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Part I

Introduction

Security: Applications & Aspects

Cryptographic Features

Software vs Hardware Support

Hardware Acceleration Solutions
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Applications with Security Needs

We need protections against:

A. Tisserand, CNRS–IRISA–CAIRN. Processor Extensions for Security 4/81



Security Aspects

security

system security

data

networks

operating systems

programs

devices

cryptology
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physical
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Steganography
Cryptography: art of secret
Steganography: art of dissimulation

Principle: hide a secret message into another message (support)

landings in

Normandy on

June 6th, 1944.

secret message

support image

program

result difference

-
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Cryptographic Features

Objectives:

• Confidentiality

• Integrity

• Authenticity

• Non-repudiation

• . . .

Cryptographic primitives:

• Encryption

• Digital signature

• Hash function

• Random numbers generation

• . . .

Implementation issues:

• Performances: speed, delay, throughput, latency

• Cost: device (memory, size, weight), low power/energy consumption,
design

• Security: protection against attacks

Applications: smart cards, computers, Internet, telecommunications,
set-top boxes, data storage, RFID tags, WSN, smart grids. . .
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Software vs Hardware Support
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Hardware Acceleration Solutions

At cluster/network/system level: (autonomous) dedicated processors

• Digital signal processors (DSPs)

• Network processors

• Multimedia processors

• Cryptographic processors

At computer level: co-processors and accelerators

• Dedicated cards for specific applications: video (GPU), audio, . . .

• Cryptographic co-processors

At processor/core level: instruction set extensions

• Vector/matrix computations, SIMD, FMA, small floats, data shuffling,
bit manipulation, cache interaction, prefetching

• Multimedia & signal processing applications

• Cryptographic extensions (AES, GF(2m) multiplication)
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Part II

Security Background

Basic Cyphering

Symmetric vs Asymmetric Cryptography

Theoretical Attacks

Cryptographic Hash Functions

Physical Attacks

Random Number Generators (RNG)

A. Tisserand, CNRS–IRISA–CAIRN. Processor Extensions for Security 10/81

Basic Cyphering

Alice wants to secretly send a message to Bob in such a way Eve
(eavesdropper/spy) should have no information

secret

A B

secured zone secured zone
communication

channel

M
plain text

E
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Symmetric / Private-Key Cryptography

A BM

E D

k

Ek(M)

k

Dk(Ek(M)) =M

E

• A : Alice, B : Bob

• M: plain text/message

• E : encryption/ciphering algorithm, D: decryption/deciphering
algorithm

• k : secret key to be shared by A and B

• Ek(M): encrypted text

• Dk(Ek(M)): decrypted text

• E : eavesdropper/spy
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Symmetric Cryptography Limitation

people required keys
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Asymmetric / Public-Key Cryptography

A BM

E D

k

Ek(M)

k

k ′

Dk ′(Ek(M)) =M

E

• k : B’s public key (known to everyone including E)

• Ek(M): ciphered text

• k ′: B’s private key (must be kept secret)

• Dk ′(Ek(M)): deciphered text
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Symmetric or Asymmetric Cryptography?

Private-key or symmetric cryptography:

simple algorithms

fast computation
limited cost (silicon area, energy)

requires a key exchange

key distribution problem for n persons

Public-key or asymmetric cryptography:

no key exchange

only 2 keys per person (1 private, 1 public)

allows digital signature

more complex algorithms

slower computation
higher cost
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Theoretical Attacks

A B

E D

M

k

Ek(M)

k

Dk(Ek(M)) =M

E

k , M???attack

Notations:

• M plain text

• E encryption algorithm

• D decryption algorithm

• k secret key

• C = Ek(M) ciphered text

• secured zone
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RSA 768 Attack in December 2009

6 months on 80 parallel computers (≡ 1 500 years for a single computer!)

