
1

High-Level Synthesis: from theory to practice

Philippe COUSSY

philippe.coussy@univ-ubs.fr

2019, May 21

1/4857

2

Evolution of ICT

1840 1947

1958

1877

1946

1966

1981
19731990

1990
1990 2000

Cloud

2010

1895

3

The virtuous circle

The virtuous circle of the semiconductor industry (source: ITRS)

4

IC Trends
 Complexity
 Performance
 Flexibility
 Reliability
 Security
 NRJ and Power

Consumption
 Cost
 Time to market
 …

5

Typical SoC architecture

CPU

Cache

HwAcc
RAM

BUS

HwAcc

Interf.

I/O

CPU: Central Processing Unit
RAM: Random Access Memory
HwAcc: Hardware Accelerator
I/O: Input / Output

RAM

Hardware Accelerators are
- non programmable processing units

- still needed for
+ Timing performances
+ Power/NRJ consumption

- tightly or loosely coupled

6

Electronic System Level Design (ESLD)

Year

Circuit complexity
Transistors

Designer productivity

IP- & Plateform- based design

Co-design

System-Level Design Language,
ESL (virtual protyping, HLS…)

RTL

Abstraction

10050095

7

Design methodologies

 Synthesis and verification automation has always been
key factors in the evolution of the design process

◊ Allow to explore the design space efficiently and
rapidly

◊Correct by construction design

8

Design methodologies

 Software domain

◊Machine code (binary sequence)

◊ 1950s: concept of assembly language (and assembler)
◊ based on mnemonics

◊Maurice V. Wilkes de l'université de Cambridge

◊ Later: High-level languages and compilers
◊ 1951: First compiler

◊ (A-0 system) par Grace Hopper

◊Fortran 1954-1957: First high-level language

◊FORmula TRANslator

◊Cobol 1959, Basic 1964, C 1972, C++ 1983, Java 1995…

9

Design methodologies (1/2)

 Hardware domain

◊ 1960: “hand-made” era
◊ design, optimization, layout

◊ 1970: Gate-level simulation

◊ end of 70: Cycle-based simulation

◊ 1980: Wide automation
◊ place & route, schematic circuit capture, formal verification

and static timing analysis

◊Mid 1980: Hardware description language
◊ 1986 Verilog, 1987 VHDL

◊ 1990: logic synthesis
◊VHDL and Verilog synthesizable subsets

10

Typical HW design flow

RTL

Logic synthesis

Gate level netlist

P&R

GDSII

 From Register Transfer Level (RTL) down to IC layout

11

Design methodologies (2/2)

◊Mid 80s:
◊High-level synthesis (First gen.)

◊Mainly research domain

◊Mid 1990:
◊High-level synthesis (Second gen.)

◊ e.g. Behavioural Compiler (Syn.), Monet (Mentor.)…

◊Co-design, IP-core reuse…

◊ 2000 : Electronic System Level ESL
◊System level language

◊SystemC, SystemVerilog…,

◊Virtual prototyping, Transaction Level Modelling TLM

◊High-level Synthesis (Third gen.)

◊…

12

Typical HW design flow

RTL

Logic synthesis

Gate level netlist

P&R

GDSII

 From Register Transfer Level (RTL) down to IC layout

13

HLS-based HW design flow

RTL

Logic synthesis

Gate level netlist

P&R

GDSII

Algorithm

Matmul(const matrix A, matrix C)
{

const matrix B ={{1, 2},{ 3, 4}};
...

for (i=0;i<N;i++)
for (j=0;j<N;j++){

tmp = A[i][0]*B[0][j];
….

High-Level synthesis

SystemC simulation
models (CABA/TLM)

Virtual prototyping

 From Algorithm down to TLM, CA and RTL models

TLM Transaction Level Model
CABA Cycle Accurate Bit Accurate

14

Outline

 Context

 HLS basics

◊Modeling

◊ Scheduling

◊ Binding

 Conclusion

 The GAUT tool

◊Overview

◊ Practice (rooms 107/108)

15

High-Level Synthesis (HLS)

 Starting from a functional description, automatically
generate an RTL architecture

 Constraints

◊ Timing constraints: latency and/or throughput

◊Resource constraints: #Operators and/or #Registers
and/or #Memory, #Slices...

