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Outline

� Introduction to Sub-Word Parallelism (SWP)

� SWP extensions for general purpose processors

� Basic SWP operator design
� adder
� multiplier

� Towards a multimedia dedicated operator
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Usual computing resources
� Conventional ALU : 

� word size : - 32 bits

- 64 bits
…

� Basic units designed (optimized) for 
word sizes: 32/64 bits

⇒ max. efficiency with 32/64-bit words

X register

64 bits

Y register

64 bits

64-bit adder

64 bits

Z register
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Usual computing resources  
� Conventional ALU : 

� word size : - 32 bits
- 64 bits
…

� Basic units designed (optimized) for word 
sizes: 32/64 bits

⇒ max. efficiency with 32/64-bit words

� Audio/video/… processing :
� low precision data: 8/10/12/16-bits
� conventional ALU

� low efficiency : under utilization of 
processor resources

� wasting: area, power, performance

X register Y register

64-bit adder

Z register

48 bits 16 bits 48 bits

48 bits 16 bits

48 bits 16 bits
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SWP: Sub Word Parallelism 
� Goal: efficiency improvement

� ? : avoid wasting of word size resources

� Sub Word Parallelism SWP:
� subword : small data item contain within a word
� multiple subwords are packed into one word
� whole word is processed at the same time : 

⇒ simultaneous parallel processing on subwords

X register

adder

Z register

X register Y register
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SWP: basic example 

ADDER

� Ripple Carry adder
� based on half adders and full adders
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SWP: basic example 

ADDER

� Ripple Carry adder
� based on half adder and full adder
� N-bit full adders are required to add two N-bit operands

E. Casseau - ARCHI 09

8

SWP: basic example 

ADDER

� 16-bit SWP enabled ripple carry adder can 
perform either (for example):

� Four 4-bit additions
� Two 8-bit additions

� One 16-bit additions
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SWP: basic example 

ADDER

� 16-bit SWP enabled ripple carry adder can 
perform either (for example):
� Four 4-bit additions
� Two 8-bit additions
� One 16-bit additions

� BUT: usually not so easy…

� can SWP be applied to 
� the application ?
� the operator(s) ?

� complexity increase ?  
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SWP

� SWP solves under utilization issues in processors (GPP, media processors, DSP)

� Rather than wasting word oriented datapath, use SWP

� Efficient and flexible solution for media applications

� More efficient use of memory as packed subwords move between memory and 
processor

� Example:  64-bit word size and 8-bit subword size:
� 8 subwords a processed per computing cycle
� only some portions of the application can utilize SWP
� actual speedup :  8  ?
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� SWP utilizes data level parallelism

� k m-bit subwords are processed in parallel
k . m ≤ n n :  word size

� SWP is sometimes called small scale SIMD

� Applications : low precision data applications (audio, 
video, …)

� Subword sizes :
� size of subwords in a word can be different

but same subword sizes reduce complexity 
(operator design & use (data management)) 

� more subwords leads to more parallelism but 
increases area & delay

SWP

SWP 
enabled 
operator

X Y

Z

n bits n bits

n(+…) bits

Ctrl
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SWP oriented computations

x =  a + b;
y =  c * d;
z =  a – d;

arithmetic 
operator

register 3

register 1 register 2

k m-bit subwords
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SWP oriented computations

y =  0;
For (i =1, j<N+1, i+)

y = y + a[i] . b[i]; arithmetic 
operator

register 3

register 1 register 2

k m-bit subwords

@ A 
a8

a1a2a3a4

a5a6a7

a9
@ B

…

b8

b1b2b3b4

b5b6b7

b9…

∑
=

×=
N

i

ibiay
1

)()(

Max. efficiency with N = k . l ,  l: integer
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SWP oriented computations

arithmetic 
operator

register 3

register 1 register 2

k m-bit subwords

Max. efficiency with N = k . l ,  l: integer

@ A

a00a01a02a03

@ B

Block matching
diff =  0;
For (i =0, i<N, i+)

