Numbers and Calculators

ARCHI 2019

TOP 500

Summit
2,397,824 Cores
2,801,664 GB mem
200,795 TFlop/s

13,000,000 W
200,000,000 \$

Summit
2,397,824 Cores
2,801,664 GB mem
200,795 TFlop/s

13,000,000 W
200,000,000 \$

MareNostrum P9 CTE
19,440 Cores
27,648 GB mem
1,018 TFlop/s

85,000 W
34,000,000 €

Summit
2,397,824 Cores
2,801,664 GB mem
200,795 TFlop/s

13,000,000 W
200,000,000 \$

MareNostrum P9 CTE
19,440 Cores
27,648 GB mem
1,018 TFlop/s
Version $\mathrm{N}^{\circ} 3$
38 PFlop/s

85,000 W
34,000,000 €

20 Watts
30,000 €

TOP 500 The List.

Summit
2,397,824 Cores
2,801,664 GB mem
200,795 TFlop/s

13,000,000 W
200,000,000 \$

MareNostrum P9 CTE
19,440 Cores
27,648 GB mem
1,018 TFlop/s

85,000 W
34,000,000 €

Version $\mathrm{N}^{\circ} 3$
38 PFlop/s

20 Watts
30,000 €

Outline

1. Analogic computation
2. Computer's Zoo
3. A few words about gate
4. How to use transistors
5. Number's representation

Outline

1. Analogic computation
2. Computer's Zoo
3. A few words about gate
4. How to use transistors
5. Number's representation

Numbers in continuous space: Analog computer

- Uses continuous property of physical phenomena (electrical, mechanical, hydraulic)
- Resilient to quantization noise But subject to physical noise (electronic, $\left.{ }^{\circ} \mathrm{C}, . ..\right)$
- Can be more powerful than digital computer
- Dominant in HPC until the 70s
- Example:
- Used for the Apollo 11 mission
- Tide-Prediction machine (William \& James Thomson)

Alternatives to numerical computer

- Human Brain
- 38 PetaFlops, 20 Watts
- Analog computer
- Not program by algorithm no need to store, fetch, decode instructions and operand
- Hybrid digital / analog computer
- Complement their digital counterparts in solving equations relevant in:
Biology, fluid dynamics, weather prediction, quantum chemistry, plasma physics, ...

Toward an hybrid analog co-processor

Telefunken RA770

- System configured by the equations similar to the targeted system and allow variables in the analog computer to evolve with time
- Analog computer to provide a quick approximation
- Digital computer for programming, storage and precision
- Example
$\mathrm{d} x_{1} / \mathrm{d} t=a_{1} x_{1}+f_{1}\left(x_{2}\right)+b_{1}$
$\mathrm{d} x_{2} / \mathrm{d} t=a_{2} x_{2}+f_{2}\left(x_{1}\right)+b_{2}$

2 diff. equation with 2 variables

Cowan, G. E. R., Melville, R. C., \& Tsividis, Y. P. (2006). A VLSI Analog Computer/Digital Computer Accelerator. IEEE Journal of Solid-State Circuits, 41(1), 42-53. doi:10.1109/jssc.2005.858618

Toward an hybrid analog co-processor

Predator-Prey model: Rabbit evolution's

$$
\frac{d r}{d t}=\alpha_{1} r-\alpha_{2} r f
$$ Fox evolution's

$\frac{d f}{d t}=-\beta_{1} f+\beta_{2} r f$

- Advantages
- Voltages \& currents evolves continuously
- Highly parallel
- No clock
- Accuracy within a few percent
- Limitations
- Large problem requires large numbers of analog computational blocks (or be able to divide by hand the problem => not parallel anymore)
- Difficult to configure and connect distant analog blocks
- Difficult in implementing multivalued functions
- Approximate computing: Precision can't be increased by adding "bit", it requires larger chips
- Difficult to program Compiler attempt

Neuromorphic computing

- Limit of the Turing-Von Neumann model
- Use analog circuit to mimic neurobiological architectures
- Memristors
- Spintronic memories
- Threshold switches

- Initiative to rethink the concept of computing
- IEEE Rebooting Computing

Outline

1. Analogic computation

2. Computer's Zoo
3. A few words about gate
4. How to use transistors
5. Number's representation

MicroVax 3000 (1987): in Cyrillic alphabet
" VAX - when you care enough to steal the very best".

