Microarchitectural attacks
ARCHI 2019 - Lorient
Vianney Lapdtre
Université Bretagne Sud / Lab-STICC

May 23, 2019

Université

STICC [
Introduction to microarchitectural attacks < L

» Exploiting the behavior of modern computer systems to bypass
security primitives or get access to secret data

» Recent architectures have been mainly designed to reach high
performances

» To do so, several optimizations are necessary

P caches, speculation, prediction, ...

» These optimizations open new perspectives for attackers

2/46

@sncc U

Attacker's weapons

» Attacker

» infers information from a victim process via hardware usage
> executes unprivileged software pieces that execute sequences of
benign-looking actions

» These attacks can be hard to detect !

3 /46

@sncc U

Attacker's weapons

Execution time

Shared ressources

Branch prediction

Speculation

Out of order execution

Memory access pattern and memory access time

Faults injections (by exploiting microarchitecture features)

vV VY VY VY VvV VvVVvYYy

4/46

i sTICC 'mﬁm‘j:
From in-core to cross-core attacks <

Cache memory
hierarchy

B "oy
i

i o L1 nF
H hetch 1| I-Cache I-TLB =]

Instruction Scheduler

' t
‘ INT H INT H INT H MEM h
‘ FP H FP H SSE H SSE | ’
Execution Units el ,

Execution units &
"notable” shared resources branch predictor

5/46

From in-core to cross-core attacks
Cache memory i B
hierarchy ! -

" s
W
W

Registers }_,_,_‘ Registers }—»| Fetch ; -Cl;T:he |‘|F1LB v/ [onn]
|
Instruction Scheduler ‘ C:czhe TLLZB
I ; :
Lo J Lwr [wr | e ft——r) o e [o8
‘ FPH FP HSSEHSSE| _
Page Miss Handler (PMH)
Execution Units

Execution units &
"notable” shared resources branch predictor

» We should stop sharing a core !

/46

@sncc m:

From in-core to cross-core attacks

An Intel processor’s die

‘ NIC ‘ ‘ Platform Controller Hub | Interconnects

PCI-X DMI e

; | Chip Package
/0 | IOAPIC | /O Controller| | gore | | Core P Fackage,
3 . T I hi :
il cru -{uomning %] Grﬁiit'cs :
il Confi : LLC
I g L3Cache | |- —----------4---
i| Power || gpj Router I I Home Agent ||
i| Unit [[H
3 QPl Memory |} main
3 Packetizer Core | | Core Controller |! . memory
et e s e—tll -
QPI
CPU

"notable" shared resources

7/46

@sncc U

Inclusive caches

> Inclusive property

> Intel X86_64 architectures
» Last Level Cache (LLC) is a super set of L1 and L2

> data evicted from the LLC is also evicted from L1 and L2

» Thus, a core can evict lines in the private L1 of another
core

8 /46

Cache-based side channel attacks

Université

Université

@sncc ‘&:

Cache-based SCA important dates

First practical attack on
RSAin 2005 by Percival

Flush + Reload in 2014

First theoretical attack ,‘
in 1996 by Kocher / by Yarom and Falkner
—— f —_—
/ / /
/f / /
/ | eee / XX
/ /
/ ! /
— -
\
Y
\
\\
A,

N
First practical attack AES
in 2006 by Osvik et al.

10/46

@sncc U

Attacks ideas

» Caches are small
» because SRAM is expensive
» Timing variation when accessing a data

» When data is cached => Cache hit (i.e. fast access time)
» When data is not cached => cache miss (i.e. Slow access
time)

> An attacker will exploit this timing variations in order to
deduce information regarding a victim process

11 /46

Timing variation

18000 = | | 1 | | |] 1 | & |
16000 | =
14000 | =
42000, |5 Cache Memory -
10000 access time Access time _

8000

6000

Number of Accesses

4000

2000

1 1 | 1 1]
0 50 100 150 200 250 300 350 400 450 500
CPU Cycles

Results measured on Intel i5 for F+R Attack implementation.