For (i =0, j<N, j+)
diff = diff + abs( a[i,j] - b[i,j]);

a04a05a06a07

a10a11a12a13

a14a15a16a17

…

b00b01b02b03

b04b05b06b07

b10b11b12b13

b14b15b16b17

…
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SWP oriented computations

@ A

a00a01a02a03

@ B

Block matching
diff[0] =  0;
For (i =0, i<n, i+)

For (i =j, j<n, j+)
diff[i] = diff[i] + abs( a[i,j] - b[i,j]);

a04a05a06a07

a10a11a12a13

a14a15a16a17

…

b00b01b02b03

b04b05b06b07

b10b11b12b13

b14b15b16b17

…

BRef frame R

Current frame C

i

i

B
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SWP primitives

� Subword parallel primitives are required to exploit data parallelism

� SWP primitives include :

� basic arithmetic operations :
� Add, Subtract, Multiply, etc.

� data management :
� data alignment before and after certain operation
� subword arrangement
� expansion and contraction of data
� load multiple packed subwords from memory to registers
� etc. 
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Loop coding with and without SWP

High-level language loop
Short x[200], y[200],z[200],w[200];
Int i;
For(i =0, i<200, i+) {

Z[i] = x[i] + y[i];
W[i] = x[i] – y[i]; 
}

Without SWP Instructions
ldi199, Ri

Loop: ldhs,ma 2(Raddrx),Rx
ldhs,ma 2(Raddry), Ry
add Rx, Ry, Rz
sub Rx, Ry, Rw
sths,ma Rz, 2(Raddrz)
sths,ma Rw,2(Raddrw)
addibf,< -1, Ri, loop

With  SWP Instructions
ldi 49, Ri

Loop: ldds,ma 8(Raddrx),Rx
ldds,ma 8(Raddry), Ry
hadd Rx, Ry, Rz
hsub Rx, Ry, Rw
stds,ma Rz, 8(Raddrz)
stds,ma Rw,8(Raddrw)
addibf,< -1, Ri, loop
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Multimedia extensions for GPP
� 1990’s : optimization of image-processing programs

⇒ SWP …

� To take full advantages of SWP, SWP-dedicated instructions are required

� Instruction sets including SWP instructions :

� MAX-1 (1994) and MAX-2 (1996) added to    HP’s PA-RISC

� MMX    added to      Intel Pentium (1997)(4x16bits) (floating point unit)

puis SSE, SSE-2,3,4 added to    IA-32, IA-64 (floating point unit)

� VIS (1995)   added to     Sun’s Sparc V9 (UltraSparc, SPARC64)

� Altivec added to     Motorola’s PowerPC (PPC G4 1999)
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Example: MAX-2 instruction set

� MAX-2 is multimedia acceleration extensions implemented in PA_RISC-2.0 
(64 bits).

� MAX-2 supports subword sizes of 16-bits

multiplies subwords by 
integer/fractional data
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MAX-2 

• MIX interleaves subwords from 2 source registers
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MAX-2

• MIX of larger (32-bit) subwords
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MAX-2
� Matrix transpose :  4x4 matrices: 2 steps, 8 instructions

� n.n matrices : n.log(n) instructions
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MAX-2

• Permute instruction
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MAX-2
• Parallel subword Add/Sub:   with modulo arithmetic or signed

saturation or unsigned saturation

Padd

Padd(Psub).ss

Padd(Psub).us
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MAX-2

• SAD using saturation arithmetic
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MAX-2

• Execution time speedup (PA8000 with MAX-2 vs without MAX-2)
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SWP in DSP chips: examples

� TigerSHARC (Analog Devices)
� combine VLIW and SIMD
� each of the two datapaths can processes :