Magnified Intel 8207 controller dual-port RAM.
Shepherd with two headed ram.

Binary pneumatic adder

Pneumatic AND Gate

Pneumatic OR Gate

Transistor Amplifier

Pneumatic XOR Gate

http://only-paper.ru/forum/38-23291-1

Fluidic calculator

- Use of a Fluid to perform analog or digital operation
- Pneumatics
- Hydraulics
- No moving part (paper computer is not consider fluidic)
- Use in environment where electronic digital is unreliable (electromagnetic interference, ionizing radiation...)

Fluidic calculator: Examples

MONIAC (1949) Computer to simulate economic principles at a time digital computer could not.

FLUID CIRCUIT performs the operation of dividing by 10 in an all-fluid digital computer: for every 10 input pulses circuit delivers one output pulse. Input pulses enter from above the plane of circuit through circular, bumplike hole attached to straight channel running from top to bottom just to right of center. The 10 identical logic elements, or modules, are arranged in a series of five pairs, three at left and two at right. Each pair contains two steady input streams (small sausage shapes), two outputs (small circular
shapes attached to short straight channels), eight control jets (small teardrop shapes) and eight open vents (large circular shapes)

Aircraft Flight control systems, Valve in anesthesia machines for its advantages (lower mass, cost, drag, inertia, complexity)

Mechanical computers

- Various form
- Build from levers \& gears
- Balls
- Dominos

Flip-Flop

- Definition:

A Flip-Flop (latch) is a circuit that has 2 stable states and can be used to store state information.

Marble’s Flip-Flop

Objectives:
How to design a system with a minimum number of gate ?

https://www.turingtumble.com/

Outline

1. Analogic computation
2. Computer's Zoo
3. A few words about gate
4. How to use transistors
5. Number's representation

1945: ENIAC

When Computers Were Women

ENNIFER S. LIGHT

Preper Pdert ad ohn W

 neers dominate the story ys it is usalaly told, but they hardly worked alone
Nearly two hundred poung women, both civilian and military, worked on

 the ermale technicians whom exising computer histories have render
invisible. In purticulat it examines how the oob of progammet perceive

ENIAC: Numbers

- 20 accumulators / modules
- ADD / SUBSTRACT
- 10 Decimal Digit «Register » in
- Serial decimal (10 bits per digit)
- With a ring counter made of cascaded flip-flop (bit shift) (!= binary counter)
- Arithmetic done by "counting" pulses with the ring counter and generate carry pulse if the counter wrapped around. (idea borrowed from digit wheels of mechanical adding machine)
- Constant entered with punched cards
- Numbers transferred between module through buses

ENIAC decade ring counter. From Burks, "Electronic Computing Circuits of the ENIAC," Proceedings of the IRE 35: 746-767, ${ }^{\text {a/ }}$ IRE (now IEEE), 1947. All rights reserved.

ENIAC: Operations

Programming done by women
(switches and cables)

ENIAC: Multiplication

Question:
How to decompose the set of numbers $\{0,1,2,3,4,5,6,7,8,9\}$ With a set of numbers of minimal size ?

Fig. 4-Block diagram of multiplication circuits.

What is the best radix?

- A metric: Radix economy

$$
E(b, N)=\left[\log _{b}(N)+1\right] \cdot b
$$

- Number of digits (N) * Number of possible values each digit could have (b)
- Example: $\mathbf{1 0 0}_{10}$
- 100_{10} : 3 digits
$\mathrm{E}=3 * 10=30$
- $1100100_{2}: 7$ digits
$\mathrm{E}=7$ * $2=14$
- $10201_{3}: 5$ digits
$\mathrm{E}=5$ * $3=15$
- But binary system has greater noise immunity

Base	$\mathbf{E}(\mathbf{b}, \mathbf{5 3 2 9})$
1	2665
2	22,9
\mathbf{e}	22,1
3	22,2
4	23,9
5	26,3
6	28,3
7	31,3
8	33
9	34,6
10	37,9
16	50,9
20	58,4
30	84,8
40	107,7
60	138,8