RSA-768 =
3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489
×
3674604366679959042824463379962795263227915816434308764267
6032283815739666511279233373417143396810270092798736308917

Source: article
http://eprint.iacr.org/2010/006.pdf

Factorization of a 768-bit RSA modulus. Thorsten Kleinjung, Kazumaro
Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thome, Joppe W. Bos,
Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne Osvik,
Herman te Riele, Andrey Timofeev, and Paul Zimmermann
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RSA Ciphering (Rivest, Shamir, Adleman 1977)
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c = me mod n
c

m = cd mod n

RSA key pair generation:

1. generate primes p and q (length l/2)

2. compute n = pq and φ = (p − 1)(q − 1)

3. select e such that 1 < e < φ and gcd(e, φ) = 1

4. compute d satisfying 1 < d < φ and ed ≡ 1 mod φ

Security:

• integer factorization problem: compute (p,q) knowing just n is hard
• minimal key size recommendation: 1024 bits
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RSA Signature

signature verification signature generation
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h = H(m)

s = hd mod n
(m, s)

h = H(m)

h′ = se mod n

comparison

ACCEPT signature

REJECT signature

h=h′

h 6=h′

H a cryptographic hash function
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Cryptographic Hash Functions (1/2)

m

H

h = H(m)

l bits

k bits

• message m (arbitrary block of data)

• variable size l

• hash or digest h

• fixed size k (in practice k << l)

Security properties of cryptographic hash functions:

• preimage resistance (one way function): h9m | h = H(m)

• second preimage resistance1: m19m2 6= m1 | H(m1) = H(m2)

• collision resistance: finding (m1,m2) such that m1 6= m2 and
H(m1) = H(m2) is very hard

Examples: MD5, WHIRLPOOL, SHA-1, SHA-2, SHA-3 (selection 2010)
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Cryptographic Hash Functions (2/2)

Examples using openssl:

> echo "string" | openssl dgst -sha224 -hex

string digest

0123456789 95ae4be607f065743ac1c81d1180591a919d08b8d4765e176b26f214

1123456789 5c527cd1341a4338f09086e71d1a0d69f818d74a828c974b9433524a

0123446789 94e5aa1d275dc3a21c76d28b011f4ea6121fa228af3ec7fa329da44f

0123456788 b04c6b0b1d663ad0c00d749441747cc6df211ea6c98f4fd2dbf283ff

A. Tisserand, CNRS–IRISA–CAIRN. Processor Extensions for Security 21/81

[Trapdoor] One Way Function

One way function: f : x 7→ y = f (x)

• given x , computing y is easy

• given y , computing x is very hard

Trapdoor one way function: f : x 7→ y = f (x)

• given x , computing y is easy

• given y , computing x is very hard

• given some (secret) information and y , computing x is easy

Example: p and q primes, computing n = pq is easy but finding (p, q)
knowing just n is very hard
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Elliptic Curve Cryptography (ECC)

encryption

signature

etc
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fi
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E : y 2 = x3 + 4x + 20 over GF(1009)

points on E : P, Q= (x , y) or (x , y , z)

coordinates: x , y , z ∈ GF(·)
GF(p), GF(2m), t : 160–600 bits

k = (kt−1kt−2 . . . k1k0)2 ∈ N

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

Point addition/doubling operations
sequence of finite field operations
DBL: v1 = z2

1 , v2 = x1 − v1, . . .
ADD: w1 = z2

1 ,w2 = z1 × w1, . . .

GF(p) or GF(2m) operations
operation modulo large prime (GF(p))
or irreducible polynomial (GF(2m))
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Key Size vs Security Level

security RSA ECC
level GF(p) GF(2m)

|n| [bits] |p| [bits] m [bits]
56 512 112 113
64 704 128 131
80 1024 160 163 J
96 1536 192 193

112 2048 224 233 JJ
128 3072 256 283
192 7680 384 409
256 15360 521 571

• Security level of h: the best known algorithm takes 2h steps for
breaking the cryptosystem

• RSA: Z/nZ with n = pq, p and q primes

• ECC: GF(p) with p prime or GF(2m)

Source: SEC2 recommendations from Certicom (v1.0, Jan. 2000)
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Various Types of Attacks

attack

observation

perturbation

invasive

timing analysis

power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

maths dico etc

EMR = Electromagnetic radiation
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Side Channel Attacks

