
The instruction scheduling
problem

…with a focus on GPU

Ecole Thématique ARCHI 2015
David Defour

Scheduling in GPU’s
• Stream are scheduled among GPUs

• Kernel of a Stream are scheduler on a given
GPUs using FIFO

• Block are scheduled among SMs with a round
robin algorithm

• Warp are scheduled to SIMT processor using a
round robin algorithm with priority and aging

• Data dependencies are handle using a
scoreboard

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Topics covered

• Definition of the scheduling problem

• Scheduling on superscalar architecture

• Scheduling on vector architecture

• How to schedule

• New problems

Principle of scheduling

• Complexity of Networks, Computers, Processors &
Applications is increasing

• Need of efficient scheduling at each level

Level of Scheduling
• Intra-computer

• Local scheduling  
(memory hierarchy, device, functional
unit…)

• Computer level

• Among cores 
(threads)

• Inter-computer

• Global scheduling  
(tasks)

Memory hierarchy

Device/Functional Unit

Multiprocessor

Multiple computer

The scheduling problem:
the 5 components

Set 1

Set 2

1. Events 
Smallest indivisible schedulable
entity

2. Environment 
Characteristics and capabilities
of the surrounding that will impact
schedule

3. Requirement 
Real time deadline, improvement
in performance

4. Schedule 
Set of ordered pairs of events
and times

5. Scheduler 
Takes events, Environment &
requirement and produce a
schedule

(tasks, job, inst…)

(processors, core, FU…)

The scheduling problem:
the 5 components

Set 1

Set 2

Processor

Interconnect

Processing power 1. Events 
Smallest indivisible schedulable
entity

2. Environment 
Characteristics and capabilities
of the surrounding that will impact
schedule

3. Requirement 
Real time deadline, improvement
in performance

4. Schedule 
Set of ordered pairs of events
and times

5. Scheduler 
Takes events, Environment &
requirement and produce a
schedule

(tasks, job, inst…)

(processors, core, FU…)

The scheduling problem:
the 5 components

Set 1

Set 2

Processor

Interconnect

Processing power

Objectives  
(performance, power consumption, ..)

1. Events 
Smallest indivisible schedulable
entity

2. Environment 
Characteristics and capabilities
of the surrounding that will impact
schedule

3. Requirement 
Real time deadline, improvement
in performance

4. Schedule 
Set of ordered pairs of events
and times

5. Scheduler 
Takes events, Environment &
requirement and produce a
schedule

(tasks, job, inst…)

(processors, core, FU…)

The scheduling problem:
the 5 components

Mapping 
Schedule

Set 1

Set 2

Processor

Interconnect

Processing power

Objectives  
(performance, power consumption, ..)

1. Events 
Smallest indivisible schedulable
entity

2. Environment 
Characteristics and capabilities
of the surrounding that will impact
schedule

3. Requirement 
Real time deadline, improvement
in performance

4. Schedule 
Set of ordered pairs of events
and times

5. Scheduler 
Takes events, Environment &
requirement and produce a
schedule

(tasks, job, inst…)

(processors, core, FU…)

The scheduling problem:
the 5 components

Scheduler

Mapping 
Schedule

Set 1

Set 2

Processor

Interconnect

Processing power

Objectives  
(performance, power consumption, ..)

1. Events 
Smallest indivisible schedulable
entity

2. Environment 
Characteristics and capabilities
of the surrounding that will impact
schedule

3. Requirement 
Real time deadline, improvement
in performance

4. Schedule 
Set of ordered pairs of events
and times

5. Scheduler 
Takes events, Environment &
requirement and produce a
schedule

(tasks, job, inst…)

(processors, core, FU…)

Topics covered

• Definition of the scheduling problem

• Scheduling on superscalar architecture

• Scheduling on vector architecture

• How to schedule

• New problems

Scheduling on superscalar
architecture

• Use available transistors to
do more work per unit of time

• Issue multiple instruction per
clock cycle,  
deeper pipeline to increase
ILP

• Parallelism = Troughput *
Latency

Throughput per Cycle

Latency in Cycles

1 Operation

Instruction Level
Parallelism (ILP)

• Increase in instruction width and depth of machine pipeline

• Increase of independent instruction required to keep processor busy

• Increase the number of partially in flight executed instructions

• Difficult to build machines that control large numbers of in-flight
instructions

• Either for dynamically or statically schedule machine

Dynamically scheduled
machine

• Growth of

• Instruction windows

• Reorder buffer

• Rename Register files

• Number of port on each of those element must grow
with the issue width

• The logic to track dependencies in-flight instruction
grow cubically in the number of instructions

Control logic scaling

• Each issued inst. must make interlock checks against W*L inst.,  
Growth in interlock ~W*(W*L)