Ternary calculation

- Fowler's machine (1840), Treasurer of the Poor Law Union
- Used to compute the proportional fee for each parish of the Poor Law Union
- Difficult task in the pre-decimal English currency
- 20 shilling $=1$ pound
- 12 pence $=1$ shilling
- 4 farthings = 1 penny
- Need to convert everything in farthing (=> large numbers)

St. Michaels Church, Devon, England

1958: SETUN

- Ternary computer
- Balanced ternary numeral system (-1|0|+1)
- Three-valued ternary logic (16 binary operators in Boolean logic \& 19683 in Ternary logic !)

http://trinary.ru/projects/setunws/
- Words made of 18 Trits
- Each trits stored in a pair of magnetic cores, wired in tandem to represent 3 stable states
- 1960's
- Attempt to build ternary logic gates and memory cells
- 1973 TERNAC (G. Frieder)
- Possible usage:
- Found in redundant binary representation to avoid carries propagation
- 2009: quantum computer made of qutrit (instead of qubit)
... and according to

1958: SETUN

- Ternary computer
- Balanced ternary numeral system (-1|0|+1)
- Three-valued ternary logic (16 binary operators in Boolean logic \& 19683 in Ternary logic !)

http://trinary.ru/projects/setunws/
- Words made of 18 Trits
- Each trits stored in a pair of magnetic cores, wired in tandem to represent 3 stable states
- 1960's
- Attempt to build ternary logic gates and memory cells
- 1973 TERNAC (G. Frieder)
- Possible usage:
- Found in redundant binary representation to avoid carries propagation
- 2009: quantum computer made of qutrit (instead of qubit)
... and according to

Balanced Number: Why is that such a nice system ?

- System discussed by
A. Cauchy (1840), J. Leslie (1817), J. Colson’s (1726), ... Hindu Vedas (~1000 BCE)
- Balanced = arranged symmetrically around 0
- $E x=\{-1,0,1\}$
- 2-pan Balance to measure between $1-40 \mathrm{~g}$, How many weights required, when weights can go in 1 / 2 pan?
- (1,2,4,8,16,32 / 1,3,9,27)
- Properties
- Ease comparison (3 possible states (< = >) vs 2 (Yes/No))
- Test Odd / Even:
- Radix2: Last digits
- Radix3: Number of 1 in the numeral
- Cut down the carry-rate in multi-digit multiplication
- No carry for 1 digit mult.
- Rounding = Truncation
- No diff. Between + / - numbers

Outline

1. Analogic computation
2. Computer's Zoo
3. A few words about gate
4. How to use transistors
5. Number's representation

Ways to use available transistors

1. 2000's: Vector Unit (Extension ISA)

Year	1996	1998	1999	2001	2004	2005	2006	2007	2008	2009		2012	2013	2014	2015
SIMD	MMX	3DNow!	SSE	SSE2	SSE3		SSE4		AVX	$\begin{gathered} \text { F16C/ } \\ \text { XOP } \end{gathered}$		FMA	AVX2		AVX-512
SIMD Length	64		128						256						512
Bit Manipulation								ABM				BMI1	BMI2	ADX	
Compressed Inst															
Crypto / Sec									AES-NI		CLMU	RdRand	SHA		MPX / SGX
Trans. mem													TSX		
Virtualization						VT-x									
\# inst.	57		70	144	13		54		12	60		24	30		

2. 2010's: More Cores (GPU)
3. 2020's: Dedicated core (Neural Network Processing unit)

Example: AVX512 VNNI

Trend: Fused operators

Name	++	+*(FMA)	+/	*+	**	*/	/+	/*	//
168.wupwise	38	74	0	42	27	0	7	4	0
171.swim	180	184	0	162	48	0	10	7	0
172.mgrid	249	98	0	91	11	0	2	0	0
173.applu	1826	1783	86	1797	782	7	69	109	0
177.mesa	116	274	0	164	71	0	10	10	0
178.galgel	358	856	26	415	443	21	57	36	10
179.art	73	98	0	100	34	0	8	3	0
183.equake	52	119	3	75	74	8	10	8	1
188.ammp	260	418	2	291	205	5	12	19	0
189.lucas	80	402	0	87	54	2	2	2	0
191.fma3d	215	461	12	266	144	11	24	32	0
301.apsi	514	1015	175	881	673	83	192	302	14
Total	3961	5782	304	4371	2566	137	403	532	25

Nvidia Tensor Core

Google Tensor Processing Unit

Google Tensor Processing Unit: A systolic array

- H.T. Kung, "Why systolic Architectures ?" IEEE Computer 1982.