12/46

FLUSH + RELOAD

Victim address space

Cache memory

Attacker address space

13 /46

Université

FLUSH + RELOAD @ ubs:

—

Victim address space Cache memory Attacker address space

» Step 1: Attacker maps shared library (shared memory, in cache)

14 /46

FLUSH + RELOAD

I e e e

\

—

Victim address space Cache memory Attacker address space

@sncc [ru

» Step 1: Attacker maps shared library (shared memory, in cache)
> Step 2: Attacker flushes the shared cache line

15 /46

FLUSH + RELOAD @ ubs:

M
-

Victim address space Cache memory Attacker address space

» Step 1: Attacker maps shared library (shared memory, in cache)
» Step 2: Attacker flushes the shared cache line
» Step 3: Victim loads the data

16 /46

Université

FLUSH + RELOAD @ ubs:

I -

—— | reloads

—

Victim address space Cache memory Attacker address space

Step 1: Attacker maps shared library (shared memory, in cache)
Step 2: Attacker flushes the shared cache line

Step 3: Victim loads the data

Step 4: Attacker reloads the data and times this access

vV vyVvyy

17 /46

FLUSH + RELOAD

» Pros
» fine granularity : 1 cache line
» Cons

» main assumption : shared memory

Université

18 /46

FLUSH + RELOAD << v

» Pros

» fine granularity : 1 cache line
» Cons

» main assumption : shared memory
» Countermeasure

» don't share sensitive library
» disable memory deduplication (e.g. virtual machine)

19 /46

PRIME + PROBE @ ubs:

Victim address space Cache memory Attacker address space

» In this scenario memory is not shared !

» collision due to the mapping in the LLC is exploited
» this mapping has been reverse-engineered !

1c. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex
Addressing Using Performance Counters”. In: RAID'15. 2015

20 /46

PRIME + PROBE @ ubs:

Victim address space Cache memory Attacker address space

» Step 1: Attacker fills the cache => PRIME

21/46

PRIME + PROBE

toads
- Igads

Victim address space Cache memory

Attacker address space

» Step 1: Attacker fills the cache => PRIME
» Step 2: Victims runs evicting some cache lines

22 /46

PRIME + PROBE

Cache miss

H

Cache hit

Victim address space

Cache memory Attacker address space

» Step 1: Attacker fills the cache => PRIME
» Step 2: Victims runs evicting some cache lines

» Step 3: Attacker access his data again => PROBE

@sncc [rm

23 /46

PRIME + PROBE @ ubs:

» cross-VM side channel attacks on crypto algorithms

» El Gamal (sliding window): full key recovery in 12 min. 2

» tracking user behavior in the browser, in JavaScript 3
» covert channels between virtual machines in the cloud *

2F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In:
S&P'15. 2015.

3Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications”. In: CCS’15. 2015.

4C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Rémer. “Hello from
the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS'17. 2017.
24 /46

PRIME + PROBE @ ubs:

» Countermeasure

> strong isolation

> stop sharing CPUs ?
> crypto in Hardware

» randomization
» Detection mechanisms

» hardware performance counters can help

25 /46

f

Meltdown e ubs:

MELTDOWN

» https://meltdownattack.com/ 5

5Lili\P, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,
and Hamburg, M. “Meltdown”. 2018
26 /46

@sncc U

Background: Out-of-order execution

» Optimization technique maximizing the utilization of all
execution units of a CPU

» without OoO : instructions are processed in the sequential order
» with 000 : the CPU executes instructions as soon as all
required resources are available

» In practice, OoO execution is coupled with speculative
execution

» processor's Qo0 logic processes instructions before the CPU is
certain whether the instruction will be needed and committed

27 / 46

STICC

Background: Speculative execution & Branch Prﬁctlon

» Speculative execution can refers (but not only) to an
instruction sequence following a branch

» Branch prediction units are used to obtain an educated guess of
which path (TAKEN / NOT TAKEN) will have to be executed

» Independent instructions that lie on the predicted path can be
executed in advance

» If the prediction was correct, their results can be directly used
» If the prediction was incorrect, their results are cleared

!

