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Scheduling in GPU’s
• Stream are scheduled among GPUs 

• Kernel of a Stream are scheduler on a given 
GPUs using FIFO 

• Block are scheduled among SMs with a round 
robin algorithm 

• Warp are scheduled to SIMT processor using a 
round robin algorithm with priority and aging 

• Data dependencies are handle using a 
scoreboard
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Topics covered

• Definition of the scheduling problem 

• Scheduling on superscalar architecture 

• Scheduling on vector architecture 

• How to schedule 

• New problems



Principle of scheduling 

• Complexity of Networks, Computers, Processors & 
Applications is increasing  

• Need of efficient scheduling at each level 



Level of Scheduling
• Intra-computer 

• Local scheduling  
(memory hierarchy, device, functional 
unit…) 

• Computer level 

• Among cores 
(threads) 

• Inter-computer 

• Global scheduling  
(tasks)

Memory hierarchy

Device/Functional Unit

Multiprocessor

Multiple computer



The scheduling problem:
the 5 components

Set 1

Set 2

1. Events 
Smallest indivisible schedulable 
entity 

2. Environment 
Characteristics and capabilities 
of the surrounding that will impact 
schedule 

3. Requirement 
Real time deadline, improvement 
in performance 

4. Schedule 
Set of ordered pairs of events 
and times  

5. Scheduler 
Takes events, Environment & 
requirement and produce a 
schedule

(tasks, job, inst…)

(processors, core, FU…)
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Topics covered

• Definition of the scheduling problem 

• Scheduling on superscalar architecture 

• Scheduling on vector architecture 

• How to schedule 

• New problems



Scheduling on superscalar 
architecture

• Use available transistors to 
do more work per unit of time 

• Issue multiple instruction per 
clock cycle,  
deeper pipeline to increase 
ILP 

• Parallelism = Troughput * 
Latency

Throughput per Cycle

Latency in Cycles

1 Operation



Instruction Level 
Parallelism (ILP)

• Increase in instruction width and depth of machine pipeline 

• Increase of independent instruction required to keep processor busy 

• Increase the number of partially in flight executed instructions 

• Difficult to build machines that control large numbers of in-flight 
instructions 

• Either for dynamically or statically schedule machine



Dynamically scheduled 
machine

• Growth of 

• Instruction windows 

• Reorder buffer 

• Rename Register files 

• Number of port on each of those element must grow 
with the issue width 

• The logic to track dependencies in-flight instruction 
grow cubically in the number of instructions



Control logic scaling

• Each issued inst. must make interlock checks against W*L inst.,  
Growth in interlock ~W*(W*L) 

• In-order machines: L related to pipeline latency 

• Out-of-order machines: L related to inst. buffer (ROB, …) 

• Increase in W  

• => increase in inst. windows to find enough //  

• => greater L 

• => Out-Of-Order logic grows  in ~W
3

Issue Width W

Lifetime L

Issue Group

Previously 
Issued  

Instructions



Statically scheduled 
machine (VLIW)

• Shift most of the schedule burden to the compiler 

• To support more in-flight instructions, requires more 
registers, more ports per register, more hazard interlock 
logic 

• Results in a quadratic increase of complexity and circuit 
size



Topics covered

• Definition of the scheduling problem 

• Scheduling on superscalar architecture 

• Scheduling on vector architecture 

• How to schedule 

• New problems



Vector architecture
• Basic idea: 

• Read set of data elements into « vector registers » 

• Operate on those registers 

• Disperse the results back into memory 

• Registers are controlled by compiler 

• Used to hide memory latency 

• Leverage memory bandwidth



Vector processing (1)
• Vector processing solves some problems related to ILP logic 

1. A single instruction specifies a great deal of work  
(Execute an entire loop) 

• Reduce instruction fetch and decode bandwidth needed to keep multiple deeply pipeline FU busy 

2. Compiler/programmer indicates that the computation of each results in a vector is 
independent of the computation of other results in the same vector 

• Elements in a vector can be computed using an array of parallel FU or single very deeply pipeline 
FU or any intermediate configuration



Vector processing (2)
3. Hardware need only check for data hazards between two instructions once 

per vector operand, not for every element in a vector. 

• Reduce control logic 

4. Vector instructions that access memory have known access pattern 

• Adjacent data within a vector can be fetch from a set of heavily interleaved 
memory banks  

• Access latency to main memory is seen only once, not for every element 

5. Loops are replaced by vector instruction whose behavior is predetermined, 
control hazard that would arise from loop branch are non-existent 

6. Traditional cache are replaced by prefetching and blocking technics to 
increase locality



Short vector: SIMD
• x86 processors: 

• Expect 2 additional cores per chip per year 

• SIMD width to double every four years 

• Potential speedup from SIMD to be twice that from MIMD 

• Media applications operate on data types narrower than the native word size 

• Example:  disconnect carry chains to “partition” adder 

• Limitations, compared to vector instructions: 

• Number of data operands encoded into op code 

• No sophisticated addressing modes (strided, scatter-gather) 

• No mask registers 

• Operands must be consecutive and aligned memory locations.



