Opérateurs arithmétiques sécurisés

Arnaud Tisserand

IRISA, CNRS - Univ. Rennes 1 Équipe-projet CAIRN

ARCHI 09 Plemeur-Bodou, 30 mars - 3 avril 2009

Introduction

Les besoins en dispositifs de cryptographie sont de plus en plus grands :

- pour faire du chiffrement (ssh, site web sécurisé, diffusion de contenus via le réseau...)
- pour signer des documents électroniques
- pour authentifier des gens et des dispositifs
- pour vérifier l'intégrité d'un document
- pour assurer le non désaveu d'un document

Les besoins en intégration matérielle sont aussi de plus en plus grands :

- pour les performances (vitesse, taille/poids, consommation)
- pour la sécurité (éviter les attaques)

Plan

- Introduction sécurité = mathématiques + informatique + microélectronique
- Attaques physiques (exemples) analyse consommation/rayonnement électromagnétique injection de fautes
- Opérateurs arithmétiques pour la crypto (exemples) opérations $(\pm, \times, \frac{1}{2})$ entières modulo P sur 200–2000 bits
- Sécurisation d'opérateurs arithmétiques jouer avec les représentations des nombres, les algorithmes et les implantations
- Conclusion, perspectives, références

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

2/54

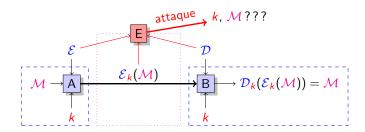
Terminologie

Cryptographie = art de garder les messages secrets Cryptanalyse = art de décrypter les messages chiffrés Cryptologie = cryptographie + cryptanalyse Stéganographie = art de cacher les messages dans d'autres messages

Attaque = tentative pour, sans connaître le secret, retrouver :

- des messages (ou des bouts de message)
- des informations sur le message
- le secret (ou des bouts du secret)

Exemple : chiffrement en crypto symétrique



Notations:

- *M* message en clair
- ullet algorithme de chiffrement
- ullet ${\cal D}$ algorithme de déchiffrement
- k clé secrète

- $\mathcal{C} = \mathcal{E}_k(\mathcal{M})$ message chiffré
- [] zone sécurisé
- canal de communication

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

5/54

Attaques théoriques

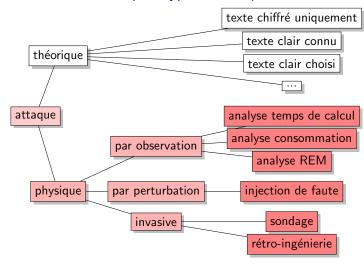
Tout à fait réalisable en pratique avec :

- maths
- algorithmique de compétition
- programmation hyper hyper optimisée

Exemple : factorisation de grands entiers pour casser RSA

- RSA 512 bits, août 1999
- RSA 576 bits, décembre 2003
- RSA 640 bits, novembre 2005, équipe allemande avec 80 μP Opteron à 2.2 GHz
- RSA 768 bits en cours...

Quelques types d'attaques



REM = rayonnement électromagnétique

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

6/54

Pour éviter les attaques théoriques

Suivre les recommandations des spécialistes...

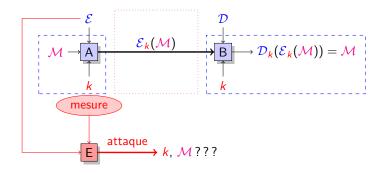
Exemple : courbe elliptique P-521 sur un corps premier recommandée par le NIST (cf. FIPS 186-2)

- $\begin{array}{ll} p = & 68647976601306097149819007990813932172694353 \\ & 00143305409394463459185543183397656052122559 \\ & 64066145455497729631139148085803712198799971 \\ & 6643812574028291115057151 \end{array}$
- $\begin{array}{ll} r = & 68647976601306097149819007990813932172694353 \\ & 00143305409394463459185543183397655394245057 \\ & 74633321719753296399637136332111386476861244 \\ & 0380340372808892707005449 \end{array}$
- s = d09e8800 291cb853 96cc6717 393284aa a0da64ba
- c = 0b4 8bfa5f42