◊…

 Objectives

◊Minimization: area i.e. resources, latency, power
consumption…

◊Maximization: throughput, clock frequency…

◊…

16

Typical HLS flow

 Compilation generates a formal
modeling of the algorithmic input
description

 Scheduling defines the execution
time of each operation

 Binding defines which operator
executes a given operation and which
memory element stores a given data

 Allocation defines the number and
the type of each resource

 Architecture generation writes out
the RTL source code…

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

17

HLS inputs (1/2)

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

 Constraints (resp. objectives):

Resources: 1 adder, 1 multiplier, 1 memory bank
Timing : throughput, latency, clock period…

 Resource library:

The set of characterized functional units/
operators/components used to design the
architecture (≠techno, ≠target, ≠architecture…)

18

HLS inputs (2/2)

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Void Filter (int N, int C[N], int X[N], int Y[N]){
(1) int i,j;
(2) for (j =0; j<N; j++){ // loop1
(3) Y[j] = 0;
(4) for (i=0; i<N, i++){// loop2
(5) Y[j]= Y[j] + C[i]*X[N-1-i];
(6) }
(7) }

}

Input descriptions can also use bit-accurate data types
or specify timing references (wait statements…)

19

Application modeling (1/3)

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Compilation realizes optimizations and
generates a formal modeling of the
algorithmic input description

Dataflow Graph (DFG)

Control Flow Graph (CFG)

Control and Data Flow Graph (CDFG)

Signal Flow Graph (SFG)

Abstract Syntax Tree (AST)

Petri Net

Polyhedral model

…

20

DataFlow Graph (1/2)

 Exhibits the parallelism between operations
◊ Through data dependencies

◊ Two types of nodes: Variable & Operation

c = a + b; +

21

DataFlow Graph (DFG) (1/2)

 Exhibits the parallelism between operations
◊ Through data dependencies

◊ Two types of nodes: Variable & Operation

 Control structures are not supported
◊ Loops are completely unrolled

for i : 0 2
c[i] = a[i] + b[i]

c[0] = a[0] + b[0]
c[1] = a[1] + b[1]
c[2] = a[2] + b[2]

a[0] b[0]

+

c[0]

a[1] b[1]

+

c[1]

a[2] b[2]

+

c[2]

22

Data Flow Graph (DFG) (2/2)

 Conditional assignments are transformed

◊ i.e. if/switch constructs, are resolved by creating
multiplexed values

1: t = a+b;
2: u = a’-b’;
3: if (a<b)
4: v = t+c;
else
{
5: w = u+c’;
6: v = w+d;
}
7: x = v+e;
8: y = v-e;

Source code

23

Control Flow Graph (CFG)

 Exhibits operation sequences
◊ through control dependencies

 The sequence of operations comes directly from the
source code and is kept unchanged

1: t = a+b;
2: u = a’-b’;
3: if (a<b)
4: v = t+c;
else
{
5: w = u+c’;
6: v = w+d;
}
7: x = v+e;
8: y = v-e;

Source code Graphical representation

24

Control & Data Flow Graph (CDFG)

 Combination of DFG and CFG

 CFG is used to exhibit the sequence of operations

◊ between « basic blocs » BB

 « Basic Bloc » (BB)

◊ A linear sequence of instruction without any control
operation (for, if, while…)

 DFG is used to exhibit the parallelism between operations

◊ in the « basic blocs » BB

25

Control & Data Flow Graph (CDFG)

1: t = a+b;
2: u = a’-b’;
3: if (a<b)
4: v = t+c;
else
{
5: w = u+c’;
6: v = w-d;
}
7: x = v+e;
8: y = v-e;

Source code Graphical
representation

1 2

5

6

+ -

3 <

4 + +

-

7 8+ -

26

Application modeling (2/3): CDFG

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Front-end : GCC or LLVM / CDFG: Control Data Flow Graph

BB0

BB2

BB3

BB4

BB5

BB6

BB1

CFG: Control Flow Graph

BB: Basic Block

Compilation generates a formal modeling
of the algorithmic input description

27

Application modeling (3/3)

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

CFG

BB0

BB2

BB3

BB4

BB5

BB6

BB1 load load

**

++

store

++

C

Y[j]

1N-1-i X

j

<<

N

out

i2

PHI

0

i1

C[i]X[N-1-i]

XC

Y1

Y

load

DFG: Data Flow Graph

Void Filter (int N, int C[N], int X[N], int Y[N]){
(1) int i,j;
(2) for (j =0; j<N; j++){ // loop1
(3) Y[j] = 0;
(4) for (i=0; i<N, i++){// loop2
(5) Y[j]= Y[j] + C[i]*X[N-1-i];
(6) }
(7) }

