| Unsigned data
� ∑(ai + bi) Unsigned data

� Combination of complex operations:
� ∑|(ai + bi)| + ∑|(ai - bi)| Signed data
� ∑(ai + bi) + ∑(ai - bi) Signed data
� ∑(ai + bi) + ∑|(ai - bi)| Unsigned data
� ∑|(ai + bi)| + ∑|(ai - bi)| + ∑(ai + bi) + ∑(ai - bi) Signed data
� etc.

SWP
enabled
operator

A B

X

40-bits 40-bits

40-bits

SWP_ctrlOp_code

E. Casseau - ARCHI 09

53

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subwords

MSBs

Extractor

(unsigned)

33

33

33

40

SWP

Product

Subwords

LSBs

Extractor

11

10

01

00

40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

Reconfigurable SWP
Multimedia Operator

E. Casseau - ARCHI 09

54

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subwords

MSBs

Extractor

(unsigned)

33

33

33

40

SWP

Product

Subwords

LSBs

Extractor

11

10

01

00

40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

SWP |a ± b|
(signed)

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subwords

MSBs

Extractor

(unsigned)

33

33

33

40

SWP

Product

Subwords

LSBs

Extractor

11

10

01

00

40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

SWP (a × b)
(signed/unsigned)

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subwords

MSBs

Extractor

(unsigned)

33

33

33

40

SWP

Product

Subwords

LSBs

Extractor

11

10

01

00

40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

SWP |a − b|
(unsigned)

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subwords

MSBs

Extractor

(unsigned)

33

33

33

40

SWP

Product

Subwords

LSBs

Extractor

11

10

01

00

40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

SWP ∑(a × b)
(signed/unsigned)

ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80

80

80

40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit

Converter

SWP
45to40bit
Converter

SWP

Product

Subwords

MSBs

Extractor

(unsigned)

33

33

33

40

SWP

Product

Subwords

LSBs

Extractor

11

10

01

00

40

40

40

40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

SWP ∑ |a − b|
(unsigned)

E. Casseau - ARCHI 09

55

Reconfigurable SWP operator
� Operator word size : 40-bits

� subword sizes : 8, 10, 12, 16-bits.

SWP
enabled
operator

A B

X

40-bits 40-bits

40-bits

SWP_ctrl
Op_code

� Synthesis results

Nand gates (CLBs) CP

130nm tech. 30.000 7 ns (mult.:15.000 gates)

90 nm tech.: 31.000 10 ns (mult.:11.000 gates)

FPGA VirtexII 2.800 17 ns (mult.:1.500 CLBs)

E. Casseau - ARCHI 09

56

Reconfigurable SWP operator

� Clock period = 10 ns

� ASIC tech :130nm

� Maximum power consumed by ∑(a x b) operation (64 % of total power)

E. Casseau - ARCHI 09

57

References
� J. Fridman, Sub-Word Parallelism in Digital Signal Processing IEEE Signal Processing Magazine, pp 27-35, March

2000.

� S. Krithivasan and M.J. Schulte, Multiplier Architectures for Media Processing, Thirty seventh Asilomar Conference
on signals, systems and computers, vol.2, pp 2193-2197, 2003.

� P Corsonello, S Perri, M.A Iachino1 and G Cocorullo Variable Precision Arithmetic Circuits for FPGA Based
Multimedia Processors, IEEE Transactions on very large scale integration (VLSI) systems, VOL. 12, No.9, September
2004.

� A. Danysh, D. Tan, Architecture and Implementation of a Vector/SIMD Multiply-Accumulate Unit, IEEE Computer
Society, volume 54, Issue 3, pp 284–293, March 2005.

� J. Wakerly, Digital Design, 3rd Edition, Prentice Hall, Upper Saddle River, NJ, 2000.

� M. O. Cheema, O. Hammami, Customized SIMD Unit Synthesis for System on Programmable Chip – A Foundation for
HW/SW Partitioning with Vectorization, IEEE Design Automation conference, , pp 54– 60, Jan 2006.

� C. Brunelli, P.Salmela, J.Takala and J.Nurmi, A Flexible Multiplier for Media Processing, IEEE workshop on Design
and Implementation, pp 70-74, Nov 2005.

Acknowledgment
� Design and syntheses have been performed by Shafqat Khan, PhD student,

INRIA/IRISA