28 /46

6
.

@sncc L m“" °
L]

Background : Intel’s Skylake microarchitecture

. ITLB (¢
L1 Instruction Cache }—‘
Branch Instruction Fetch & PreDecode
E Predictor }
o Instruction Queue
g |
2 HOP Cache 4-Way Decode
= [oon Teor oo o Jor
X
s
| Allocation Queue ‘
BlE e s
v
@ Reorder buffer ‘
luur l..m- luDF lm lm lm lm lm
Q
= Scheduler
en
& = e = = e
g | 2] [z
5 5 5
= 3 B 1B |8
g 3 g *
2 S5 8
=
8a]
Execution Units
£ |Load Buffer| |Store Buffer|
23
52
S TLE STLB -
g 2 L1 Data Cache
3 L2 Cache -

29 /46

Background : Address spaces <Gy

» CPUs supports virtual address spaces in order to isolate
processes from each other

» A virtual address space is divided into a set of pages that can
be mapped to physical memory throuh a multi-level page
translation table

» These tables contains the virtual to physical mapping and the
protection properties (read/write/execute/user-access)

» On each context switch, the OS updates a special register with
the next process’ translation table

30 /46

Background : Address spaces @ ubs:

0 max

\ H Physical memory

‘ H User > > 3 Hi Kernel ‘

0 247 41]

» The virtual space is split into a user part and kernel part which
can be accessed when CPU is running in privileged mode only

» The entire physical memory is typically mapped in the kernel

» On Linux and OS X => via a direct-physical map

31/46

Starting to play. ..

...; // some code lines
raise_exception();

//call to access() is never reached
access(probe_array[data*x4096]) ;

Université

32/46

Starting to play. ..

...; // some code lines

raise_exception();

//call to access() is mever reached

access(probe_array[data*4096]) ;

» But...

EXCEPTION
HANDLER

<instr.>
<instr.>

[Terminate]

<instr.>
<instr.>

<instr.>
[Exception]

<instr.>
<instr.>
<instr.>

EXECUTED

EXECUTED

OUT OF

ORDER

@sncc [rm

33/46

Starting to play. .. e ys:

<instr.>
<instr.> a
5
2
EXCEPTION . %
HANDLER <instr.>
<instr.> [Exception]
<imnstr.> <instr.> c
El
[Terminate] <instr.> E ; E
=}
<instr.> g °

» Of course, there is no visible effect en registers or memory
» But, microarchitectural side effects exist

» due to OoO execution, referenced memory is stored in the
cache
> it opens the door for cache-based SCA

34 /46

Starting to play .. using F+R @sncc lym:

raise_exception();
//call to access() is never reached
access(probe_array[data*x4096]) ;

» Considering probe_array is of type char and memory pages size
is 4kB

» F+R approach can be used to determine which page has been
retrieved from the memory

> so, we deduce the value of ‘data’

500 ‘
5 400

300

200

L ! I 4
0 50 100 150 200 250

Page

Access time
[cycles]

35/46

@sncc [ru :

Meltdown : Overview

I 1
| Exception Handling/ :
! Suppression :
I 1
' Transient Accessed !
: . Secret @™ | |
| Instructions |
I M 1
: Microarchitectural :
| State Change 1
| = [
| : g I
| iz |
! Section 4.1 =% 1

Transfer|(Covert Channel)

v

| I
| I
| I
| Architectural Recovery | Recovered !
| State Secret @ | !
| 1
| 1

Section 4.2

36 /46

@sncc U

Meltdown : Executing Transient instructions

» Trying to access user-inaccessible pages triggers an exception
which generally terminates the application

> the attacker has to manage this exception while targeting a
secret stored at a inaccessible address

» Two approaches

» exception handling and exception suppression

37 /46

@sncc [ru:

Meltdown : Executing Transient instructions

» Exception handling: catch the exception after executiong the
transient instruction sequence
» by forking the attacking process before accessing the invalid
memory location

» the child process only accesses the invalid memory location while the parent process
recovers the secret by observing the microarchitectural side effects