� Eight 8-bit operations
� Four 16-bit operations
� Two 32-bit operations

� TMS320C64x (Texas Instruments)
� fixed point DSP
� 2 clusters 

� dual 16-bit and quad 8-bit SIMD additions and comparisons
� dual 16-bit and quad 8-bit SIMD multiplications
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SWP multimedia operator design

� Conventional subword sizes :

� uniform arithmetic relation with subword sizes:

� 8, 16, 32-bits etc. (MAX-2, MMX, Altivec, ...)
� complexity of operators is less but under utilization of resources for multimedia 

applications:
� pixel’s sizes: 8, 10, 12 and sometimes 16-bits

� ⇒ multimedia oriented subword sizes : 8, 10, 12, 16
� no uniform arithmetic relation with subword sizes

� complexity of operators is increased but resource utilization for multimedia 
applications is better
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SWP multimedia operator design
� Synopsys SIMD IPs :

� VHDL/Verilog signed or unsigned SIMD adder, SIMD adder with carry, SIMD 
multiplier

no_confs : number of possible
configurations

conf :     2conf partitions of 
size (width/2conf)

⇒ subword sizes : uniform arithmetic 
relation 
2 / 4 / 8 / 16 / 32 …
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SWP multimedia operator design

� ⇒ multimedia oriented subword sizes : 8, 10, 12, 16
� “good” choice : word size = 40-bits

� supported subword sizes: 8, 10, 12, 16-bits
� gives better efficiency for different pixel sizes

conventional(8/16/32)      dedicated(8/10/12/16/40)

#         use ratio%          #           use ratio%

a(8)   OP  b(8) 4 100 5 100

a(10) OP  b(10) 2 62 4 100

a(12) OP  b(12) 2 75 3 90

a(16) OP  b(16) 2 100 2              80

a(32) OP  b(32) 1 100 1              80

a(40) OP  b(40)  0 X 1 100
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ADD architectures
� Adders are used in:

� addition 
� subtraction 
� multiplication 
� division

� Different types of adders:
� ripple carry adder
� carry look ahead adder
� carry save adder
� conditional sum adder

� Speed of the processing system heavily depends upon these fundamental 
units.
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Ripple Carry Adder (RCA)

� Conventional way of adding two 
numbers.

� N-bit full adders are required to 
add two N-bit operands

� Slowest adder (carry ripples from 
the LSB to MSB)

� Takes minimum area

� RCA is used when
� minimum hardware is required 
� speed is not critical

� Speed is linear with word length 
O(N)
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SWP enabled Ripple Carry Adder

� This example: 16-bit SWP 
enabled ripple carry. It can 
perform either:

� Four 4-bit additions
� Two 8-bit additions

� One 16-bit additions
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Carry Look Ahead adder (CLA)

� Speed of RCA get worst when 
number of bits increases

� Remedy
� use Carry look ahead adder
� CLA calculate carries in advance

� Carry is calculated using:
� carry generate logic
� carry propagate logic

� Generation of all carries 
simultaneously using CLA generator
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Carry Look Ahead adder

� Must generate carry when
� Ai = Bi = 1
� Gi=Ai Bi

� Carry propagate:
� Pi=Ai xor Bi
� carry-in will equal carry-out here

� Sum and Cout can be re-expressed 
in terms of generate/propagate:
� Ci+1=Gi+ Pi Ci
� Si=Ci xor Pi

� Re-express the carry logic
� C1 = G0 + P0C0
� C2 = G1 + P1C1
� = G1 + P1(G0 + P0C0)
� = G1 + P1G0 + P0P1C0

Carry logic gets costly with the increase in 
word length.
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SWP enabled CLA adder
� Implementation

� Multiple subword sizes can not be 
easily combined :
� Separate implementation of blocks
� Sharing of components between 

blocks is performed by the 
synthesis tool

� This example: SWP enabled 16-bit CLA 
which performs one of the following 
operation:

� Four 4-bit additions
� Two 8-bit additions

� One 16-bit additions
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Group CLA adder

� Disadvantage of CLA:
� carry logic gets more complicated 

for more than 4-bits

� Remedy:
� implement CLA adders as 4-bit 

modules.