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value
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Side Channel Analysis/Attacks (SCA)

A B

E D
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Ek(M)
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E

measure

k , M???
attack

General principle: measure external parameter(s) on running device in
order to deduce internal informations
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What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• power consumption

• electromagnetic radiation

• temperature

• sound

• computation time

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)
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Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .
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“Read” the Traces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• algorithm decomposition into steps

• detect loops
I constant time for the loop iterations
I non-constant time for the loop iterations

Source: [8] Kocher, Jaffe and Jun. Differential Power Analysis, Crypto99
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Differences & External Signature
An algorithm has a current signature and a time signature:

r = c0

for i from 1 to n do

if ai = 0 then

r = r+c1

else

r = r×c2

I+ I×
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Simple Power Analysis (SPA)

Source: [8]
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SPA in Practice

General principle:

algorithm

difference in the behavior

difference in the trace

analysis

Methods: interpretation of the differences in

• control signals

• computation time

• operand values

• ...
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Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces
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DPA Example

average

correct

incorrect

incorrect
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Electromagnetic Radiation Analysis (1/2)

General principle: use a probe to measure the EMR

circuit

VDD

GND

EMR measurement:

• global EMR with a large probe

• local EMR with a microprobe
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Electromagnetic Radiation Analysis (2/2)

EMR analysis methods:

• simple electromagnetic analysis: SEMA

• differential electromagnetic analysis: DEMA

Local EMR analysis may be used
to determine internal architecture
details, and then select weak parts of
the circuit for the attack

X-Y table
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Basic Power Analysis Attack on ECC
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Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)
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Random Number Generators (RNG)

Pseudo random number generator (PRNG):

• deterministic algorithms

• very high throughput and good statistical properties

• various algorithms quality/throughput/cost tradeoffs

True random number generator (TRNG):

• non-deterministic algorithms (physical random source)

• limited throughput

• quality = func(environment parameters, . . . ) attacks

Hybrid random number generator (HRNG):

• HRNG = TRNG + PRNG

• very high speed and very good quality

• selection needs more research
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Historical Hardware TRNGs

ATT Patent 1946, source: P. Kohlbrenner
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TRNGs Selection
Physical noise source:

• quantum physics

• radioactive decay

• atmospheric noise

• thermal/Johnson noise

• jitter in ring oscillator sampling

• meta-stability

• noises in circuits: 1/f, shot, popcorn, crosstalk, . . .

• . . .

Characteristics:

• throughput (? Mb/s)

• randomness quality (bias, entropy/bit, stability, effects of
environment variations, . . . )

• security fully integrated in the chip

• cost (silicon area, power consumption) V
L
S
I
im

p
le
m
en
t.
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Free Running Ring Oscillator

inverter:

in out

0 1

1 0

1 0 1 0

odd # of inverters (n)

S

ring oscillator

time

S

period = f (n, . . .)

φ random jitter
(timing/phase instability)

φ

time

S

period = f (n, φ, . . .)
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Example of Ring Oscillator (RO) Based TRNG

RO1

RO2

RO3
...

ROk

xor

tree

fs

random
bits

post
processing

optional

on-line
test

alarm

quality evaluation

Description:

• k free running ring oscillators

• fs is the sampling frequency

• post processing: enhance statistical parameters

• on-line quality test (environment variations, attacks, . . . )
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Post Processing

Purpose: enhance statistical parameters of the output sequence

• reduce bias Pr(x = 1) = 0.5 + ε (AIS 31: ε < 0.0173)

• increase entropy per bit (the real randomness)

Typical post processing methods:

• Von Neumann correction

input bits (0,0) (0,1) (1,0) (1,1)

output bit none 1 0 none

• Linear feedback shift register (LFSR)

• Hash function (e.g. SHA)

• Ciphering (e.g. AES)

• Resilient function (e.g. error code computations)

• . . .