}

28

Scheduling step

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library DFG: Data Flow Graph

Constraints /
Objectives

Scheduling defines the execution time of each operation

Scheduling

29

Scheduling algorithms

 Not constrained

◊ ASAP, ALAP

 Resource constrained

◊Minimize latency
◊ List-Scheduling…

◊Maximize throughput
◊Modulo scheduling (IMS, SMS…)

 Time constrained

◊Minimize resources
◊Force-directed scheduling…

 Miscellaneous

◊ ILP, SDC, SA, GA, ACO, CP…

30

Scheduling algorithms

 Not constrained

◊ ASAP, ALAP

 Resource constrained

◊Minimize latency
◊ List-Scheduling…

◊Maximize throughput
◊Modulo scheduling (IMS, SMS…)

 Time constrained

◊Minimize resources
◊Force-directed scheduling…

 Miscellaneous

◊ ILP, SDC, SA, GA, ACO, CP …

31

List-Scheduling Algorithm

ASAP: As Soon As Possible

ALAP: As Late As Possible

32

List-Scheduling Algorithm

ASAP: As Soon As Possible

ALAP: As Late As Possible

33

List-Scheduling Algorithm

Cmux

a b

+

tc

+

t1

wd

-

tmp2

v e

-

y

+

x

tmp1

a' b'

-

u C'

+

Data Flow Graph (DFG)

34

List-Scheduling Algorithm

Cmux

a b

+

tc

+

t1

wd

-

tmp2

v e

-

y

+

x

tmp1

a' b'

-

u C'

+

 Constraints
 1 adder (1 cycle)

 1 subtractor (1 cycle)

 1 comp/select (1 cycle)

Data Flow Graph (DFG)

35

List-Scheduling Algorithm

 Constraints
 1 adder (1 cycle)

 1 subtractor (1 cycle)

 1 comp/select (1 cycle)

-

+

-

-+

+

+

cMux

ASAP ALAP

-

+

-

-+

+

+

cMux

Cmux

a b

+

tc

+

t1

wd

-

tmp2

v e

-

y

+

x

tmp1

a' b'

-

u C'

+

Data Flow Graph (DFG)

36

List-Scheduling Algorithm

-

+

-

-+

+

+

cMux

ASAP ALAP

-

+

-

-+

+

+

cMux

mobility

Priority = 1/Mobility

 Constraints
 1 adder (1 cycle)

 1 subtractor (1 cycle)

 1 comp/select (1 cycle)

Cmux

a b

+

tc

+

t1

wd

-

tmp2

v e

-

y

+

x

tmp1

a' b'

-

u C'

+

Data Flow Graph (DFG)

37

List-Scheduling Algorithm

t

+-cmux

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+
4

+-
46

sel
3

+-
78

 Constraints
 1 adder (1 cycle)

 1 subtractor (1 cycle)

 1 comp/select (1 cycle)

38

List-Scheduling Algorithm

Step1

Step2

Step3

Step4

Step5

Linear FSM
1

2

4

5

6

3

7 8

Cmux

a b

+

tc

+

t1

wd

-

tmp2

v e

-

y

+

x

tmp1

a' b'

-

u C'

+

 Constraints
 1 adder (1 cycle)

 1 subtractor (1 cycle)

 1 comparing component (1 cycle)

t

+-cmux

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+
4

+-
46

sel
3

+-
78

39

Scheduling results

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

BB0

BB2

BB3

BB4

BB5

BB6

BB1

0s0

2s2

3s3

4s4

5s5

6s6

7s7

8s8

9s9

10s10

11s11

12s12

13s13

14s14

1s1CDFG

FSMD: Finite State Machine with Data-Path

40

Binding step

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

1 adder, 1 multiplier and 1 bank memory

Operation/V
ariable

Operator
#instance

load Load #0
store Store #0
+ ADD #0
* MUL #0
X REG #6
Y REG #1
C REG #7
N-1-i REG #4
i REG #2
j REG #0

Binding defines which operator executes a given operation
and which memory element stores a given data

41

Binding step

 Complex problems to solve

 Operation and data binding are interdependent

 Resource-constrained or time-constrained

 Impact many architecture characteristics
◊ Area, clock frequency, power/NRJ consumption, testability,

temperature…

◊ Can thus have different objectives

 Resource sharing (general case)
◊ Assignment of a resource to more than one operation/data