Long vector
• Today’s die are big enough to 

embed thousand’s of FU 

• Problem: 

• Managing vector of 1000’s elements 

• Issuing instructions over 1000’s FU 

• Memory hierarchy accesses, 

• … 

• Solution: Clustering

Instruction issue

1000’s FU

Register File

Memory Hierarchie



Long vector: Clustering

• Divide machine into cluster of local register files and 
local functional units 

• Lower bandwidth / Higher latency interconnect 
between clusters 

• Software responsible of correct mapping of 
computations and minimization of communication 
overhead
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DRAM DRAM DRAMDRAM DRAM DRAM DRAMDRAM

Long vector: Clustering

RF

Inst. 
issue

RF

Inst. 
issue

G80

SMSM

RF

Inst. 
issue

RF

Inst. 
issue

SMSM

RF

Inst. 
issue

RF

Inst. 
issue

SMSM

RF

Inst. 
issue

RF

Inst. 
issue

SMSM

RF

Inst. 
issue

RF

Inst. 
issue

SMSM

RF

Inst. 
issue

RF

Inst. 
issue

SMSM

RF

Inst. 
issue

RF

Inst. 
issue



SMSM
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CPU
CUDA execution (1)
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Kernel 3



CUDA execution (2)
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CUDA execution (3)
GPU 1
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• TLB, dirty data in caches 
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SM

Warp instruction queue

Block 12

CUDA execution (4)
Block 0

Thread 
1

Thread 
2 … Thread 
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CUDA execution (5)
Instruction Cache

Odd Warp  
Instruction Queues

Even Warp  
Instruction Queues

Scoreboarded Warp 
Scheduler

Scoreboarded Warp 
Scheduler

Register File

32 bit 
ALU 
x16

32 bit 
FPU 
x16

SFU 
x4

32 bit 
FPU 
x16

32 bit 
ALU 
x16

64 KB L1D, Shared Memory

1/2 warp instruction 1/2 warp instruction

1/2 warp instruction1/2 warp instruction

Port 0 Port 1

48 queues, 
1 for each warp

Scoreboard:
Track availability of operands 
handle structural hazards (FP64, 
SFU, …) 

Scheduler complexity:
Large variety of instructions with 
different execution latency (factor 4) 

Handle priority (ex: register usage), 
ready to execute warp, mark certain 
queues as ‘not ready’ based on 
expected latency of instruction

FERMI



Subtleties (6)
• Operand collector / Temporal register cache 

• Hardware which read in many register values and buffer them 
for later consumption. 

• Could be useful for broadcasting values to FU 

• Result queue 

• Similar concept but for results 

• Could be used for forwarding results to FU (CPU)



Evolution: Fermi, Kepler, 
Maxwell

Simpler scoreboard  
• No register dependency analysis 
• Only keep track of long latency inst.



Some figures

Maximum number of threads per block 1024

Maximum number of resident blocks per 
multiprocessor 8-32

Maximum number of resident warps per 
multiprocessor 48-64

Number of 32-bit registers per 
multiprocessor 32K-128K
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Scheduling in GPU’s
• Stream are scheduled among GPUs  

ex: Red/Black tree (Used at OS Level) 

• Kernel of a Stream are scheduler on a given 
GPUs using FIFO 

• Block are scheduled among SMs with a round 
robin algorithm 

• Warp are scheduled to SIMT processor using a 
round robin algorithm with priority and aging 

• Data dependencies are handle using a 
scoreboard
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Scheduling at OS level
• Example: Completely Fair Scheduler  

(CFS, Linux kernel 2.6.23) 

• Maximize CPU usage & performance 

• Based on Red/Black tree indexed with execution 
time

Average Worst case

Space O(n) O(n)

Search O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)



Scoreboard
• Keeps track of dependencies, state or operations 

• Instruction status (which steps the instruction is in) 

• Issue, Read Operands, Execution, Write Results 

• Function unit status (For each functional unit) 

• Busy: Indicates whether the unit is busy or not 

• Op: Operation to perform in the unit (e.g., + or –) 

• Fi: Destination register 

• Fj, Fk: Source-register numbers 

• Qj, Qk: Functional units producing source registers Fj, Fk 

• Rj, Rk: Flags indicating when Fj, Fk are ready 

• Register result status—Indicates which functional unit will write each register, 

• If one exists. Blank when no pending instructions will write that register 





FIFO
• First implementation in electronics of FIFO: 1969 Fairchild Semiconductor by Peter Alfke. 

• Queues processes in the order that they arrive in the queue 

• Minimal overhead 

• No prioritization 

• Implementations 

• Hardware Shift Register 

• Memory Structure 

• Circular buffer 

• List 

• Hardware 

• Set of Read and Write pointers, Storage (dual-port SRAM, flip-flops, latches), Control logic 

• Synchronous (same clock) 

• Asynchronous (stability pb, use of gray code for read/write pointers to ensure correct flag) 

• Flags : full/empty, almost full, almost empty, …

000

001

011

010

110

111

101

100

Head Tail



FIFO (2)
• FIFO Empty Flag: 

• When the read address register reaches the write address 
register, the FIFO triggers the Empty signal. 