0a349495 39d2bdfc 264eeeeb 077688e4 4fbf0ad8 f6d0edb3 7bd6b533 28100051 8e19f1b9 ffbe0fe9 ed8a3c22 00b8f875 e523868c 70c1e5bf 55bad637

Attaque physique par canaux cachés

En anglais : Side Channel Analysis/Attacks (SCA)



Principe : mesurer des paramètres externes du dispositif pendant son fonctionnement pour en déduire des informations internes

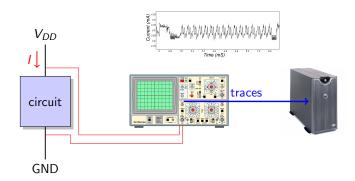
A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

9/54

11/54

Attaque par mesure de la consommation d'énergie

Principe : mesurer le courant / qui alimente le dispositif



Notations : V_{DD} tension d'alimentation (5, 3, 2.5, 1.2 V), GND la masse

Que mesurer?

Réponse : tout ce qui peut "entrer" et/ou "sortir" dans le/du dispositif

- la consommation d'énergie
- le rayonnement électromagnétique
- la température
- le bruit (son)
- le temps de calcul
- le nombre de défauts de cache
- le nombre et le type de messages d'erreur
- ..

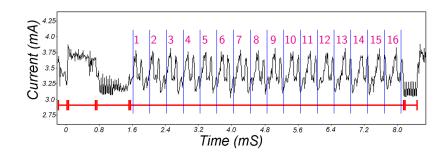
Ce que l'on mesure peut donner des informations sur le comportement :

- global (température, consommation, bruit...)
- local (REM, nb défauts de cache...)

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

10/54

Que lire dans les traces?



- ullet algorithme \Longrightarrow découpage en étapes
- détection des tours de boucle (calculs répétitifs)
 - temps constant dans un tour
 - ▶ ou pas???

Exploiter les différences

Un algorithme a une signature en courant et en temps de calcul :

```
r = c_0

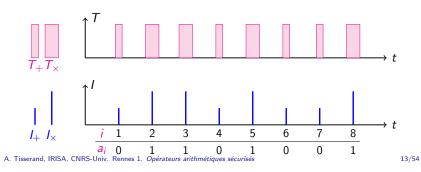
for i from 1 to n do

if a_i = 0 then

r = r + c_1

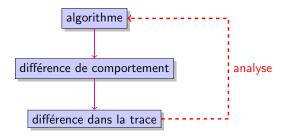
else

r = r \times c_2
```



La SPA en pratique

Principe :

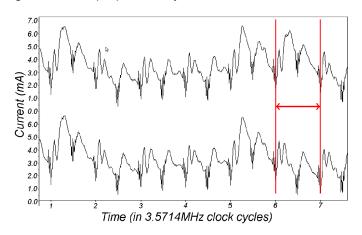


Techniques : exploiter les différences dans

- le contrôle
- le temps de calcul
- les valeurs des opérandes (temps de calcul, conso., REM...)
- ...

Analyse simple de la consommation (SPA)

En anglais : SPA simple power analysis

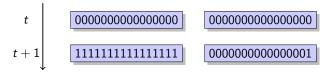


A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

14/54

Limites de la SPA

Exemple de différence de comportement : (activité dans un registre)



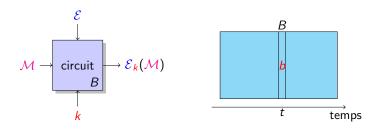
Important : une petite variation de comportement peut être plus ou moins cachée par du bruit ⇒ les traces ne sont plus discernables

Question: que faire quand les différences sont (trop) petites?

Réponse : utiliser des statistiques sur des nombreuses courbes

15/54

État interne d'un cryptosystème



Notations:

- t un instant de l'exécution ($t \in \{1, ..., T\}$)
- $B = F_{\mathcal{E}}(\mathcal{M}, \mathbf{k}, t)$ état interne du cryptosystème
- IMPORTANT : B n'est pas accessible de l'extérieur!