> by installing a signal handler that is executed when the targeted
exception is triggered

P this allows the execution of the transient instruction sequence and prevent the application
from crashing

38 /46

@sncc [r“:

Meltdown : Executing Transient instructions

» Exception suppression: prevent the exception from occurring

» by exploiting transactional memory (TSX) which groups
memory accesses into one seemingly atomic operation

P when an exception occurs within the transaction, the architectural state is reseted and the
program execution continues without disruption

» by exploiting branch prediction to speculatively execute
instructions that would not be executed in the correct execution
path

P this approach requires a training of the branch predictor

39 /46

@sncc U

Meltdown : Attack description

» Step 1: The content of an attacker-chosen memory location,
which is inaccessible to the attacker, is loaded into a register

» Step 2: A transient instruction accesses a cache line based on
the secret content of the register

» Step 3: The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the chosen
memory location.

1, rcx = kernel address

2 ; rTbz = probe array

3 retry:

4 mov al, byte [rcx]

5 shl rax, Oxc

6 Jjz retry

7 mov rbx, qword [rbx + rax]

40 /46

Meltdown : Attack description

1, rcxz = kernel address
probe array

2 ; rTbx
3 retry:
4 mov al, byte [rcx]

5 shl rax, Oxc ; * 4k (page size)
6 Jz retry

7 mov rbx, qword [rbx + rax]

» Step 1: Reading the secret

» Load the targeted byte value into AL (least significant bit of the
RAX register)
» transient instruction sequence (line 5-7) are already decoded

and allocated

P As soon as the targeted byte is observed on the data bus, these instruction begin their
execution

» MOV instruction of line 4 leads to an exception => race
condition between raising this exception and step 2

41 /46

Meltdown : Attack description e ybs:

1 ; rcxz = kernel address

2 ; Tbx = probe array

3 retry:

4 mov al, byte [rcx]

5 shl rax, Oxc ; * 4k (page size)
6 Jjz retry

7 mov rbx, qword [rbx + rax]

» Step 2 : Transmitting the secret

» If the transient sequence instruction is executed before the
MOV is retired, it can be used to transmit the secret

> ensuring that the probe array is not cached
P using an indirect memory access dependent of the secret

42 /46

Meltdown : Attack description e ybs:

1, rcx = kernel address

2 ; Tbz = probe array

3 retry:

4 mov al, byte [rcx]

5 shl rax, Oxc ; * 4k (page size)
6 Jjz retry

7 mov rbx, qword [rbx + rax]

> Step 3 : Receiving the secret

» using a microarchitectural SCA => F+R in meltdown
» When the step 2 is a success, a unique cache line of the probe
array is cached

P F-+Ris used to determined the position (i.e the secret !) of this cache line

43 /46

Meltdown : Attack description ¢ uos

» These 3 steps are repeated in order to dump the entire physical
memory

» Since accesing the kernel memory raises an exception it is
necessary to use an Exception handling or an Exception
suppression method

44 /46

Meltdown : Mitigation G ybs:

» Hardware approach

» disable out-of-order execution

» serializing the permission check and the register fetch

» More realistic : introduce a hard split of user space and kernel
space

» Software approach

» Kaiser : kernel modifications to not have the kernel mapped in
the user space

> originally developed to prevent SCA breaking KASLR

P called Kenel Page-Table isolation (PKTI) in Linux kernel

> still has some limitations (several privileged memory location have to be mapped in user
space)

6Gruss, D., Lipp, M., Schwarz , M., Fellner, R., Maurice, C., AND Mangard, S. “KASLR is Dead: Long Live
KASLR". In International Symposium on Engineering Secure Software and Systems (2017), Springer, pp. 161-176.
45 /46

STICC [
Conclusion < uos

» Attacks on microarchitectures is a hot topic

» Futur processors will have to be designed taking into account
these leaks

» Software designers implementing security functions have to
learn about the underlying microarchitecture in order to provide
pieces of code that take into account the hardware behavior

» For strong security requirements, relying on dedicated hardware
could enhance the global security of the system

46 /46