• FIFO Full Flag: 

• When the write address register reaches the read address 
register, the FIFO triggers the FULL signal. 

• Both case Read @ == Write @ 

• Distinguish both cases: add 1 bit to both @ inverted each 
time the @ wraps 

• R@ = W@ => FIFO empty 

• LSB( R@ ) = LSB( W@ ) => FIFO full



Priority
• Idea:  

Schedule the highest-priority 
eligible element first  

• Implementation: (Static 
version) 

• Rely on a priority enforcer/
encoder chain of elements with 
a ripple signal « Nobody above 
is eligible ». Ripple signal can 
be replaced with a tree of OR 
gates to detects the presence of 
eligible entries (carry 
lookahead) 

Element 1 0

Element 2 0

Element 3 1

Element 4 0

Element 5 1

…

Element N 1

Eligibility  
Flags Priority

Low

High

S



Priority encoder
• Each unit i send a request by setting 

Ai, and receive a granting bit Yi 

• Y1 = A1, 

• Y2 = A2 . A1, 

• Y3 = A3 . A2 . A1, 

• … 

• YN = AN . AN-1 . … .A2 . A1,

Priority 
encoder

A1

A2

AN

Y1

Y2

YN



Priority encoder

Tradeoffs between delay  and gate count



Round Robin
• Time slices are assigned to each process in equal portions and in 

circular order. 

• No priority 

• Simple, easy to implement, starvation free  

• Known worst case wait time = function of the number of element -1

P0

P1

P2

P3

P0

P1

P2

P3



Round-Robin (1)
• 1 element served each 

cycle 

• Circular encoder/enforcer 

• Each element has the 
capability to break the 
chain and become 
« head » element (similar 
to carry chain)

Eligibility 
Flags

Last 
scheduled

Position  
Mask

schedule 
now



Round Robin (2)
• Round Robin Matching algorithm  

2-dimensional round-robin scheduler (2DDR)

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

In
pu

ts

Ouputs

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

Accept all 
request on 

1st 
diagonal

Ignore 
other 

requests 
on same 

row/
column of 
accepted 
requests

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

Accept all 
request on 

2nd 
diagonal 

and ignore 
other …

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

…



Round-Robin with 
Fairness

• The first diagonal should be selected in a round 
robin fashion among {0,1,…N-1} 

• Order of applying next diagonals should not always 
be « left-to-rigth »  

• next_diagonal = (rev_diagonal + offset) mod M 

• offset = ID of first_diagonal +1 

• M = smallest prime number >= N+1

 LaMaire, DN Serpanos - IEEE/ACM 
Transactions on Networking (TON), 1994



Aging
• Implementation N°0: (2 elements) 

• 1 bit counter (alternate between 0 and 1) 

• Implementation #1: 

• 64 bit counter, incremented after every instruction 

• Select the element with the oldest counter and reset it.  
rely on sorting networks 

• Implementation #2: 

• Use a matrix M of n x n element initialized at 0 

• Oldest : Select row k with lowest number of 1  

• Set all bits in row k of M to 1 

• Set all bits in column k of M to 0

0 1



New problems
• Loss of determinism 

• Complicates debugging, test of 
correctness 

• Key question 

• How to avoid structural hazard 
and those problems at 
reasonable cost



Determinism

• Various solutions 

• Langage (SHIM, NESL, HASKELL, …)  

• Compiler  

• Software /Algorithm 

• Hardware (Grace, Dthreads)



Example: Algorithmic level
• Numerical issue with FP numbers 

• Non-associativity of FP Numbers  
(0.1 + 100) - 100 != 0.1 + (100-100) 

• Numerical reproducibility 
• Weak  

• Enforce an execution order 

• Ex: GPUBurn 

• Strong  
• Independent of the arch., ~correctly rounded 

• Ex: Hierarchical Kulisch Accumulator 



Conclusions
• GPU’s aren’t simple processors 

• Scheduling is as challenging as in traditional CPU 

• Hardware solutions mostly unknown (only guess) 

• Trend 

• Toward simpler solution  
(ex: simpler scoreboard in Kepler) 

• There is a need for deterministic execution 



Links
• Hardware description 

• Rise of the Graphics Processor: http://ieeexplore.ieee.org/ieee_pilot/articles/96jproc05/96jproc05-blythe/article.html 

• http://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units  

• http://www.realworldtech.com/fermi/ 

• http://www.clubic.com/article-332014-3-nvidia-geforce-gtx-480-directx-11-nvidia.html 

• http://www.anandtech.com/  

• http://www.beyond3d.com/  … 

• Scheduling 

• Network architecture (Manolis Katevenis): http://www.csd.uoc.gr/~hy534/  

• « An Investigation of the performance of various dynamic scheduling techniques »: http://hps.ece.utexas.edu/pub/
butler_micro25.pdf 

• Books