Objectif : essayer de découvrir **b** un élément de B (ex : un bit)

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

17/54

Analyse différentielle de la consommation (DPA) (2/2)

Supposons $H=H_{b=0}$ on compare \overline{P}_j et la moyenne des traces de S_0 La comparaison peut donner :

- aucune différence significative mesurable $\Longrightarrow H$ était incorrecte (c.a.d. $b \neq 0$)
- une différence est mesurable à l'instant $t \Longrightarrow H$ était correcte (c.a.d. b = 0)

Remarque : idem avec l'autre hypothèse

Supposons $H=H_{b=1}$ on compare \overline{P}_j et la moyenne des traces de S_1 La comparaison peut donner :

- aucune différence significative mesurable $\Longrightarrow H$ était incorrecte (c.a.d. $b \ne 1$)
- une différence est mesurable à l'instant $t \Longrightarrow H$ était correcte (c.a.d. b = 1)

Analyse différentielle de la consommation (DPA) (1/2)

En anglais : DPA differential power analysis

Principe:

- 1. effectuer *N* exécutions du cryptosystème
 - ▶ on garde les messages en clair M_i ($i \in \{1, ..., N\}$)
 - on mesure les traces P_{ij} $(j \in \{1, ..., T\})$
- 2. calculer la trace moyenne $\overline{P}_j = \frac{1}{N} \sum_{i=1}^N P_{ij}$
- 3. sélectionner un bit b à attaquer (c.a.d. trouver b en interne)
- 4. partitionner les traces P_{ij} en deux ensembles :
 - S_0 celles qui correspondent à b=0 (tous les i qui donnent b=0)
 - ▶ S_1 celles qui correspondent à b=1 (tous les i qui donnent b=1)
- 5. faire une hypothèse sur b: $H = H_{b=0}$ ou $H_{b=1}$
- 6. comparer statistiquement la trace moyenne globale \overline{P}_j à la trace moyenne de S_0 ou S_1 (celle de H)

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

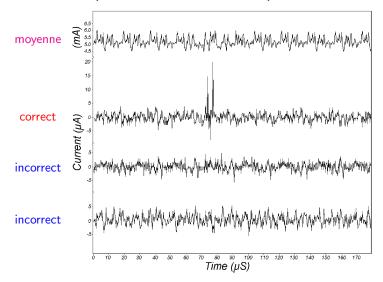
18/54

Pourquoi la DPA marche?

Réponse : grâce au partitionnement S_0 / S_1 par rapport à H

- si l'hypothèse H est incorrecte
 - \implies les N exécutions/traces correspondent à un b faux
 - \implies le partitionnement S_0 / S_1 est aléatoire
 - \implies si N est grand, la différence entre la moyenne globale et la moyenne de l'ensemble testé sont proches à l'instant j=t
- si l'hypothèse *H* est correcte :
 - \implies les N exécutions/traces correspondent à un b correct
 - \implies le partitionnement S_0 / S_1 est significatif
 - \implies si N est grand, la différence entre la moyenne globale et la moyenne de l'ensemble testé sont différentes à l'instant j=t car on exploite la différence de comportement entre b=0 et b=1

Exemple de courbes obtenues par DPA



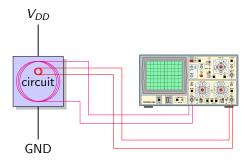
A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

21/54

23/54

Analyse du rayonnement électromagnétique (1/2)

Principe: utiliser une sonde qui va capter le REM.