• In-order machines: L related to pipeline latency

• Out-of-order machines: L related to inst. buffer (ROB, …)

• Increase in W

• => increase in inst. windows to find enough //

• => greater L

• => Out-Of-Order logic grows in ~W
3

Issue Width W

Lifetime L

Issue Group

Previously
Issued

Instructions

Statically scheduled
machine (VLIW)

• Shift most of the schedule burden to the compiler

• To support more in-flight instructions, requires more
registers, more ports per register, more hazard interlock
logic

• Results in a quadratic increase of complexity and circuit
size

Topics covered

• Definition of the scheduling problem

• Scheduling on superscalar architecture

• Scheduling on vector architecture

• How to schedule

• New problems

Vector architecture
• Basic idea:

• Read set of data elements into « vector registers »

• Operate on those registers

• Disperse the results back into memory

• Registers are controlled by compiler

• Used to hide memory latency

• Leverage memory bandwidth

Vector processing (1)
• Vector processing solves some problems related to ILP logic

1. A single instruction specifies a great deal of work  
(Execute an entire loop)

• Reduce instruction fetch and decode bandwidth needed to keep multiple deeply pipeline FU busy

2. Compiler/programmer indicates that the computation of each results in a vector is
independent of the computation of other results in the same vector

• Elements in a vector can be computed using an array of parallel FU or single very deeply pipeline
FU or any intermediate configuration

Vector processing (2)
3. Hardware need only check for data hazards between two instructions once

per vector operand, not for every element in a vector.

• Reduce control logic

4. Vector instructions that access memory have known access pattern

• Adjacent data within a vector can be fetch from a set of heavily interleaved
memory banks

• Access latency to main memory is seen only once, not for every element

5. Loops are replaced by vector instruction whose behavior is predetermined,
control hazard that would arise from loop branch are non-existent

6. Traditional cache are replaced by prefetching and blocking technics to
increase locality

Short vector: SIMD
• x86 processors:

• Expect 2 additional cores per chip per year

• SIMD width to double every four years

• Potential speedup from SIMD to be twice that from MIMD

• Media applications operate on data types narrower than the native word size

• Example: disconnect carry chains to “partition” adder

• Limitations, compared to vector instructions:

• Number of data operands encoded into op code

• No sophisticated addressing modes (strided, scatter-gather)

• No mask registers

• Operands must be consecutive and aligned memory locations.

Long vector
• Today’s die are big enough to

embed thousand’s of FU

• Problem:

• Managing vector of 1000’s elements

• Issuing instructions over 1000’s FU

• Memory hierarchy accesses,

• …

• Solution: Clustering

Instruction issue

1000’s FU

Register File

Memory Hierarchie

Long vector: Clustering

• Divide machine into cluster of local register files and
local functional units

• Lower bandwidth / Higher latency interconnect
between clusters

• Software responsible of correct mapping of
computations and minimization of communication
overhead

DRAM DRAM DRAMDRAM DRAM DRAM DRAMDRAM

Long vector: Clustering

RF

Inst.
issue

RF

Inst.
issue

G80

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

RF

Inst.
issue

SMSM

DRAM DRAM DRAMDRAM DRAM DRAM DRAMDRAM

Long vector: Clustering

RF

Inst.
issue

RF

Inst.
issue

G80

SMSM

RF

Inst.
issue

RF

Inst.
issue

SMSM

RF

Inst.
issue

RF

Inst.
issue

SMSM

RF

Inst.
issue

RF

Inst.
issue

SMSM

RF

Inst.
issue

RF

Inst.
issue

SMSM

RF

Inst.
issue

RF

Inst.
issue

SMSM

RF

Inst.
issue

RF

Inst.
issue

SMSM

DRAM DRAM DRAMDRAM DRAM DRAM DRAMDRAM

Long vector: Clustering

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

G80

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

TPC

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

Long vector: Nvidia G80

Interconnect network

L1

TPC

L1

TPC

L1

TPC

L1

TPC

L1

TPC

L1

TPC

L1

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

SMSM

RF

Inst.
issue

ShM

RF

Inst.
issue

ShM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

Long vector: FERMI

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

Interconnect network

CPU
CUDA execution (1)

Kernel 4 Kernel 5

Kernel 6

Kernel 7

Stream1 Stream2 Stream3

Kernel Scheduler / Dispatcher

GPU 1 GPU 2

Kernel 1 Kernel 2

Kernel 3

CUDA execution (2)
GPU 1

Kernel 1, Grid 1
Block

1
Block

2
Block

3
Block

4

Block
5

Block
6

Block
7

Block
8

Kernel 2, Grid 2
Block

1
Block

2
Block

3
Block

4

Block
5

Block
6

Block
7

Block
8

Block
4

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Thread
8

Thread
9

Thread
10

Thread
11

Thread
12

CUDA execution (3)
GPU 1

Kernel 1, Grid 1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

SM

RF

Inst.
issue

ShM

Inst.
issue

L1

Kernel 2, Grid 2

Block Scheduler / Dispatcher

Kernel context state:
• TLB, dirty data in caches
• Registers, shared mem.