� Each 4-bit adder gives group 
propagate (PG) and generate (GG) 
signal:
� PG = P3.P2.P1.P0
� GG = G3 + P3G2 + P3.P2.G1 +  

P3.P2.P1.G0
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SWP enabled group CLA adder

*RCA 4-bit adders
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SWP multimedia ADD operator
� Adders between the control logic can be:

� ripple carry adder RCA
� carry look ahead adder CLA

� Selected subword size determines the control bits :
� propagate/block the carry 
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� Compared to SWP RCA:
� area of SWP CLA is more
� CP of SWP CLA is less
� efficiency of SWP CLA is less

SWP multimedia ADD operator

Synthesis tools:
Synopsys /

Mentor Graphics 
Precision RTL

Subword sizes: 
8,10,12,16(40) bits
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Multiplication

� Input:
� N-bit multiplier
� M-bit multiplicand

� Partial Products:
� generation of partial products
� left shift the partial products

� Final Product:
� addition of shifted partial

products
� (N+M) bit final product

y15   y14   … … y0
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Implementation principle of a basic 
SWP multiplier

� Word size: 8 bits
� Subword size: 4-bits

� Multiplier
� a_low & a_high = 4-bits

� Multiplicand
� b_low & b_high = 4-bits

� Subword size = 4
� 1st partial product
� 4th partial product

� Word size = 8
� addition of all PPs
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Implementation principle of a basic 
SWP multiplier

� Word size: 8 bits
� Subword size: 4-bits

� Multiplier
� a_low & a_high = 4-bits

� Multiplicand
� b_low & b_high = 4-bits

� Subword size = 4
� 1st partial product
� 4th partial product

� Word size = 8
� addition of all PPs
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Booth recoding
� Basic idea: reduce the number of partial products to reduce the number of 

accumulations
� Radix-2 : partial product = (multiplicand) x {0, 1}

� Radix-4 : partial product = (multiplicand) x {00, 01, 10, 11}
� Instead of multiplying with single bit, we multiply with two bits hence 

making partial products half
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SWP enabled multiplier
� SWP enabled booth multiplier design :

� Multiple subword sizes can not be easily combined :
� separate implementation of blocks
� blocks share components when possible

� Synthesis results for both ASIC and FPGA technologies

� Basic multiplier :

Nand gates (CLB) CP Nand gates x CP

without SWP x1 x1 1
with SWP x1,7 x1,05 1,8

� Booth multiplier :

Nand gates (CLB) CP Nand gates x CP

without SWP x0,7 x1,6 1,12
with SWP x1,2 x1,65 2
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SWP multiplier by Krithivasan & Schulte

[ ] S. Krithivasan, M.J. Schulte, Multiplier Architectures for Media 
Processing, Asilomar Conference on signals, systems and 
computers, vol.2, pp 2193-2197, 2003.

� Avoids the detection an suppression of carries across subword
boundaries

� Designed to perform in parallel:
� One 32 X 32
� Two 16 X 16
� Four 8 X 8

� Supports operands in both:
� unsigned
� 2’s complement
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SWP multiplier by Krithivasan & Schulte

Ex.: word size: 8-bits, no subword

� Fig (a) shows PPs for unsigned :

� Fig (b) shows PPs for 2’s complement :
� 2n-2 PPs bits are inverted
� ‘1’ added in column n 
� ‘1’ added in column  2n-1

� Fig (c) supports both using control bit ‘t’ :
� t = ‘1’ (2’s complement multiplication)
� t = ‘0’ (unsigned multiplication)
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SWP multiplier by Krithivasan & Schulte

Ex.: word size : 32-bits, subword: 8-bit

� When subword size is 8: 
� four 8 X 8 unsigned multiplications
� lot of PP are set to ‘0’