 Binding strongly depends on scheduling results

42

Binding approaches

 Based on the scheduling results, extract and model timing
information
◊ Compatibility graph

◊ Conflict graph

◊ Comparability graph

◊ Interval Graph

◊ Bipartite Graph

◊ …

 Associated methods
◊ Clique partitioning, coloring, heuristics, ILP, SA, CP, MWBM…

43

Binding approaches

 Based on the scheduling results, extract and model timing
information
◊ Compatibility graph

◊ Conflict graph

◊ Comparability graph

◊ Interval Graph

◊ Bipartite Graph

◊ …

 Associated methods
◊ Clique partitioning, coloring, heuristics, ILP, SA, CP, MWBM…

44

Compatibility Graph

 Resource Compatibility Graph G (V,E)
◊ V represents operations

◊ E represents compatible operation pairs

 Compatible operations

◊ are not concurrent (i.e. belongs to ≠ control step/clock cycles)

◊ can share the same type of operators

 Objective

◊ Partition the graph in a minimum number of cliques
◊ Clique cover number / minimum clique cover

45

Compatibility Graph (ex. #1)

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Scheduling result

-
2

-

6

-
8

SUB

+
1

+
5

+
4

+
7

ADD

46

Compatibility Graph (ex. #1)

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Scheduling result

-
2

-

6

-
8

+
1

+
5

+
4

+
7

SUB ADD

47

Compatibility Graph (ex. #2)

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Scheduling result

-
2

-
6

-
8

+
1

+
5 +

4

+7

ALU

48

Conflict graph

 Complementary to compatibility graph

 Resource Conflict Graph G-(V,E)
◊ V represents operations

◊ E represents conflicting operation pairs

 Conflicting operations
◊ Two operations are conflicting if they are not compatible

 Find independent set of G(V,E)
◊ A set of mutually compatible operations

◊ Coloring with minimum number of colors
◊ Chromatic number

49

Conflict graph (ex. #2)

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Scheduling result

-
2

-
6

-
8

+
1

+
5 +

4

+7

Compatibility graphConflict graph

-
2

-
6

-
8

+
1

+
5 +

4

+7

50

Conflict graph (ex. #2)

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Scheduling result

-
2

-
6

-
8

+
1

+
5 +

4

+7

Compatibility graphConflict graph

-
2

-
6

-
8

+
1

+
5 +

4

+7

51

Comparability graph

 Compatibility graph

 Conflict graph

 Comparability graph

◊Graph has an orientation with transitive property
◊Edges are oriented => arcs

52

Comparability graph (ex. #1)

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Data Flow Graph (DFG) Scheduling result

+
1

+
5

+
4

+
7

Comparability graph

53

Interval Graph

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

◊ Vertices correspond to intervals

◊ Edges correspond to interval intersections

54

Timing intervals

t

Step1

Step2

Step3

Step4

Step5

+-
12

+
5

+-
46

sel
3

+-
78

Scheduling result

t

Step1

Step2

Step3

Step4

Step5

a b a’ b’ c’ u c t d w ...

Data lifetime

55

Interval graph (ex. #3)

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

t

a b c d e f

F: FIFO
L: LIFO
R: Register

56

Interval graph (ex. #3)

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

t

a b c d e f

F: FIFO
L: LIFO
R: Register

57

Interval graph (ex. #3)

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

t

a b c d e f

F: FIFO
L: LIFO
R: Register

58

Interval graph (ex. #3)

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

t

a b c d e f

F: FIFO
L: LIFO
R: Register

59

Interval graph (ex. #3)

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

t

a b c d e f

F: FIFO
L: LIFO
R: Register

60

Bipartite Graph

 Compatibility graph

 Conflict graph

 Comparability graph

 Interval graph

 Bipartite graph

◊ Vertices correspond to operations (data) and operators
(storage elem.)

◊ Edges connect operations to operators

◊Weights quantify the costs/interests of the binding

◊Cycle basis

◊Maximum Weight Bipartite Matching MWBM Algorithm

O7

O9

add1

add2

O2

O5

mul1

sub1

w(O7,add1)=1

w(O9,add2)=0

w(O2,mul1)=0

w(O5,sub1)=0

61

Left-Edge Algorithm (LEA)

 LEA

◊ Sorts intervals by their left edge coordinates

◊ Assigns non-overlapping intervals to first track
(leftmost) using the sorted list

◊When possible intervals are exhausted, increase track
counter and repeat.