Mesure du REM:

- global avec une grande sonde
- local avec une microseconde

Remarques sur la DPA

- partitionner demande de connaître le b théorique pour chaque message testé \mathcal{M}_i
- il faut que le N soit assez grand pour deux raisons :
 - ▶ amplifier la différence dans le cas de *H* correcte
 - rendre aléatoire la différence dans le cas de H incorrecte
- connaître t n'est pas nécessaire pour faire l'attaque, mais ça aide à restreindre la taille des traces (donc le temps d'attaque)
- ce qui est difficile c'est de savoir quel(s) b attaquer!
 - ▶ il faut que **b** engendre une différence de comportement
 - b peut être un bit ou plusieurs bits
- on utilise des tests statistiques de plus en plus sophistiqués
- attaque particulièrement efficace en pratique

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

22/54

Analyse du rayonnement électromagnétique (2/2)

Types d'analyse du ${\sf REM}$:

- simple : SEMA (simple electromagnetic analysis)
- différentielle : DEMA (differential electromagnetic analysis)

Le caractère local de l'analyse du REM peut être vraiment intéressant pour essayer de déterminer l'architecture du circuit, puis d'attaquer des endroits bien précis.

⇒ table X-Y

Attaques par injection de fautes (1/2)

Principe : essayer de faire varier certains paramètres du dispositif par rapports à ses conditions normales de fonctionnement en espérant que cela engendrera une différence de comportement interne, une faute, mesurable à l'extérieur

Comment perturber?

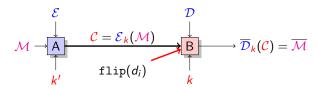
- modifier la tension d'alimentation
- modifier la température
- modifier le signal d'horloge
- ne pas respecter les temps de setup/hold sur les entrées
- soumettre le circuit à un REM
- illuminer le circuit avec un laser
- ...

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

25/54

Exemple d'attaque en faute

Attaque du déchiffrement RSA par inversion de bit (flip)



- choisir un message en clair M
- chiffrer \mathcal{M} en $\mathcal{C} = \mathcal{E}_k(\mathcal{M})$
- injecter une faute en inversant d_i avec i aléatoire (d clé secrète)
- calculer $\frac{\overline{\mathcal{M}}}{\mathcal{M}} = \frac{c^{2^i \overline{d_i}}}{c^{2^i d_i}}$
- - $\stackrel{\longrightarrow}{M} = \frac{1}{c^{2^i}} \mod N \Longrightarrow d_i = 1$ $\stackrel{\longrightarrow}{M} = c^{2^i} \mod N \Longrightarrow d_i = 0$
- recommencer avec plusieurs $i \iff bouts de d$, puis attaque maths)

Attaques par injection de fautes (2/2)

Quelques types de fautes :

- coller des valeurs internes à 1 (ou 0)
- inverser la valeur d'un bit (flip)
- interdire certaines transitions (ex : $0 \rightarrow 1$ OK mais pas $1 \rightarrow 0$)
- empêcher un saut dans un branchement
- modifier le décodage des instructions

Ensuite on utilise les fautes pour créer des différences de comportement et essayer de mesurer ces différences en externe

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

26/54

Contre-mesures contre les attaques

Empêcher une (ou des) attaques par :

- un nouveau dispositif de protection
- la modification/sécurisation du dispositif original

Exemples:

- blindage
- uniformiser les temps de calcul
- uniformiser la consommation d'énergie
- utiliser des codes détecteurs/correcteurs d'erreurs
- introduire du bruit (instructions inutiles)
- reconfigurer le circuit
 - changer le codage des données
 - changer les algorithmes

Opérateurs arithmétiques pour la crypto

Éléments de :

• corps fini premier GF(p) (p un grand nombre premier)

• extensions du corps binaire GF(2^m)

• extensions de corps premiers $GF(p^m)$ (ex : p = 3)

Tailles classiques en crypto à clé publique :

• RSA ⇒ 1024 à 8192 bits

• ECC ⇒ 200 à 600 bits

Bonne référence : Guide to ECC (cf. livres)

Notation: ECC *elliptic curve cryptography*

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

Addition modulo M

29/54

31/54

Entrées :

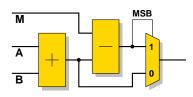
$$A, B \in \{0, 1, 2, 3, \dots, M-1\}$$

Sortie¹:

$$(A+B) \mod M$$

Algorithme:

$$(A+B) \bmod M = \begin{cases} A+B & \text{si } A+B < M \\ A+B-M & \text{si } A+B \ge M \end{cases}$$