Fermi:
• Can dispatch 1 kernel to

each SM

8-32 blocks / SM

SM

Warp instruction queue

Block 12

CUDA execution (4)
Block 0

Thread
1

Thread
2 … Thread

32

Thread
33

Thread
34 … Thread

64

…

Thread
1

Thread
2 … Thread

32

Thread
33

Thread
34 … Thread

64

…

Block 0, Warp 0
Thread

1
Thread

2 … Thread
32

Block 1, Warp 1
Thread

33
Thread

34 … Thread
64

Block 0, Warp 1
Thread

33
Thread

34 … Thread
64

…
Thread Thread … Thread

IPC

IPC

IPC

IPC

48-64 warps /SM

CUDA execution (5)
Instruction Cache

Odd Warp  
Instruction Queues

Even Warp  
Instruction Queues

Scoreboarded Warp
Scheduler

Scoreboarded Warp
Scheduler

Register File

32 bit
ALU
x16

32 bit
FPU
x16

SFU
x4

32 bit
FPU
x16

32 bit
ALU
x16

64 KB L1D, Shared Memory

1/2 warp instruction 1/2 warp instruction

1/2 warp instruction1/2 warp instruction

Port 0 Port 1

48 queues, 
1 for each warp

Scoreboard:
Track availability of operands
handle structural hazards (FP64,
SFU, …)

Scheduler complexity:
Large variety of instructions with
different execution latency (factor 4)

Handle priority (ex: register usage),
ready to execute warp, mark certain
queues as ‘not ready’ based on
expected latency of instruction

FERMI

Subtleties (6)
• Operand collector / Temporal register cache

• Hardware which read in many register values and buffer them
for later consumption.

• Could be useful for broadcasting values to FU

• Result queue

• Similar concept but for results

• Could be used for forwarding results to FU (CPU)

Evolution: Fermi, Kepler,
Maxwell

Simpler scoreboard
• No register dependency analysis
• Only keep track of long latency inst.

Some figures

Maximum number of threads per block 1024

Maximum number of resident blocks per
multiprocessor 8-32

Maximum number of resident warps per
multiprocessor 48-64

Number of 32-bit registers per
multiprocessor 32K-128K

Topics covered

• Definition of the scheduling problem

• Scheduling on superscalar architecture

• Scheduling on vector architecture

• How to schedule

• New problems

Scheduling in GPU’s
• Stream are scheduled among GPUs  

ex: Red/Black tree (Used at OS Level)

• Kernel of a Stream are scheduler on a given
GPUs using FIFO

• Block are scheduled among SMs with a round
robin algorithm

• Warp are scheduled to SIMT processor using a
round robin algorithm with priority and aging

• Data dependencies are handle using a
scoreboard

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

Scheduling at OS level
• Example: Completely Fair Scheduler  

(CFS, Linux kernel 2.6.23)

• Maximize CPU usage & performance

• Based on Red/Black tree indexed with execution
time

Average Worst case

Space O(n) O(n)

Search O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

Scoreboard
• Keeps track of dependencies, state or operations

• Instruction status (which steps the instruction is in)

• Issue, Read Operands, Execution, Write Results

• Function unit status (For each functional unit)

• Busy: Indicates whether the unit is busy or not

• Op: Operation to perform in the unit (e.g., + or –)

• Fi: Destination register

• Fj, Fk: Source-register numbers

• Qj, Qk: Functional units producing source registers Fj, Fk

• Rj, Rk: Flags indicating when Fj, Fk are ready

• Register result status—Indicates which functional unit will write each register,

• If one exists. Blank when no pending instructions will write that register

FIFO
• First implementation in electronics of FIFO: 1969 Fairchild Semiconductor by Peter Alfke.

• Queues processes in the order that they arrive in the queue

• Minimal overhead

• No prioritization

• Implementations

• Hardware Shift Register

• Memory Structure

• Circular buffer

• List

• Hardware

• Set of Read and Write pointers, Storage (dual-port SRAM, flip-flops, latches), Control logic

• Synchronous (same clock)

• Asynchronous (stability pb, use of gray code for read/write pointers to ensure correct flag)

• Flags : full/empty, almost full, almost empty, …

000

001

011

010

110

111

101

100

Head Tail

FIFO (2)
• FIFO Empty Flag:

• When the read address register reaches the write address
register, the FIFO triggers the Empty signal.