Trade-off: entropy per bit, data rate, cost, quality
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RO Based TRNG Example

[11]

Description:

• k = 114 RO of 13 inverters

• resilient function: BCH(256, 13, 113) code

• mathematical model (but not realistic assumptions)

• data rate 2.5 Mb/s on FPGA

Problems:

• very complex calibration (external measurement of the jitter!!!)

• too many transitions in the xor tree

• setup/hold violations in the flip-flop

• . . .
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Example of Measurements on FPGAs

TRNG from [6] (Altera Stratix II):
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TRNG by Dichtl and al.
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Part III

Processors and Co-Processors

Cryptographic Processors

Cryptographic Co-Processors & Accelerators

Trusted Platform Module (TPM)
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Cryptographic Processors

• Mechanical devices

Example 1: Confederate Cipher Disc used during
the American Civil War (1861-1865)

Example 2: CD-57 portable, produced in 1957

• Electromechanical devices

Example: Enigma used during the 2nd World War

• Electronic circuits

1970s for bank applications

• Tomorrow?

Images sources: http://fr.wikipedia.org/ & http://cryptomuseum.com/
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The Bombe

Electromechanical device designed for deciphering (i.e. breaking) Enigma

Bletchley Park (http://www.bletchleypark.org.uk/)

Image source: http://fr.wikipedia.org/
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IBM 4765 PCIe Cryptographic Coprocessor

AES, DES, TDES

RSA sign. ≤4096b

ECDSA sign. p521

SHA-1, SHA-2, . . .

key management

. . .

Images source: https://www-03.ibm.com/security/cryptocards/pciecc/pdf/PCIe_Spec_Sheet.pdf

NIST certification: http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1505.pdf
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Trusted Platform Module (TPM)
Hardware device for authentication and accreditation of the platform

• Boot process integrity: system start-up is tamper free

Verification of (many) stored measurements from previous boots
Verification of code & behavior: BIOS, chip-set, peripherals, firmwares,
boot loader, kernel, . . .

• Data protection: robust against software and physical attacks

Security keys, passwords, certificates

• Improved Security support for operating system:

Encryption, hash functions, RNG, key generation & management
Memory protection, session isolation, protected partition, security
support for virtual machines

• Device physically locked to the motherboard

Specifications: Trusted Computing Group (TCG, created in 1999)
http://www.trustedcomputinggroup.org/
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TPM Integration in a PC Platform

CPU

North
Bridge

RAM

South
Bridge

Super IO

TPM
LPC

PCI

IDE

USB
. . .

parallel

serial
PS/2
. . .

LPC: low pin count
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TPM Example from Infineon

TPM Block diagram (from Infineon white paper [5]):
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Our ECC (Co)Processor
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counter-
measures

• Functional units: ±,×, 1/x for GF(p) or GF(2m), key recoding
• Memory: main register file + internal registers in FUs
• Control: operations (curve and field levels) schedule, parameters

management, active countermeasures. . .
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Part IV

Instruction Set Extensions

Instruction Set

Instruction Set Extensions

Addition of Long Operands

Extension for Finite Fields Arithmetic

Extensions for AES
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Instruction Set

Programming interface of a processor:

• Instruction set (or instruction set architecture)

I Control flow operations
I Computations operations (ALU, floating-point)
I Memory and data handling operations

• Registers features and organization

• Memory mapping

• Virtual memory support

• Virtual machines support

• Interruption and exception handling

• Permissions

• I/O space organization

• . . .
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Instruction Set Extensions
Objectives:

• Improve efficiency for (useful) operations and memory handling:
multimedia, signal processing, codecs, cryptography, . . .

• Increase internal parallelism:
vector, matrix, SIMD (single instruction multiple data)

• Efficient support for specific operations:
dedicated hardware operators

Programming models:

• Compiler assisted generation:
compiler identifies patterns to be mapped on the extended IS

• Optimized library based design:
replace a standard and generic library by a specific library for the target
processor extended IS

• Intrinsics:
access to low-level instructions from a high-level programming language
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Examples of Instruction Set Extensions
For x86 architectures:
• MMX (1996, Intel) +57 instructions and +8 registers 64b
• 3D Now (1997, AMD, ) +21 instructions and +8 registers 64b