 $^{^{1}0 &}lt; A + B < 2M - 2$

• p est un grand nombre premier

• éléments du corps : {0, 1, 2, 3, ..., p − 1}

• dans le corps, calcul sur les entiers modulo p

Exemple: GF(29)

• éléments : {0, 1, 2, 3, ..., 27, 28}

opérations modulo 29

addition :	17 + 20	=	8	car	37 mod 29	=	8
soustraction :	17 - 20	=	26	car	$-3 \mod 29$	=	26
multiplication:	17×20	=	21	car	340 mod 29	=	21
inversion:	17^{-1}	=	12	car	$17 \times 12 \mod 29$	=	1

																				-9	-8	-7	-6	-5	-4	-3	-2	-1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

30/54

Addition modulo $2^n - 1$

Entrées :

$$A, B \in \{0, 1, 2, 3, \dots, 2^n - 2\}$$

Sortie:

$$(A+B) \bmod (2^n-1)$$

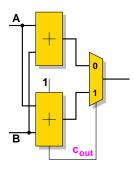
Méthode naïve :

$$(A+B) \bmod (2^{n}-1) = \begin{cases} A+B & \text{si } A+B < 2^{n}-1 \\ \underbrace{A+B-(2^{n}-1)}_{A+B+1} & \text{si } A+B \geq 2^{n}-1 \end{cases}$$

Problème : la condition $A + B > 2^n - 1$ est coûteuse

Addition modulo $2^n - 1$: variante 1

$$(A+B) \mod (2^n-1) = \begin{cases} A+B & \text{si } A+B+1 < 2^n \\ A+B+1 & \text{si } A+B+1 \ge 2^n \end{cases}$$



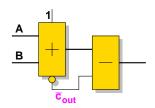
A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

33/54

Addition modulo $2^n - 1$: dernière variante

$$(A+B) \mod (2^n-1) = (A+B+1) \mod 2^n + \bar{c}_{out}(2^n-1)$$

= $(A+B+1) \mod 2^n - \bar{c}_{out}$



Optimisation : travailler au niveau arithmétique ET et au niveau architecture/circuit

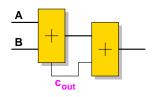
Addition modulo $2^n - 1$: variante 2

Idée : double représentation de 0:00...00=11...11

$$(A+B) \mod (2^n-1) \in \{0,1,2,3,\ldots,2^n-2,2^n-1\}$$

Méthode modifiée :

$$(A+B) \bmod (2^n-1) = \begin{cases} A+B & \text{si } A+B < 2^n \\ A+B+1 & \text{si } A+B \ge 2^n \end{cases}$$
$$= A+B+c_{out}$$



A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

34/54

Addition modulo

Techniques similaires pour l'addition modulo $2^n + 1$ ou des moduli spécifiques

Mais:

- dépend de la valeur (écriture au niveau chiffres) de M
- difficile d'optimiser pour plusieurs moduli (M_1, M_2, \dots, M_k)
- dépend aussi de la cible

Opérations modulaires utiles :

- A + B + 1 et A + B 1
- A + B et A + B + 1 en même temps

Multiplication modulaire

Deux méthodes :

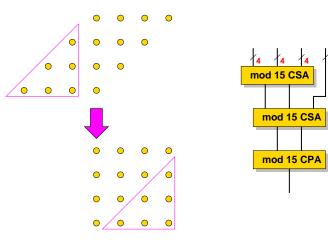
- multiplication et réduction modulaire
 - étape 1 : calculer $P = A \times B$
 - étape 2 : réduire $R = P \mod M$
 - ▶ possible pour des M comme $2^n 1$, $2^n + 1$ ou d'autres moduli spécifiques (mais pas en général)
- accumulation (modulaire) des produits partiels réduits
 - parallèle-parallèle
 - série-parallèle (MSB ou LSB en premier)