• FIFO Full Flag:

• When the write address register reaches the read address
register, the FIFO triggers the FULL signal.

• Both case Read @ == Write @

• Distinguish both cases: add 1 bit to both @ inverted each
time the @ wraps

• R@ = W@ => FIFO empty

• LSB(R@) = LSB(W@) => FIFO full

Priority
• Idea:  

Schedule the highest-priority
eligible element first

• Implementation: (Static
version)

• Rely on a priority enforcer/
encoder chain of elements with
a ripple signal « Nobody above
is eligible ». Ripple signal can
be replaced with a tree of OR
gates to detects the presence of
eligible entries (carry
lookahead)

Element 1 0

Element 2 0

Element 3 1

Element 4 0

Element 5 1

…

Element N 1

Eligibility  
Flags Priority

Low

High

S

Priority encoder
• Each unit i send a request by setting

Ai, and receive a granting bit Yi

• Y1 = A1,

• Y2 = A2 . A1,

• Y3 = A3 . A2 . A1,

• …

• YN = AN . AN-1 . … .A2 . A1,

Priority
encoder

A1

A2

AN

Y1

Y2

YN

Priority encoder

Tradeoffs between delay and gate count

Round Robin
• Time slices are assigned to each process in equal portions and in

circular order.

• No priority

• Simple, easy to implement, starvation free

• Known worst case wait time = function of the number of element -1

P0

P1

P2

P3

P0

P1

P2

P3

Round-Robin (1)
• 1 element served each

cycle

• Circular encoder/enforcer

• Each element has the
capability to break the
chain and become
« head » element (similar
to carry chain)

Eligibility
Flags

Last 
scheduled

Position  
Mask

schedule
now

Round Robin (2)
• Round Robin Matching algorithm  

2-dimensional round-robin scheduler (2DDR)

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

In
pu

ts

Ouputs

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

Accept all
request on

1st
diagonal

Ignore
other

requests
on same

row/
column of
accepted
requests

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

Accept all
request on

2nd
diagonal

and ignore
other …

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

1 0 0 0
0 1 1 0
0 1 0 1
1 1 1 0

…

Round-Robin with
Fairness

• The first diagonal should be selected in a round
robin fashion among {0,1,…N-1}

• Order of applying next diagonals should not always
be « left-to-rigth »

• next_diagonal = (rev_diagonal + offset) mod M

• offset = ID of first_diagonal +1

• M = smallest prime number >= N+1

 LaMaire, DN Serpanos - IEEE/ACM
Transactions on Networking (TON), 1994

Aging
• Implementation N°0: (2 elements)

• 1 bit counter (alternate between 0 and 1)

• Implementation #1:

• 64 bit counter, incremented after every instruction

• Select the element with the oldest counter and reset it.  
rely on sorting networks 

• Implementation #2:

• Use a matrix M of n x n element initialized at 0

• Oldest : Select row k with lowest number of 1

• Set all bits in row k of M to 1

• Set all bits in column k of M to 0

0 1

New problems
• Loss of determinism

• Complicates debugging, test of
correctness

• Key question

• How to avoid structural hazard
and those problems at
reasonable cost

Determinism

• Various solutions

• Langage (SHIM, NESL, HASKELL, …)

• Compiler

• Software /Algorithm

• Hardware (Grace, Dthreads)

Example: Algorithmic level
• Numerical issue with FP numbers

• Non-associativity of FP Numbers  
(0.1 + 100) - 100 != 0.1 + (100-100)

• Numerical reproducibility
• Weak

• Enforce an execution order

• Ex: GPUBurn

• Strong
• Independent of the arch., ~correctly rounded

• Ex: Hierarchical Kulisch Accumulator

Conclusions
• GPU’s aren’t simple processors

• Scheduling is as challenging as in traditional CPU

• Hardware solutions mostly unknown (only guess)

• Trend

• Toward simpler solution  
(ex: simpler scoreboard in Kepler)

• There is a need for deterministic execution

Links
• Hardware description

• Rise of the Graphics Processor: http://ieeexplore.ieee.org/ieee_pilot/articles/96jproc05/96jproc05-blythe/article.html

• http://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

• http://www.realworldtech.com/fermi/

• http://www.clubic.com/article-332014-3-nvidia-geforce-gtx-480-directx-11-nvidia.html

• http://www.anandtech.com/

• http://www.beyond3d.com/ …

• Scheduling

• Network architecture (Manolis Katevenis): http://www.csd.uoc.gr/~hy534/

• « An Investigation of the performance of various dynamic scheduling techniques »: http://hps.ece.utexas.edu/pub/
butler_micro25.pdf

• Books

