Numbers and Calculators

ARCHI 2019

> 13,000,000 W 200,000,000 \$

> 13,000,000 W 200,000,000 \$

MareNostrum P9 CTE 19,440 Cores 27,648 GB mem 1,018 TFlop/s

> 85,000 W 34,000,000 €

> 13,000,000 W 200,000,000 \$

The GREEN

MareNostrum P9 CTE 19,440 Cores 27,648 GB mem 1,018 TFlop/s

> 85,000 W 34,000,000 €

Version N°3

38 PFlop/s

20 Watts 30,000 €

> 13,000,000 W 200,000,000 \$

MareNostrum P9 CTE 19,440 Cores 27,648 GB mem 1,018 TFlop/s

> 85,000 W 34,000,000 €

Version N°3 38 PFlop/s

> 20 Watts 30,000 €

Outline

- 1. Analogic computation
- 2. Computer's Zoo
- 3. A few words about gate
- 4. How to use transistors
- 5. Number's representation

Outline

1.Analogic computation

- 2. Computer's Zoo
- 3. A few words about gate
- 4. How to use transistors
- 5. Number's representation

Numbers in continuous space: Analog computer

- Uses continuous property of physical phenomena (electrical, mechanical, hydraulic)
- Resilient to quantization noise But subject to physical noise (electronic, °C, ...)
- Can be more powerful than digital computer
- Dominant in HPC until the 70s
 - Example:
 - Used for the Apollo 11 mission
 - Tide-Prediction machine (William & James Thomson)

Alternatives to numerical computer

- Human Brain
 - 38 PetaFlops, 20 Watts
- Analog computer
 - Not program by algorithm no need to store, fetch, decode instructions and operand
- Hybrid digital / analog computer
 - Complement their digital counterparts in solving equations relevant in:

Biology, fluid dynamics, weather prediction, quantum chemistry, plasma physics, ...

Toward an hybrid analog co-processor

- System configured by the equations similar to the targeted system and allow variables in the analog computer to evolve with time
 - Analog computer to provide a quick approximation
 - Digital computer for programming, storage and precision
- Example $dx_{1}/dt = a_{1}x_{1} + f_{1}(x_{2}) + b_{1}$ $dx_{2}/dt = a_{2}x_{2} + f_{2}(x_{1}) + b_{2}$ • Example

2 diff. equation with 2 variables

Cowan, G. E. R., Melville, R. C., & Tsividis, Y. P. (2006). A VLSI Analog Computer/Digital Computer Accelerator. IEEE Journal of Solid-State Circuits, 41(1), 42–53. doi:10.1109/jssc.2005.858618

Telefunken RA770

Toward an hybrid analog co-processor

Advantages

- Voltages & currents evolves continuously
- Highly parallel
- No clock
- Accuracy within a few percent
- Limitations
 - Large problem requires large numbers of analog computational blocks (or be able to divide by hand the problem => not parallel anymore)
 - Difficult to configure and connect distant analog blocks ٠
 - Difficult in implementing multivalued functions ٠
 - Approximate computing: Precision can't be increased by adding "bit", it requires larger chips
 - Difficult to program Compiler attempt

Predator-Prey model:

dr

Rabbit evolution's $\frac{dr}{dt} = \alpha_1 r - \alpha_2 r f$ Fox evolution's $\frac{df}{dt} = -\beta_1 f + \beta_2 r f$

Neuromorphic computing

- Limit of the Turing-Von Neumann model
- Use analog circuit to mimic neurobiological architectures
 - Memristors
 - Spintronic memories
 - Threshold switches
- Initiative to rethink the concept of computing
 - IEEE Rebooting Computing

Outline

Analogic computation
 Computer's Zoo
 A few words about gate
 How to use transistors
 Number's representation

MicroVax 3000 (1987): in Cyrillic alphabet "VAX—when you care enough to steal the very best".

Magnified Intel 8207 controller dual-port RAM. Shepherd with two headed ram.

Binary pneumatic adder

Pneumatic AND Gate

Pneumatic OR Gate

Transistor Amplifier

Pneumatic XOR Gate

http://only-paper.ru/forum/38-23291-1

Fluidic calculator

- Use of a Fluid to perform analog or digital operation
 - Pneumatics
 - Hydraulics
 - No moving part (paper computer is not consider fluidic)
- Use in environment where electronic digital is unreliable (electromagnetic interference, ionizing radiation...)

Fluidic AND Gate

Fluidic OR Gate

Fluidic calculator: Examples

MONIAC (1949) Computer to simulate economic principles at a time digital computer could not.