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

37/54

Multiplication modulaire : $(A \times B) \mod 15$

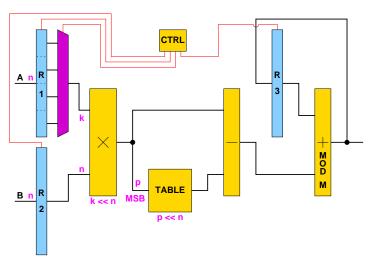
 $\textbf{Principe}: 16 \bmod 15 = 1$



A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

38/54

Multiplication modulaire : compromis



Exponentiation modulaire

Algorithme: square and mutliply

```
Entrées: x, d = (d_{m-1} \dots d_1 d_0)_2

Sortie: y = x^d

1 R \leftarrow 1

2 i \leftarrow m-1

3 while (i \geq 0) do

4 R \leftarrow R^2 square

5 if (d_i = 1) then

6 R \leftarrow R \times x multiply

7 endif

8 i \leftarrow i-1

9 endwhile

10 return R
```

Opération majeure dans RSA

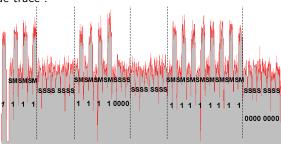
Square and multiply: vulnérable!

Attaque : SPA

Différence de comportement à chaque tour de boucle :

- $d_i = 1 \Longrightarrow$ carré et multiplication
- $d_i = 0 \Longrightarrow$ carré

Exemple de trace :



A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

41/54

ECC: multiplication scalaire

C'est l'opération principale

Entrée : P un point de la courbe E, un grand entier $k = \sum_{i=0}^{n-1} k_i 2^i$

Sortie: le point
$$Q = [k]P = \underbrace{P + P + P + \dots + P}_{k \text{ fois}}$$

Algorithme classique : double-and-add

 $\mathbf{1}:\ Q\longleftarrow P$

2 : **for** i **from** n-2 **to** 0 **do**

 $3: Q \longleftarrow 2P$

4: if $k_i = 1$ then $Q \longleftarrow Q + P$

Problème : pas robuste à la SPA!

Contre-mesure SPA: Square and multiply always

```
Entrées: x, d = (d_{m-1} \dots d_1 d_0)_2
   Sortie: v = x^d
1 R ← 1
i \leftarrow m-1
while (i \ge 0) do
     R_1 \longleftarrow R^2
                                    square
     R_2 \longleftarrow R_1 \times x
                                    multiply
     if (d_i = 1) then
         R \longleftarrow R_2
        else
       R \longleftarrow R_1
       endif
     i \leftarrow i - 1
12 endwhile
  return R
```

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

42/54

Recoder la clé k pour être plus résistant

Recodages w-NAF (non-adjacent form)

Dans

$$k = \sum_{i=0}^{n-1} k_i 2^i, \quad k_i \in \{0, 1\}$$

parcourir k par paquets de w chiffres

$$|k_i|<2^{w-1}$$

Exemple:

Coût : n-1 DBL et $\frac{n}{w+1}$ ADD

Chaîne d'additions (thèse Nicolas Meloni)

Utiliser uniquement des additions :

- résistant à la SPA
- à chaque étape $ADD(P_1, P_2) = (P_1 + P_2, P_1)$ avec P_1 et P_2 connus
- mais il faut trouver une chaîne courte

Exemple: k = 34

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

45/54

Double-Base Number Systems (DBNS) (2/3)

Plus petit x > 0 nécessitant n termes DBNS :

n	non-signé	signé
2	5	5
3	23	105
4	431	(4985)
5	18,431	?
6	3,448,733	
7	1,441,896,119	
8	?	