Nvidia Special Function Unit

$$
F(x)=C_{0}+C_{1} x+C_{2} x^{2}
$$

Function	Input Interval	m	Configuration	Accuracy (good bits)	ulp error	\% exactly rounded	monotonic	Lookup table size
$1 / X$	$[1,2)$	7	26,16,10	24.02	0.98	87\%	yes	6.50 Kb
$1 / \sqrt{X}$	$[1,4)$	6	26,16,10	23.40	1.52	78\%	yes	6.50 Kb
2^{x}	[0,1)	6	26,16,10	22.51	1.41	74\%	yes	3.25 Kb
$\log _{2} X$	[1,2)	6	26,16,10	22.57	n/a	n/a	yes	3.25 Kb
\sin / cos	[0, $\pi / 2$]	6	26,15,11	22.47	n/a	n/a	no	3.25 Kb
Total	22.75 Kb							

Rise of a new era

- Uses transistors for specialized Hardware
- Nvidia SFU, Tensor Core
- Google Tensor Processing Unit
- Intel Loihi
- Microsoft Catapult
- Movidius Myriad 2 VPU
- Neuromorphic processor, IBM TrueNorth, SpiNNaker
- Quantized format
- FP16
- BFLOAT
- Flexpoint
- Unum
- FPANR

Outline

1. Analogic computation
2. Computer's Zoo
3. A few words about gate
4. How to use transistors
5. Number's representation

Endianness

- Little-endian
- Ease multi-byte addition due to carry propagation (reason Datapoint \& Intel selected it)
- Allow to read a numerical value independently of the length as long as it fits into memory
- Big-endian
- Allow to get an approximation by reading the first byte (sloppy arithmetic)
- Ease division (MSB)
- Middle-endian
- PDP-11

Floating-Point formats

- 3 basic formats

Floating-Point formats (1)

- FP format found on computer with 24-bit word length
- HP 2114-2116, SDS-9 series
- No hardware support
- Hardware integer multiplication
- $1^{\text {st }}$ bit of the second word ignored (or sign copy to easy Fixed-Point implementation)
- FP numbers represented by 2 signed binary numbers

Floating-Point formats (2)

- FP format available on PDP-8 (1965) \& RECOMP II (1958)
- FP numbers represented by 2 signed binary numbers

Floating-Point formats (3)

William Kahan

- FP compare instruction == Integer compare for positive nb
- Popular on architecture with FP hardware support
- PDP-11

1970: came with the hidden first bit trick

- IEEE-754

1985: W. Kahan

Quantized Format

Range: ~0.00006; 65504
IEEE-754 FP16

S	E	E	E	E	E	M	n	M	M	M	M	N	,	M	M	M		M
15					10													

Range: $\sim 1 e^{-38} ; 3 e^{+38}$

1510
0

FPANR FP16

S	E	E	E	E	E	M	M	M	M	M	M	M	M	U	U
15				10											
		0													

D. Defour, "FP-ANR: A representation format to handle floating-point cancellation at run-time," 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH), Amherst, MA, 2018, pp. 76-83

Posit aka Unum III

Number's representation

- Fixed-point
- Floating-point
- Logarithmic number systems
- Tapered floating-point representation
- Significance arithmetic

Multiprecision

Interval

Floue

- Arbitrary-precision
- Floating-point expansions
- Rational arithmetic
- Interval arithmetic
- Algebraic system

Stochastique

Gogoplex/minex $10^{\text {gogol }}=10^{10^{100}}$

LNS
... but always remember that according to

Recurring attempts to invent cheaper substitutes for Interval Arithmetic have all failed in the end after enough local limited success initially to tantalize their inventors with dreams of glory.

Trend in computation

- Limit of the traditional Von Neuman -Turing model
- Power consumption
- Care about data transfer (Bandwidth, Latency)
- New ISA
- Rise of alternative representation format
- Each bit count
- Low precision \& Approximate computing
- Mixed-precision
- Analogic computation (neuromorphic processor)
- New way of processing data
- Fused operators
- Self-correcting algorithms