 Properties

◊ Simple

◊ Polynomial time algorithm
◊Thanks to the timing information

62

Register binding (ex. cont.)

t

Step1

Step2

Step3

Step4

Step5

a b a’ b’ c’ u c t d w ...

Data lifetime

t

Step1

Step2

Step3

Step4

Step5

LEA results

r1 r2 r3 r4 r5 r6 ...

63

Register binding (ex. cont.)

t

Step1

Step2

Step3

Step4

Step5

a b a’ b’ c’ u c t d w ...

Data lifetime

t

Step1

Step2

Step3

Step4

Step5

r1 r2 r3 r4 r5 r6 ...

Lea results

64

Binding problem

 Resource sharing often requires multiplexors

 Register and operator binding are interdependent w.r.t.
specific objectives like area or clock frequency

for i : 0 2
c[i] = a[i] + b[i]

c[0] = a[0] + b[0]
c[1] = a[1] + b[1]
c[2] = a[2] + b[2]

+

R1 R2

A[0] B[0]

+

R3 R4

A[1] B[1]

+

R5 R6

A[2] B[2]

Solution #1,
no sharing,

no mux

65

Binding problem

 Resource sharing often requires multiplexors

 Register and operator binding are interdependent w.r.t.
specific objectives like area or clock frequency

for i : 0 2
c[i] = a[i] + b[i]

c[0] = a[0] + b[0]
c[1] = a[1] + b[1]
c[2] = a[2] + b[2]

+

R1 R2

A[0] B[0]

+

R3 R4

A[1] B[1]

+

R5 R6

A[2] B[2]

Solution #1,
no sharing,

no mux

+

R1 R2

A[0] B[0]

+

R5 R6

A[2] B[2]
R3 R4

A[1] B[1]

MUXMUX

Solution #2,
Partial sharing,
Additional mux

66

Binding problem

 Resource sharing often requires multiplexors

 Register and operator binding are interdependent w.r.t.
specific objectives like area or clock frequency

for i : 0 2
c[i] = a[i] + b[i]

c[0] = a[0] + b[0]
c[1] = a[1] + b[1]
c[2] = a[2] + b[2]

+

R1 R2

A[0] B[0]

+

R3 R4

A[1] B[1]

+

R5 R6

A[2] B[2]

Solution #1,
no sharing,

no mux

+

R1 R2

A[0]/A[1]
/A[2]

B[0]/B[1]
/B[2]

Solution #N,
Max sharing,

no mux

+

R1 R2

A[0] B[0]

+

R5 R6

A[2] B[2]
R3 R4

A[1] B[1]

MUXMUX

Solution #2,
Partial sharing,
Additional mux

...

67

Binding problem

 Resource sharing often requires multiplexors

 Register and operator binding are interdependent w.r.t.
specific objectives like area or clock frequency

 For a given number of registers/operators, the number of
multiplexors may widely vary

 Minimizing the number of registers or operators does not
imply minimizing area or maximizing clock frequency

+

x

R5

R1

R6

R2

o01 o02

o21 o31
o32

MUX MUX

add1

mul1

-

R3 R4

o11 o12

sub1

o22

+ x

R1 R5 R2 R6

o01 o02
o21

o31 o32

MUX MUX

MUX MUX

add1 mul1

-

R3 R4o11 o12

sub1

o22

v.s.

68

One missing step!

 Allocation

◊Defines the number and the type of HW resources

◊Resource constrained
◊Allocation Scheduling Binding

◊ Time constrained
◊Scheduling Allocation & Binding

69

High-Level Synthesis flow

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

HWacc RTL Architecture

FIR_Fun.vhdl

FIR_FSM.vhdl

FIR_DP.vhdl

Top Level

Controller

DataPath

EnableClock

D
A
T
A
PA
T
H

C
O
N
T
R
O
L
L
E
R

+
*

-
ALUs

Architecture generation writes out the RTL source
code (e.g. in VHDL) and writes out the CA or TLM
description (e.g. in SystemC)

70

Many possible design flows

 No unique design flow i.e. many orders
for the synthesis steps
◊ Allocation Scheduling

◊ Scheduling Allocation

◊ Scheduling Binding

◊ Binding Scheduling

◊ Scheduling & Binding

◊ ...

 Complex problems & different
approaches
◊ Models & algorithms

◊ Exact approaches

◊ Metaheuristics

◊ Heuristics

71

And a lot of other problems...

 Connection merging (Busses)

 Register merging (Register files...)