FLUID CIRCUIT performs the operation of dividing by 10 in an all-fluid digital computer: for every 10 input pulses circuit delivers one output pulse. Input pulses enter from above the plane of circuit through circular, bumplike hole attached to straight channel running from top to bottom just to right of center. The 10 identical logic elements, or modules, are arranged in a series of five pairs, three at left and two at right. Each pair contains two steady input streams (*small sausage shapes*), two outputs (*small circular shapes attached to short straight channels*), eight control jets (*small teardrop shapes*) and eight open vents (*large circular shapes*).

Aircraft Flight control systems, Valve in anesthesia machines for its advantages (lower mass, cost, drag, inertia, complexity)

Mechanical computers

- Various form
 - Build from levers & gears
 - Balls
 - Dominos

https://www.andrewt.net/maths/domputer/

Flip-Flop

• Definition:

A Flip-Flop (latch) is a circuit that has 2 stable states and can be used to store state information.

Marble's Flip-Flop

Objectives:

How to design a system with a minimum number of gate ?

Marble Flip-Flop

Marble's Adder

https://www.turingtumble.com/

Outline

- Analogic computation
 Computer's Zoo
 A few words about gate
 How to use transistors
- 5. Number's representation

1945: ENIAC

Technology and Culture The demand Quench of the back for the Heavy of Tabalage

When Computers Were Women

JENNIFER S. LIGHT

J. Presper Eckert and John W. Mauchly, household names in the history of computing, developed America's first electronic computer, ENIAC, to automate ballistics computations during World Warl II. These two talented engineers dominate the story as it is usually told, but they hardly worked alone. Nearly two hundred young women, both civilian and military, worked on the project as human "computers", Performing builditics computations during the war. Six of them were selected to program a machine that, ironically, would take their name and replace them, a machine whose technical expertise would become vasity more celebrated than their own.¹

The omission of women from the history of computer science perpetuates misconceptions of women as uninterseted or incapable in the field. This article retells the history of ENIACs "invention" with special focus on the female technicians whom existing computer histories have rendered in recent years as masculine work, originated as feminized clerical labor. The story presents an apparent paradox. It suggests that women were somehow hidden during this stage of computer history while the wartime popular press trumpeted just the opposite—that women were breaking into traditionally made occupations within science, technology, and engineering.

Dr. Light recently completed her Ph.D. in the history of science at Harvard University; beginning in the fall of 1999 whe will be assistant professor of communication studies at Northwestern University. She thanks Netre Back. Herman Goldstine, Rachel Prentise, Sherry Turkle, John Staadenmaier, and four anonymous reviewers for their contributions to this article. An arthy version of the attick ways presented at "Gender, Bace, and Science," a conference at Queen's University, Kingston, Ontario, 12–15 October, 1995. 0(9)99 by the Society for the History of Technology. All rights reserved. 0(9)-0(5):994-03-00158.00

 History has valued hardware over programming to such an extent that even the IEEE Annual of the History of Computing issue devoted to ENIACS (fifteth naniversary hardy mentioned these women's volta. See IEEE Annual of the History of Computing 18, no. 1 (1996). Instead, they were featured two issues later in a special issue on women in computing.

ENIAC: Numbers

- 20 accumulators / modules
 - ADD / SUBSTRACT
 - 10 Decimal Digit « Register » in
 - Serial decimal (10 bits per digit)
 - With a ring counter made of cascaded flip-flop (bit shift) (!= binary counter)
 - Arithmetic done by "counting" pulses with the ring counter and generate carry pulse if the counter wrapped around. (idea borrowed from digit wheels of mechanical adding machine)
 - Constant entered with punched cards
 - Numbers transferred between module through buses

ENIAC: Operations

Programming done by women (switches and cables)

https://archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/k-8-pdf/k-8-r5367-1-ENIAC-circuits.pdf

ENIAC: Multiplication

Question:

How to decompose the set of numbers {0,1,2,3,4,5,6,7,8,9} With a set of numbers of minimal size ?

Fig. 4-Block diagram of multiplication circuits.

What is the best radix ?