(FP/MMX)
• SSE (1999, Intel) +70 instructions and +8 registers 128b
• SSE2 (2001, Intel) +144 instructions and +8 registers 128b
• SSE3 (2004, Intel) +13 instructions
• SSE4 (2006, Intel) +54 instructions
• AVX (2008, Intel) +12 instructions and registers 128→256b
• AES (2008)
• F16C (2009, AMD)
• XOP (2009, AMD)
• FMA (2011)
• BMI (2012)

Instruction set extensions have been proposed for other architectures:
MAX-1 for PA-RISC, VIS for Sparc, AltiVec for Apple-IBM-Motorola),
MIPS-3D for MIPS, NEON for ARM, . . .
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MMX Example

• 8 new 64b registers (in 80b floating-point ones): MM0, MM1, . . . , MM7

• 4 new vector data types:
63 0

packed bytes

packed words

packed double words

quad word

• 57 new instructions: (examples)

I logic: por, pand, pxor, psrlw, psrld, psrlq, psraw, psraq, . . .
I maths: paddb, paddsb, paddusb, paddw, paddsw, paddusw, paddd,

pmulhw, pmullw, . . .
I comparisons: pcmpeqb, pcmpeqw, . . .
I data movement: movd, movq, . . .
I data packing: packsswb, packssdw, punpckhbw, . . .
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AVX Example

Example of new instructions:

• VBROADCASTSS, VBROADCASTSD, VBROADCASTF128: broadcast 32b,
64b or 128b word to ALL elements

• permutations

• shuffles
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XOP Example

Images source: https://chessprogramming.wikispaces.com/XOP
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Addition of Long Operands

Addition of long operands is very important in:

• multiprecision arithmetic, e.g. GMP, MPRI, MPFR, MPFI libraries

• asymmetric cryptography:
I RSA 1024–8192 bits integers and modular arithmetic
I ECC 160–600 bits finite fields elements GF(p) and GF(2m)
I Fully Homomorphic Encryption (> 105 bits integers or polynomials)
I El Gamal signature, Diffie-Hellman key exchange, . . .

Addition of long integers is not efficient using a standard ISA:

• Addition of w -bit words (w ∈ {32, 64}) produces a w -bit sum

• Carry out (cout) handled as a flag (not an accessible value)

• Bad branch prediction since Proba(cout = 1) ≈ 1
2
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Hardware Extension for Large Additions
Proposed solution: local flip-flop to store carries “between” sub-words

+

ab

s = a + b

c

cout cin

• cout produced at step i is used as cin at step i + 1

• very cheap, no more control issues

• cin = 0 for the first sub-word

• New instruction ADC (i.e. add with carry)

Problem: how can I use this instruction from a high level programming
language?
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Software Usage of ADC Instruction

Programming models:

• At assembly language level: explicit use of the ADC instruction

not very popular

• At compiler level:
s = a + b + (c==1 ? 1 : 0)

is identified as a call to the ADC instruction

does not work!

• Using intrinsic: fake function call (replaced by assembler code)

unsigned char _addcarry_u64 (

unsigned char c_in,

unsigned __int64 a,

unsigned __int64 b,

unsigned __int64 * out )
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Hyper Short Introduction to GF(2m) Arithmetic

• Element of the field: A =
∑m−1

i=0 aix
i with ai ∈ {0, 1}

A = 1 · x3 + 1 · x2 + 0 · x + 1 and B = 0 · x3 + 1 · x2 + 1 · x + 1

A: 1 1 0 1 B: 0 1 1 1

• Field addition: component wise addition in GF(2) (i.e. bit wise XOR)

A + B: 1 0 1 0

• Field multiplication: polynomial multiplication

A× B: 0 0 1 0 0 0 1 1

In many cases, we need arithmetic modulo an irreducible polynomial
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Extensions for GF(2m) Arithmetic

SSE2-4, AVX support:

• PXOR instruction: 128-bit exclusive OR
addition in GF(2m)

• PCLMULQDQ instruction: 64-bit × 64 → 128-bit product
product in GF(2m)