 Chaining
◊ Several sequential operations in a clock cycle

 Multi-cycling

◊ One operation takes more than one clock cycle to execute

 Pipelining
◊ pipelined operator, pipelined datapath, pipelined controller

 Power/NRJ, Thermal aspects, LS-aware, P&R-aware...

 Bitwidth-aware, multimode…

 Control-dominated, data-dominated…

 …

72

High-level transformations

 Loops
◊ Loop pipelining
◊ loop unrolling

◊ None, partially, completely
◊ Loop merging
◊ Loop tiling
◊ …

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

options

Pipelining runs several loop “stages” at the same time

73

High-level transformations

 Loops
◊ Loop pipelining
◊ loop unrolling

◊ None, partially, completely
◊ Loop merging
◊ Loop tiling
◊ …

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

options

Partial unrolling (fact. 2)
Latency = 8 cycles

for (i=0; i<4; i++)
out[i] = (in[i] * corf1) + coef2;

Full unrolling
Latency = 4 cycles

74

High-level transformations

 Loops
◊ Loop pipelining
◊ loop unrolling

◊ None, partially, completely
◊ Loop merging
◊ Loop tiling
◊ …

C/C++

Compiler

CDFG

Scheduling

FSMD

Binding

Binding
Information

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

options

Partial unrolling (fact. 2) + Pipelining
Latency = 5 cycles
Throughput = 1 cycle

for (i=0; i<4; i++)
out[i] = (in[i] * corf1) + coef2;

75

High-level transformations

 Loops
◊ Loop pipelining
◊ Loop unrolling

◊ Partially or completely
◊ Loop merging
◊ Loop tiling
◊ …

 Arrays
◊ Constant arrays can be synthesized as logic
◊ Scalars can be gathered into arrays
◊ Arrays can be splitted
◊ Arrays can be mapped on memory banks

or synthesized as registers
◊ …

 Functions
◊ Function calls can be in-lined
◊ Function is synthesized as an operator

◊ Sequential, pipelined, functional unit…
◊ Single function instantiation
◊ …

76

HLS in brief and accelerated

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation

77

O = ((n01+n02)*n12)-
(n21*n22)

HLS in brief and accelerated

Input description

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation

78

HLS in brief and accelerated

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation

n21 n22
N0

N1

N3

+

×

-

×

N2

n01 n02

n11 n12

n31 n32

O

79

HLS in brief and accelerated

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation

n21 n22
N0

N1

N3

+

×

-

×

N2

n01 n02

n11 n12

n31 n32

O

80

HLS in brief and accelerated

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation

n21 n22
N0

N1

N3

+

×

-

×

N2

n01 n02

n11 n12

n31 n32

O

+ ×N0 N2

×N1

-N3

81

HLS in brief and accelerated

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation
+

×

-

×+

×

-

×

Operation binding

n01

n21, n11

n22, n12

R1

R3

R4

n02 R2

n31 R5

n32 R6

Data Binding

82

Wrap up

C/C++

Compilation

Scheduling

Binding

Datapath and Controller
Generation

HWacc RTL
Architecture

Constraints

Resource
library

Allocation

+

R
3

R
1

R
4

R
2

M
U

X
M

U
X

R
5

R
6

Controller

Datapath

-x

83

Conclusion (1/2)

 HLS allows to automatically generate RTL architectures
from an algorithmic description

 Different constraints and objectives
◊ Time, area, power…

 Different input languages
◊ C, C++, SystemC, Java, Ruby, Python…

 Different targets
◊ ASIC, FPGA, SoG

 Different uses
◊ Design, prototyping, HW-in-the-loop, DSE…

 Complex process which may vary and use different
approaches coming with their parameters

84

Conclusion (2/2)

 From on input description, many RTL architectures can
be designed
◊ Design Space Exploration

 Commercial tools
◊ Vivado HLS (Xilinx, ex. AutoESL), CatapultC (Siemens, ex

Mentor Graphics), CWB (NEC), Stratus (Cadence, ex. Forte
Design), Synphony (Synopsys, Ex. Synfora)…

 Academic tool
◊ GAUT, Leg-up, Bambu, UGH…

 Many remaining open challenges

 Active research field

 HLS is still alive!

85

References (1/3)

86

References (2/3)

87

References (3/3)

88

High-Level Synthesis: from theory to practice

Philippe COUSSY

philippe.coussy@univ-ubs.fr

2019, May 21