- A metric: Radix economy $E(b, N) = \lfloor log_b(N) + 1 \rfloor . b$
 - Number of digits (N) * Number of possible values each digit could have (b)
 - Example: 100₁₀
 - 100₁₀: 3 digits E = 3 * 10 = 30
 - 1100100₂: 7 digits E = 7 * 2 = 14
 - 10201₃: 5 digits E = 5 * 3 = 15
- But binary system has greater noise immunity

Base	E(b,5329)
1	2665
2	22,9
е	22,1
3	22,2
4	23,9
5	26,3
6	28,3
7	31,3
8	33
9	34,6
10	37,9
16	50,9
20	58,4
30	84,8
40	107,7
60	138.8

Ternary calculation

- Fowler's machine (1840), Treasurer of the Poor Law Union
 - Used to compute the proportional fee for each parish of the Poor Law Union
 - Difficult task in the pre-decimal English currency
 - 20 shilling = 1 pound
 - 12 pence = 1 shilling
 - 4 farthings = 1 penny
 - Need to convert everything in farthing (=> large numbers)

St. Michaels Church, Devon, England

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

1958: SETUN

- Ternary computer
 - Balanced ternary numeral system (-1 | 0 | +1)
 - Three-valued ternary logic (16 binary operators in Boolean logic & 19 683 in Ternary logic !)
 - Words made of 18 Trits
 Each trits stored in a pair of magnetic cores, wired in tandem to represent 3 stable states

http://trinary.ru/projects/setunws/

- 1960's
 - Attempt to build ternary logic gates and memory cells
 - 1973 TERNAC (G. Frieder)
- Possible usage:
 - Found in redundant binary representation to avoid carries propagation
 - 2009: quantum computer made of qutrit (instead of qubit)

Perhaps the prettiest number system of all, is the balanced ternary notation

... and according to

1958: SETUN

- Ternary computer
 - Balanced ternary numeral system (-1 | 0 | +1)
 - Three-valued ternary logic (16 binary operators in Boolean logic & 19 683 in Ternary logic !)
 - Words made of 18 Trits
 Each trits stored in a pair of magnetic cores, wired in tandem to represent 3 stable states

http://trinary.ru/projects/setunws/

- 1960's
 - Attempt to build ternary logic gates and memory cells
 - 1973 TERNAC (G. Frieder)
- Possible usage:
 - Found in redundant binary representation to avoid carries propagation
 - 2009: quantum computer made of qutrit (instead of qubit)

Perhaps the prettiest number system of all, is the balanced ternary notation

... and according to

Balanced Number: Why is that such a nice system ?

- System discussed by A. Cauchy (1840), J. Leslie (1817), J. Colson's (1726), ... Hindu Vedas (~1000 BCE)
- Balanced = arranged symmetrically around 0
 - $Ex = \{-1, 0, 1\}$
 - 2-pan Balance to measure between 1-40 g, How many weights required, when weights can go in 1 / 2 pan?
 - (1,2,4,8,16,32 / 1,3,9,27)
- Properties
 - Ease comparison (3 possible states (< = >) vs 2 (Yes/No))
 - Test Odd / Even:
 - Radix2: Last digits
 - Radix3: Number of 1 in the numeral
 - Cut down the carry-rate in multi-digit multiplication
 - No carry for 1 digit mult.
 - Rounding = Truncation
 - No diff. Between + / numbers

27	9	3	1
			1
		1	-1
		1	0
		1	1
	1	-1	-1
	1	-1	0
	1	-1	1
	1	0	-1
	1	0	0
	1	0	1
	1	1	-1
	1	1	0
	1	1	1
	27	27 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27 9 3 - - - - 1 1 - 1 -1 1 -1 -1 1 -1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Outline

- 1. Analogic computation
- 2. Computer's Zoo
- 3. A few words about gate

4. How to use transistors

5. Number's representation

Ways to use available transistors

1. 2000's: Vector Unit (Extension ISA)

Year	1996	1998	1999	2001		2004	2005	2006	2007	2008	2009		2012	2013	2014	2015
SIMD	MMX	3DNow!	SSE	SSE2		SSE3		SSE4		AVX	F16C / XOP		FMA	AVX2		AVX-512
SIMD Length	64		128							256						512
Bit Manipulation									ABM				BMI1	BMI2	ADX	
Compressed Inst																
Crypto / Sec										AES-NI		CLMU	RdRand	SHA		MPX / SGX
Trans. mem														TSX		
Virtualization							VT-x									
# inst.	57		70	144		13		54		12	60		24	30		

- 2. 2010's: More Cores (GPU)
- 2020's: Dedicated core (Neural Network Processing unit)

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Example: AVX512 VNNI

Trend: Fused operators

Name	++	+*(FMA)	+/	*+	**	*/	/+	/*	//
168.wupwise	38	74	0	42	27	0	7	4	0
171.swim	180	184	0	162	48	0	10	7	0
172.mgrid	249	98	0	91	11	0	2	0	0
173.applu	1826	1783	86	1797	782	7	69	109	0
177.mesa	116	274	0	164	71	0	10	10	0
178.galgel	358	856	26	415	443	21	57	36	10
179.art	73	98	0	100	34	0	8	3	0
183.equake	52	119	3	75	74	8	10	8	1
188.ammp	260	418	2	291	205	5	12	19	0
189.lucas	80	402	0	87	54	2	2	2	0
191.fma3d	215	461	12	266	144	11	24	32	0
301.apsi	514	1015	175	881	673	83	192	302	14
Total	3961	5782	304	4371	2566	137	403	532	25

