
Microarchitectural attacks
ARCHI 2019 - Lorient

Vianney Lapôtre

Université Bretagne Sud / Lab-STICC

May 23, 2019

1 / 46



Introduction to microarchitectural attacks

I Exploiting the behavior of modern computer systems to bypass
security primitives or get access to secret data

I Recent architectures have been mainly designed to reach high
performances

I To do so, several optimizations are necessary
I caches, speculation, prediction, . . .

I These optimizations open new perspectives for attackers

2 / 46



Attacker’s weapons

I Attacker
I infers information from a victim process via hardware usage
I executes unprivileged software pieces that execute sequences of

benign-looking actions
I These attacks can be hard to detect !

3 / 46



Attacker’s weapons

I Execution time
I Shared ressources
I Branch prediction
I Speculation
I Out of order execution
I Memory access pattern and memory access time
I Faults injections (by exploiting microarchitecture features)
I . . .

4 / 46



From in-core to cross-core attacks

5 / 46



From in-core to cross-core attacks

I We should stop sharing a core !

6 / 46



From in-core to cross-core attacks

7 / 46



Inclusive caches

I Inclusive property
I Intel X86_64 architectures
I Last Level Cache (LLC) is a super set of L1 and L2

I data evicted from the LLC is also evicted from L1 and L2

I Thus, a core can evict lines in the private L1 of another
core

8 / 46



Cache-based side channel attacks

9 / 46



Cache-based SCA important dates

10 / 46



Attacks ideas

I Caches are small
I because SRAM is expensive

I Timing variation when accessing a data
I When data is cached => Cache hit (i.e. fast access time)
I When data is not cached => cache miss (i.e. Slow access

time)

I An attacker will exploit this timing variations in order to
deduce information regarding a victim process

11 / 46



Timing variation

12 / 46



FLUSH + RELOAD

13 / 46



FLUSH + RELOAD

I Step 1: Attacker maps shared library (shared memory, in cache)

14 / 46



FLUSH + RELOAD

I Step 1: Attacker maps shared library (shared memory, in cache)
I Step 2: Attacker flushes the shared cache line

15 / 46



FLUSH + RELOAD

I Step 1: Attacker maps shared library (shared memory, in cache)
I Step 2: Attacker flushes the shared cache line
I Step 3: Victim loads the data

16 / 46



FLUSH + RELOAD

I Step 1: Attacker maps shared library (shared memory, in cache)
I Step 2: Attacker flushes the shared cache line
I Step 3: Victim loads the data
I Step 4: Attacker reloads the data and times this access

17 / 46



FLUSH + RELOAD

I Pros
I fine granularity : 1 cache line

I Cons
I main assumption : shared memory

18 / 46



FLUSH + RELOAD

I Pros
I fine granularity : 1 cache line

I Cons
I main assumption : shared memory

I Countermeasure
I don’t share sensitive library
I disable memory deduplication (e.g. virtual machine)

19 / 46



PRIME + PROBE

I In this scenario memory is not shared !
I collision due to the mapping in the LLC is exploited
I this mapping has been reverse-engineered 1

1C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. “Reverse Engineering Intel Complex
Addressing Using Performance Counters”. In: RAID’15. 2015

20 / 46



PRIME + PROBE

I Step 1: Attacker fills the cache => PRIME

21 / 46



PRIME + PROBE

I Step 1: Attacker fills the cache => PRIME
I Step 2: Victims runs evicting some cache lines

22 / 46



PRIME + PROBE

I Step 1: Attacker fills the cache => PRIME
I Step 2: Victims runs evicting some cache lines
I Step 3: Attacker access his data again => PROBE

23 / 46



PRIME + PROBE

I cross-VM side channel attacks on crypto algorithms
I El Gamal (sliding window): full key recovery in 12 min. 2

I tracking user behavior in the browser, in JavaScript 3

I covert channels between virtual machines in the cloud 4

2F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks are Practical”. In:
S&P’15. 2015.

3Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications”. In: CCS’15. 2015.

4C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano, S. Mangard, and K. Römer. “Hello from
the Other Side: SSH over Robust Cache Covert Channels in the Cloud”. In: NDSS’17. 2017.

24 / 46



PRIME + PROBE

I Countermeasure
I strong isolation

I stop sharing CPUs ?
I crypto in Hardware

I randomization

I Detection mechanisms
I hardware performance counters can help

25 / 46



Meltdown

I https://meltdownattack.com/ 5

5Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.,
and Hamburg, M. “Meltdown”. 2018

26 / 46



Background: Out-of-order execution

I Optimization technique maximizing the utilization of all
execution units of a CPU

I without OoO : instructions are processed in the sequential order
I with OoO : the CPU executes instructions as soon as all

required resources are available

I In practice, OoO execution is coupled with speculative
execution

I processor’s OoO logic processes instructions before the CPU is
certain whether the instruction will be needed and committed

27 / 46



Background: Speculative execution & Branch Prediction

I Speculative execution can refers (but not only) to an
instruction sequence following a branch

I Branch prediction units are used to obtain an educated guess of
which path (TAKEN / NOT TAKEN) will have to be executed

I Independent instructions that lie on the predicted path can be
executed in advance

I If the prediction was correct, their results can be directly used
I If the prediction was incorrect, their results are cleared

28 / 46



Background : Intel’s Skylake microarchitecture

29 / 46



Background : Address spaces

I CPUs supports virtual address spaces in order to isolate
processes from each other

I A virtual address space is divided into a set of pages that can
be mapped to physical memory throuh a multi-level page
translation table

I These tables contains the virtual to physical mapping and the
protection properties (read/write/execute/user-access)

I On each context switch, the OS updates a special register with
the next process’ translation table

30 / 46



Background : Address spaces

I The virtual space is split into a user part and kernel part which
can be accessed when CPU is running in privileged mode only

I The entire physical memory is typically mapped in the kernel
I On Linux and OS X => via a direct-physical map

31 / 46



Starting to play. . .