Exemple : 127 a exactement 783 représentations DBNS, dont 6 sont canoniques : 127 = (108 + 18 + 1) = (108 + 16 + 3) = (96 + 27 + 4) = (72 + 54 + 1) = (64 + 54 + 9) = (64 + 36 + 27)

Double-Base Number Systems (DBNS) (1/3)

Source : L. Imbert

Représentation redondante basée sur la somme de puissances de 2 et 3 :

$$x = \sum_{i=1}^{n} x_i 2^{a_i} 3^{b_i}, \text{ avec } x_i \in \{-1, 1\}, \ a_i, b_i \ge 0$$

Exemple: $127 = 108 + 16 + 3 = 72 + 54 + 1 = \dots$

	1	2	4	8	16
1					1
3	1				
9					
27			1		

		1	2	4	8
1		1			
3					
9					1
27	7		1		

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

46/54

Double-Base Number Systems (DBNS) (3/3)

Application: multiplication scalaire ECC

$$314159 = 2^43^9 + 2^83^1 - 1$$

$$[314159]P = [2^43^9]P + [2^83^1]P - P$$

$$coût: 12 DBL + 10 TPL + 2 ADD$$

$$314159 = 2^{4}3^{9} - 2^{0}3^{6} - 3^{3} - 3^{2} - 3 - 1$$

$$[314159]P = 3(3(3(3^{3}([2^{4}3^{3}]P - P) - P) - P) - P)$$

Représentations des chiffres au niveau circuit

Représentation classique d'un bit **b** :

•
$$V_{DD} \Longrightarrow b = 1$$

• GND
$$\Longrightarrow b = 0$$

Représentation double-rail d'un bit **b** :

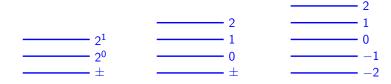
•
$$r_1 = V_{DD} \ r_0 = GND \Longrightarrow b = 1$$

•
$$r_1 = GND \ r_0 = V_{DD} \Longrightarrow b = 0$$

Intérêt : le nombre de transitions sur les fils (donc l'activité) est le même pour les transitions logiques $0 \to 1$ et $1 \to 0$

Coût : en surface de circuit et en mémoire

Codages en grande base : base 4 avec les chiffres $\{-2, -1, 0, 1, 2\}$)



A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

49/54

Livres (1/2)

Cryptographie appliquée (2^e édition)

B. Schneier

2001. Vuibert

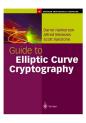
ISBN: 2-7117-8676-5

Guide to Elliptic Curve Cryptography

D. Hankerson, A. Menezes and S. Vanstone

2004. Springer

ISBN: 0-387-95273-X



Conclusion & perspectives

- attaques de plus en plus performantes
- sécurisation nécessaire à tous les niveaux (algo, opération, implantation)
- sécurisation = compromis performances / robustesse
- coût de sécurisation = f(valeur secret, type attaquant)
- sécurité = mathématiques + informatique + microélectronique

Exemple de recherches actuelles :

- exploiter les représentations redondantes
- reconfiguration du circuit (représentations, algos)
- rendre l'activité moins dépendante des valeurs
- représentation des nombres avec code détecteur/correcteur d'erreur
- liens ordonnancement des sous-calculs avec l'activité du circuit
- exploration des compromis performances/robustesse

A. Tisserand, IRISA, CNRS-Univ. Rennes 1. Opérateurs arithmétiques sécurisés

50/54

Livres (2/2)

Digital Arithmetic

Milos Ercegovac and Tomas Lang

2003. Morgan Kaufmann

ISBN: 1-55860-798-6

CMOS VLSI Design (3rd edition)

N. Weste and D. Harris

2004. Addison Wesley ISBN: 0-321-14901-7

Quelques références

- Differential Power Analysis. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Whitepaper from Cryptography Research, Inc. http://www.cryptography.com
- A Tutorial on Physical Security and Side-Channel Attacks. François Koeune and François-Xavier Standaert. http://www.dice.ucl.ac.be/crypto/
- The Sorcerer's Apprentice Guide to Fault Attacks. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall and Claire Whelan http://citeseer.ist.psu.edu/old/694897.html
- http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
- http://www.schneier.com/

Fin, des questions?

Contact:

- mailto:arnaud.tisserand@irisa.fr
- http://www.irisa.fr/prive/Arnaud.Tisserand/
- Equipe-projet CAIRN
- Laboratoire IRISA, CNRS-Univ. Rennes 1
 6 rue Kérampont, BP 80518, F-22305 Lannion cedex, France

Merci