� To set unwanted PPs to ‘0’
� AND gates are required
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Ex.: word size : 32-bits, subwords: 8,16 bits

� Fig (a) : two 16 X 16 unsigned 
multiplications

� Z16 regions are set to zero

� Fig (b) : four 8 X 8 unsigned multiplications

� Z16 and Z8 regions are set to zero

SWP multiplier by Krithivasan & Schulte
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SWP multiplier by Krithivasan & Schulte
� e.g. when doing two 8X8 :

� ‘t’ are added to column 8 and 24 
� PPs bits formed by a7 or b7 and a15 or b15 are inverted
� Product bits p7 and p15 are inverted.

(t )

Ex.: word size : 16-bits
subwords: 4,8 bits
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SWP multiplier

� SWP control logic is small compared to multiplier complexity
� maximum area overhead on ASIC is 5%
� maximum CP overhead on ASIC is 22%

� Coordination between ASIC and FPGA results:

� in FPGA resources are CLBs rather than gates (AND, NOT…)

� based on Krithivasan & Schulte’s multiplier but word size is 40-bits and 
subword sizes are 8,10,12,16-bits
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Reconfigurable SWP operator
� Operator word size :  40-bits

� subword sizes : 8, 10, 12, 16-bits. 

� Basic arithmetic operations:
� (ai ± bi) Signed data
� |ai ± bi|    Signed data
� (ai x bi) Signed/unsigned data        
� |ai – bi|    Unsigned data
� (ai + bi)   Unsigned data

� Complex operations:
� ∑(ai ± bi) Signed data
� ∑ |ai ± bi|      Signed data
� ∑(ai x bi) Signed/unsigned data
� ∑ |ai – bi|     Unsigned data
� ∑(ai + bi) Unsigned data

� Combination of complex operations:
� ∑|(ai + bi)|  + ∑|(ai - bi)|   Signed data
� ∑(ai + bi)  + ∑(ai - bi)   Signed data
� ∑(ai + bi) + ∑|(ai - bi)|   Unsigned data
� ∑|(ai + bi)|  + ∑|(ai - bi)| + ∑(ai + bi)  + ∑(ai - bi)     Signed data
� etc.

SWP 
enabled 
operator

A B

X

40-bits 40-bits

40-bits

SWP_ctrlOp_code
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ai

bi

ai

bi

ai

bi

ai

bi

add

0

1

0

1

45

40

40

40

40

40

40

40

40

1

1

45

80
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40

45

45

45

SWP

a ± b

(signed)

SWP

Absolute

(signed)

SWP
a + b

(unsigned)

SWP
|a − b|

(unsigned)

SWP

40to45bit

Converter

(unsigned)

SWP
a × b

(signed/
unsigned)

45

00

01

10

0

1
40

40

40

33

unsigned)

SWP
subwords

(signed/

SWP
subwords
Adder

SWP
subwords

Adder

Adder

(signed)

SWP

45to40bit
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SWP
45to40bit
Converter
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Extractor
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Product

Subwords

LSBs

Extractor

11

10

01

00

40

40
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40

40

output

A

C

C

U

M

U

L

A

T

O

R

sign

Reconfigurable SWP
Multimedia Operator
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C
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Reconfigurable SWP operator
� Operator word size :  40-bits

� subword sizes : 8, 10, 12, 16-bits. 

SWP 
enabled 
operator

A B

X

40-bits 40-bits

40-bits

SWP_ctrl
Op_code

� Synthesis results

Nand gates (CLBs) CP

130nm tech.  30.000 7 ns     (mult.:15.000 gates) 

90 nm tech.:   31.000 10 ns   (mult.:11.000 gates) 

FPGA VirtexII 2.800 17 ns    (mult.:1.500 CLBs) 
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Reconfigurable SWP operator

� Clock period = 10 ns

� ASIC tech :130nm

� Maximum power consumed by ∑(a x b) operation (64 % of total power)
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