Carry-less multiplication

Other instructions: PCLMULLQLQDQ, PCLMULHQLQDQ, PCLMULLQHQDQ,
PCLMULHQHQDQ

• inversion in the field: euclidean algorithm with GF(2m) addition, bit
manipulation instructions

Future extensions (?): 256 × 256 → 512 bits
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Advanced Encryption Standard (AES)

Established by NIST
in 2001

Symmetric encryption

Block size: 128 bits

key length #round

128 10
192 12
256 14

Based on substitution-
permutation
network

Image source: http://fr.wikipedia.org/

NIST: National Institute of Standards and Technology
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AES Round Operations

Images source: http://fr.wikipedia.org/
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Instruction Set Extension for AES

• AESKEYGENASSIST key generation (partial operations)

• AESENC one round of encryption

• AESENCLAST last round of encryption

• AESDEC one round of decryption

• AESDECLAST last round of decryption

• AESIMC inverse mix columns

• PCLMULQDQ GF(2m) multiplication (carry less)
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Example

Source:

Shay Gueron

Intel’s New AES Instructions for
Enhanced Performance and Security

Proc. Fast Software Encryption
(FSE) 2009

http://iacr.org/archive/

fse2009/56650054/56650054.pdf
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Hardware Support for Security: Pros/Cons

At cluster/network/system level: (autonomous) dedicated processors

very high security (isolation, strong storage, protections
against SCAs)

cost, not flexible, requires system level integration
(client/server prg. model)

At computer level: co-processors and accelerators

very high security (isolation, protections against SCAs)

not flexible, requires computer level integration

At processor/core level: instruction set extensions

flexible

security against SCAs
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Conclusion & Future Prospects

Security support in processors:

• Requires hardware blocks (software is not secure enough)

• Use secured libraries at OS, cryptographic and application levels

• Important features: isolation, authentication, identification, strong
cryptographic primitives (cipher, hash, RNG, key management)

• Important threats: attacks at ALL levels (protocols, software, IP, OS,
maths, physical. . . )

Future security support:

• Advanced TPMs

• Advanced security co-processors, accelerators, IPs

• End-to-end trust chain

• Security solutions vs economic models vs social aspects

privacy protection, anti-trust, small vs huge industries, . . .

• . . .
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Good Books (in French)

Histoire des codes secrets

Simon Singh

1999

Livre de poche

Mathématiques, espionnage et piratage

informatique

Joan Gomez

2010

Le monde est mathématique, RBA
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Good Books (in French)

Cryptographie appliquée

Bruce Schneier

1997, 2ème édition

Wiley

ISBN: 2–84180–036–9

Cours de cryptographie

Gilles Zémor

2000

Cassini

ISBN: 2–84225–020–6
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Good Books (in French)

Courbes elliptiques

Philippe Guillot

2010

Hermes

ISBN: 978-2-7462-2392-9

Micro et nano-électronique

Bases, Composants, Circuits

Hervé Fanet

2006

Dunod

ISBN: 2–10–049141–5
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Good Books (in English)

CMOS VLSI Design

A Circuits and Systems Perspective

Neil Weste and David Harris

3rd edition, 2004

Addison Wesley

ISBN: 0–321–14901–7

Power Analysis Attacks

Revealing the Secrets of Smart Cards

Stefan Mangard, Elisabeth Oswald and

Thomas Popp

2007

Springer

ISBN:978-0-387-30857-9
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Good Books (in English)

Handbook of Applied Cryptography

Alfred J. Menezes, Paul C. van Oorschot and

Scott A. Vanstone

2001

CRC Press

ISBN:0-8493-8523-7

Web: http://cacr.uwaterloo.ca/hac/
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The end, questions ?

Contact:

• mailto:arnaud.tisserand@irisa.fr

• http://people.irisa.fr/Arnaud.Tisserand/

• CAIRN Group http://www.irisa.fr/cairn/

• IRISA Laboratory, CNRS–INRIA–Univ. Rennes 1
6 rue Kerampont, CS 80518, F-22305 Lannion cedex, France

Thank you
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