...; // some code lines
raise_exception();
//call to access() is never reached
access(probe_array[data*4096]);

32 / 46



Starting to play. . .

...; // some code lines
raise_exception();
//call to access() is never reached
access(probe_array[data*4096]);

I But. . .

33 / 46



Starting to play. . .

I Of course, there is no visible effect en registers or memory
I But, microarchitectural side effects exist

I due to OoO execution, referenced memory is stored in the
cache

I it opens the door for cache-based SCA

34 / 46



Starting to play. . . using F+R

raise_exception();
//call to access() is never reached
access(probe_array[data*4096]);

I Considering probe_array is of type char and memory pages size
is 4kB

I F+R approach can be used to determine which page has been
retrieved from the memory

I so, we deduce the value of ‘data’

35 / 46



Meltdown : Overview

36 / 46



Meltdown : Executing Transient instructions

I Trying to access user-inaccessible pages triggers an exception
which generally terminates the application

I the attacker has to manage this exception while targeting a
secret stored at a inaccessible address

I Two approaches
I exception handling and exception suppression

37 / 46



Meltdown : Executing Transient instructions

I Exception handling: catch the exception after executiong the
transient instruction sequence

I by forking the attacking process before accessing the invalid
memory location

I the child process only accesses the invalid memory location while the parent process
recovers the secret by observing the microarchitectural side effects

I by installing a signal handler that is executed when the targeted
exception is triggered

I this allows the execution of the transient instruction sequence and prevent the application
from crashing

38 / 46



Meltdown : Executing Transient instructions

I Exception suppression: prevent the exception from occurring
I by exploiting transactional memory (TSX) which groups

memory accesses into one seemingly atomic operation
I when an exception occurs within the transaction, the architectural state is reseted and the

program execution continues without disruption

I by exploiting branch prediction to speculatively execute
instructions that would not be executed in the correct execution
path

I this approach requires a training of the branch predictor

39 / 46



Meltdown : Attack description

I Step 1: The content of an attacker-chosen memory location,
which is inaccessible to the attacker, is loaded into a register

I Step 2: A transient instruction accesses a cache line based on
the secret content of the register

I Step 3: The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the chosen
memory location.

1 ; rcx = kernel address
2 ; rbx = probe array
3 retry:
4 mov al, byte [rcx]
5 shl rax, 0xc
6 jz retry
7 mov rbx, qword [rbx + rax]

40 / 46



Meltdown : Attack description

1 ; rcx = kernel address
2 ; rbx = probe array
3 retry:
4 mov al, byte [rcx]
5 shl rax, 0xc ; * 4k (page size)
6 jz retry
7 mov rbx, qword [rbx + rax]

I Step 1: Reading the secret
I Load the targeted byte value into AL (least significant bit of the

RAX register)
I transient instruction sequence (line 5-7) are already decoded

and allocated
I As soon as the targeted byte is observed on the data bus, these instruction begin their

execution

I MOV instruction of line 4 leads to an exception => race
condition between raising this exception and step 2

41 / 46



Meltdown : Attack description

1 ; rcx = kernel address
2 ; rbx = probe array
3 retry:
4 mov al, byte [rcx]
5 shl rax, 0xc ; * 4k (page size)
6 jz retry
7 mov rbx, qword [rbx + rax]

I Step 2 : Transmitting the secret
I If the transient sequence instruction is executed before the

MOV is retired, it can be used to transmit the secret
I ensuring that the probe array is not cached
I using an indirect memory access dependent of the secret

42 / 46



Meltdown : Attack description

1 ; rcx = kernel address
2 ; rbx = probe array
3 retry:
4 mov al, byte [rcx]
5 shl rax, 0xc ; * 4k (page size)
6 jz retry
7 mov rbx, qword [rbx + rax]

I Step 3 : Receiving the secret
I using a microarchitectural SCA => F+R in meltdown
I When the step 2 is a success, a unique cache line of the probe

array is cached
I F+R is used to determined the position (i.e the secret !) of this cache line

43 / 46



Meltdown : Attack description

I These 3 steps are repeated in order to dump the entire physical
memory

I Since accesing the kernel memory raises an exception it is
necessary to use an Exception handling or an Exception
suppression method

44 / 46



Meltdown : Mitigation

I Hardware approach
I disable out-of-order execution
I serializing the permission check and the register fetch
I More realistic : introduce a hard split of user space and kernel

space

I Software approach
I Kaiser 6: kernel modifications to not have the kernel mapped in

the user space
I originally developed to prevent SCA breaking KASLR
I called Kenel Page-Table isolation (PKTI) in Linux kernel
I still has some limitations (several privileged memory location have to be mapped in user

space)

6Gruss, D., Lipp, M., Schwarz , M., Fellner, R., Maurice, C., AND Mangard, S. “KASLR is Dead: Long Live
KASLR”. In International Symposium on Engineering Secure Software and Systems (2017), Springer, pp. 161–176.

45 / 46



Conclusion

I Attacks on microarchitectures is a hot topic
I Futur processors will have to be designed taking into account

these leaks
I Software designers implementing security functions have to

learn about the underlying microarchitecture in order to provide
pieces of code that take into account the hardware behavior

I For strong security requirements, relying on dedicated hardware
could enhance the global security of the system

46 / 46