Nb of fused operators

D. Defour, « Collapsing dependent floating-point operations », IMACS World Congress Scientific Computation, Applied Mathematics and Simulation, 2005

Nvidia Tensor Core

https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive/3 https://arxiv.org/pdf/1804.06826.pdf

Google Tensor Processing Unit

Google Tensor Processing Unit: A systolic array

• H.T. Kung, "Why systolic Architectures ?" IEEE Computer 1982.

N. P. Jouppi et al., "In-datacenter performance analysis of a tensor processing unit," 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, 2017, pp. 1-12. https://cloud.google.com/blog/products/gcp/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Nvidia Special Function Unit

$$F(x) = C_0 + C_1 x + C_2 x^2$$

Function	Input Interval	m	Configuration	Accuracy (good bits)	ulp error	% exactly rounded	monotonic	Lookup table size
1/X	[1,2)	7	26,16,10	24.02	0.98	87%	yes	6.50Kb
$1/\sqrt{X}$	[1,4)	6	26,16,10	23.40	1.52	78%	yes	6.50Kb
2^{X}	[0,1)	6	26,16,10	22.51	1.41	74%	yes	3.25Kb
$\log_2 X$	[1,2)	6	26,16,10	22.57	n/a	n/a	yes	3.25Kb
sin/cos	$[0, \pi/2]$	6	26,15,11	22.47	n/a	n/a	no	3.25Kb
Total								22.75Kb

S. F. Oberman and M. Siu. A high-performance area-efficient multifunction interpolator. IEEE ARITH 17, pages 272–279, July 2005.

Rise of a new era

- Uses transistors for specialized Hardware
 - Nvidia SFU, Tensor Core
 - Google Tensor Processing Unit
 - Intel Loihi
 - Microsoft Catapult
 - Movidius Myriad 2 VPU
 - Neuromorphic processor, IBM TrueNorth, SpiNNaker
- Quantized format
 - FP16
 - BFLOAT
 - Flexpoint
 - Unum
 - FPANR

Outline

Analogic computation
 Computer's Zoo
 A few words about gate
 How to use transistors
 S.Number's representation

Endianness

- Little-endian
 - Ease multi-byte addition due to carry propagation (reason Datapoint & Intel selected it)
 - Allow to read a numerical value independently of the length as long as it fits into memory

• Big-endian

- Allow to get an approximation by reading the first byte (sloppy arithmetic)
- Ease division (MSB)
- Middle-endian
 - PDP-11

Floating-Point formats

• 3 basic formats

http://www.quadibloc.com/comp/cp0201.htm

Floating-Point formats (1)

- FP format found on computer with 24-bit word length
 - HP 2114-2116, SDS-9 series
- No hardware support
 - Hardware integer multiplication
- 1st bit of the second word ignored (or sign copy to easy Fixed-Point implementation)
- FP numbers represented by 2 signed binary numbers

PDP-8

Floating-Point formats (2)

- FP format available on PDP-8 (1965) & RECOMP II (1958)
- FP numbers represented by 2 signed binary numbers

William Kahan

Floating-Point formats (3)

- FP compare instruction == Integer compare for positive nb
- Popular on architecture with FP hardware support
- PDP-11 1970: came with the hidden first bit trick
- IEEE-754 1985: W. Kahan

Quantized Format

D. Defour, "FP-ANR: A representation format to handle floating-point cancellation at run-time," 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH), Amherst, MA, 2018, pp. 76-83.

Posit aka Unum III

Number's representation

- Fixed-point
- Floating-point
- Logarithmic number systems
- Tapered floating-point representation
 - Significance arithmetic

- Arbitrary-precision
- Floating-point expansions
 - Rational arithmetic
 - Interval arithmetic
 - Algebraic system

... but always remember that according to

Recurring attempts to invent cheaper substitutes for Interval Arithmetic have all failed in the end after enough local limited success initially to tantalize their inventors with **dreams of glory**.

Trend in computation

- Limit of the traditional Von Neuman Turing model
 - Power consumption
 - Care about data transfer (Bandwidth, Latency)
 - New ISA
- Rise of alternative representation format
 - Each bit count
 - Low precision & Approximate computing
 - Mixed-precision
 - Analogic computation (neuromorphic processor)
- New way of processing data
 - Fused operators
 - Self-correcting algorithms